e . C ter Syste
& omputer Systems

Science and Engineering & Tech Science Press

DOI: 10.32604/csse.2023.038234 .
Article
Check for
updates

Radon CLF: A Novel Approach for Skew Detection Using Radon Transform
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Abstract: In the digital world, a wide range of handwritten and printed
documents should be converted to digital format using a variety of tools,
including mobile phones and scanners. Unfortunately, this is not an optimal
procedure, and the entire document image might be degraded. Imperfect
conversion effects due to noise, motion blur, and skew distortion can lead
to significant impact on the accuracy and effectiveness of document image
segmentation and analysis in Optical Character Recognition (OCR) systems.
In Document Image Analysis Systems (DIAS), skew estimation of images is a
crucial step. In this paper, a novel, fast, and reliable skew detection algorithm
based on the Radon Transform and Curve Length Fitness Function (CLF),
so-called Radon CLF, was proposed. The Radon CLF model aims to take
advantage of the properties of Radon spaces. The Radon CLF explores the
dominating angle more effectively for a 1D signal than it does for a 2D input
image due to an innovative fitness function formulation for a projected signal
of the Radon space. Several significant performance indicators, including
Mean Square Error (MSE), Mean Absolute Error (MAE), Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Measure (SSIM), Accuracy, and
run-time, were taken into consideration when assessing the performance of
our model. In addition, a new dataset named DSI5000 was constructed to
assess the accuracy of the CLF model. Both two- dimensional image signal
and the Radon space have been used in our simulations to compare the noise
effect. Obtained results show that the proposed method is more effective than
other approaches already in use, with an accuracy of roughly 99.87% and a
run-time of 0.048 (s). The introduced model is far more accurate and time-
efficient than current approaches in detecting image skew.
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1 Introduction

Numerous printed and handwritten documents have been converted to digital format in the digital
age utilizing a variety of devices, including mobile phones and dedicated scanners. Unfortunately, this
procedure is far from ideal, and the entire document image may suffer from degradations including
skew distortion, motion blur, and noise. The accuracy and efficiency of document image segmentation
and analysis in Optical Character Recognition (OCR) systems can be directly impacted by these
affecting factors. Fig. | depicts the operational procedures of an OCR system ([1]). In all OCR systems,
the preprocessing steps are fundamental tasks that can affect the system’s performance directly [2-7].
The following is a list of some of the most fundamental and significant preprocessing methods used
in Document Image Analysis (DIA):

Binarization

Skew Detection

Skew Correction

Noise Removal

Image Quality Enhancement
Dual-page Splitting

Straighten Curved Text Lines
Baseline Detection & Extraction

01 Image Acquisition
02
Preprocessing
04 Feature Extraction
05 co o
Classification & Recognition
3 Postprocessing

Figure 1: The different steps of any optical character recognition (OCR) system [1]
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In general, skew detection is a primary step that plays a critical role in obtaining a high accuracy
DIA system. The skewness in a document image can degrade exceedingly subsequent document
processing algorithms in an OCR system.

In this work, the skew issue in input document images is the main focus. In this regard, a
new dataset named DSIS000 (5000 Directional Synthetic Images) was created and developed by
us. It includes about 5696 Directional Synthetic Images (DSI) with different intensities, angles, and
frequencies to analyze the accuracy of the proposed Radon Transform Curve Length Fitness Function
(CLF) algorithm so-called the Radon CLF. The Radon CLF model tries to benefit Radon space
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characteristics. Based on an innovative fitness function definition for a projected signal of the Radon
space, the Radon CLF explores the dominant angle more efficiently for a 1D signal rather than the
2D input image. In this study, we have concentrated on the speed, robustness (against the noise effect),
and the accuracy of the proposed model for the skew detection problem.

The many sections of this paper are arranged as follows: Section 2 introduces and discusses
related works. Section 3 describes the proposed approach for skew detection. Experimental results and
comparative analysis are the subject matter of Section 4. Finally, Section 5 includes the conclusion and
future studies.

2 Related Works

Many approaches based on projection profile, topline, and scanline methods, have been used in
the past to conduct skew detection on images. These are the most straightforward and often used
approaches to identify document skew; however, the majority of them involve slow algorithms with low
accuracy. These techniques generally rely on the fonts and grammatical structure of a given language
as well. They do not perform well enough with manuscripts that either incorporate multiple languages
or different fonts, in practice. For example, an approach using the horizontal projection histogram
for just Arabic text was presented by [8]. They present a method that was based entirely on polygonal
approximated skeleton processing.

In Signal & Image Processing and Computer Vision theory, there are many utilitarian directional
filters and transforms, for example: the Hough Transform (HT), the Gabor Wavelet Transform
(GWT), and Directional Median Filters (DMF). These directional filters can be used in the analysis of
the directional patterns ([9-13]). For example, [14] used Hough Transform and Run-Length Encoding
(RLE) algorithms for the skew detection problem. In 2010, an algorithm was proposed by [15]. It has
three steps: firstly, the projection of the vertical and horizontal graphics of the image was eliminated.
A binary image was applied to the dilation operation. In the last phase, the skew angle was achieved
with the help of the Hough Transform. The proposed algorithm can detect the skew angle in the range
between —90°, and +90°, with high precision.

Reference [16] deployed the Fast Hough Transform (FHT) to detect skew angles. In this approach,
there is no need for a binary representation of the text image. The Fast Hough Transform was applied
on both vertical and horizontal lines. This technique reduced the computational cost; while, the
calculated error was around 0.547. Skew detection approaches found on Hough Transform usually
impose a high computational cost. Reference [17] improved an algorithm based on least squares to
handle a multi-skew problem. In [18] and [19], they used a binary text document dataset to evaluate
the skew angle with the help of linear regression algorithms. The time cost of these methods was
smaller than other algorithms based on the Hough Transform. The algorithm performed text lines
classification. To increase the accuracy, the variation of skew angle was calculated in the £10° range.
With increasing the angle, the accuracy was reducing to the same ratio.

In [20], they introduced a method that inscribes the text in a document image found on an
arbitrary polygon and derivation of the baseline from the polygon’s centroid. It had proven that their
algorithm was suitable to apply to documents written in different fonts. In [21], an algorithm was
presented to perform skew angle correction for handwritten text documents. The algorithm used the
Hough Transform and the restricted box technique. In this algorithm, linear regression functions have
been used to compute the skew angle in a manuscript. The algorithm’s main point is that it displays
parallel rectangles in the binary image with the lowest number of pixels in line with horizontal and
vertical orientations. Then, the linear regression function would be calculated for the skew angle.
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In [22], morphological functions were used to detect skew angles. These functions can be analyzed
in the frequency domain found on Fourier Transform (FT). The Fourier Transform could detect text
distortion in different languages, including English, Hindi, and Punjabi. In [23], a nearest-neighbor-
chain or NNC algorithm was introduced with language-independent capability. Size restriction was
the main challenge to the detection of nearest-neighbors (NN), before the skew detection.

In [24], the Principle Component Analysis (PCA) and its wide applications in Image & Signal
Processing, were presented. In [6], finding the skew angle has done using the PCA approach. After
converting the input document into a binary picture, the algorithm utilized Sobel and Gaussian filters.
It helps to find edges and reduce noise. The PCA-based method gets the covariance matrix, after which
it produces the Eigen values and Eigen vectors, and then calculates the unit vector for the principal
component. Later, the document’s skew angle can be determined using the principal components. The
introduced algorithm could get an accuracy of about 90% but with a high time cost.

In [25], they presented an adaptive Skew Correction technique for document images. It uses
image’s layout features and classification to detect the type of document image. Three different classes,
named Text image, Form image, and Complex image, were considered in the classification problem.
Then, based on the type of document image, one of three proposed algorithms: Morphological
Clustering (MC), Piecewise Projection Profile (PPP), and Skeleton Line Detection (SKLD), should
be used to correct the skew of a document image.

Transferring the input image to Radon space and using a strong feature extraction method like
the suggested Radon CLF, is an appropriate alternative to working with highly loaded 2D data. It
can benefit high-speed processing algorithms in a one-dimensional signal space rather than image
space. Radon CLF can also lead to improved results in terms of computational time and accuracy.
The subsequent sections will go through this idea.

3 Methodology

Today, enormous amounts of information are stored in printed documents. The primary and
important step in the processing of paper-based documents is to convert them into digital records.
In practice, the main problem is that the document may be rotated unaptly on a flatbed scanner at a
random angle. In this situation, the scanned image may be skewed. The skew is considered a surplus
distortion which can degrade the image quality. The skew can impose severe challenges in digital image
analysis and deteriorate the overall performance of any OCR system. In this section, the methodology
and our proposed approach to detect skew is discussed in more detail. In Fig. 2, a general scheme of
our proposed approach is presented.

Figure 2: The proposed Radon CLF algorithm for skew detection in document images
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3.1 The Radon Transformation

The Radon function is calculated from an image matrix such as f(x, y) in specific directions.
The Radon function accounts for linear integrals over different paths or certain paths (from different
sources/beams) in a specific direction [9,26—32]. This function takes multiple parallel-beam projections
of the input image from different angles by rotating the source around the center of the image.

In Fig. 3, a single image at a specified rotation angle of the Radon transform is illustrated. Besides,
Fig. 4 indicates the geometry of the Radon Transform.

y

Sensors

Rotation angle theta

fix,y)
/ Source

Figure 3: The parallel-beam projection at rotation angle [33]

The computation of projections can be down from any angle. Generally, the Radon transform
(R, (x)) of the function f(x, y) is the linear integral of it, in parallel to y’-axis [34—36] (see Eqs. (1)
to (4)):

R = [ S (s d M)

P’y = X 05 (6) — ¥'sin (§) @)

P’0 = ¥'sin (8) + ¥ cos (6) (3)
x| _|cos(0) sin (@) || x

[y’] o |:— sin (8) cos (9):| |:y:| )

where the pair (x’, y’) is the new place of the (x, y) after rotating with the angle theta in a two-
dimensional Cartesian coordinate system.



680 CSSE, 2023, vol.47, no.1

RB[,\")

Figure 4: The Geometry of the Radon Transform [37]

3.2 Skew Detection

This section conceptualizes our new skew detection approach so-called Radon CLF (Radon Curve
Length Fitness Function). Usually, the local region in a document image has a consistent orientation
and frequency [38]. So, it can be modeled as a surface wave characterized entirely by the dominant
orientation and frequency pattern. This approximation model is practical enough for our purpose of
evaluating the performance of the Radon Transform for the skew estimation problem. According to
Eq. (5), alocal region of the image can be modeled as a surface wave [39]:

I(x, y) = Acos Qrf (x cos (0) + y sin (0))) (5)

where /" is the frequency, the theta is the dominant orientation, and A is the amplitude of the cosine
function. 4 is the intensity adjustment parameter of the synthesized image /(x, y). An example image
and its projection by the Radon Transform are shown in Fig. 5. As it can be seen in the projection
function in Fig. 5b, providing that it has been projected in the actual orientation, which is parallel
to the local orientation of the input image, it can be approximately treated as a semi-sinusoidal plane
wave. Besides, the noisy version of the image in Fig. 5a and its Radon projection are depicted in Fig. 6.
Although, the noise power is utterly high (the Gaussian noise with the standard deviation (o) about
20), the comparison between Figs. 5b, and 6b shows that the semi-sinusoidal structure of the Radon
projection is still satisfied with a few distortions. Figs. 7 and § are depicted with a new angle. Now, two
new Radon transform maps are compared between a noise-free directional image and its noisy version
with o =9. With comparing two Figs. 7a and 8a in the image signal space, it can be viewed that the
noise effect is quite eye-catching. On the other side, when we make comparison between Figs. 7b and
&b in the Radon space, it indicates that the presence of noise does not impact the projected pattern in
this space, considerably.
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Figure 5: (a) A well-defined 150 x 150 synthetic image (x). (b) The Radon Transform: R(x)
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Figure 6: (a) A noisy synthetic image (Gaussian Noise with o = 20). (b) The Radon Transform: R(x)
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Figure 7: (a) A noise-free synthetic image with =30 and o =0. (b) The Radon transform map of the
image
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Figure 8: (a) A noisy synthetic image with # =30 and o =9. (b) The Radon transform map of the
image

These comparisons show that the proposed skew detection algorithm can abundantly tolerate
the additive noise more efficiently in the Radon space rather than the signal space, providing that an
appropriate feature extraction method is available for the Radon space. This observed phenomenon
should be evaluated further in the following sections.

3.3 Curve Length of a Function

In Fig. 9, f{ x) is shown as an example of an one-dimensional continuous function. The Arc length
L of a function such as y = f{x) between « and b (from the point (a, f (a)) to the point (b, £ (b))) can
be derived using Eq. (6):

()

where — denotes the first derivative of the function f(x). Supposing that C would be a curve in

Euchdean (or, generally, a metric) space X = R", so C is a continuous function of an image where f: [a

b] — X of the interval [a, b] into X. From a partitiona=x, < ... < Xx,_; < x, = b of the interval [a, b],
there is a finite collection of points f(x,), f(x,), ..., f(x.-,), and f(x,), which can be used to calculate
the length of the line segment connecting the two points. According to Eq. (7), the arc length L of C
is then defined to be L(C):

L@© =" d(F).f (o) )

where the supermom is calculated of all possible sections of [a, b] and n is unbounded. This definition
of the arc length does not require that C be defined by a differentiable function. Generally, the notion
of differentiability is not defined in a metric space.
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Figure 9: An example of 1D function f(x)
3.4 Definition of the Proposed Fitness Function

In the case of the discreet Radon function, R, (x), this article defines the curve length of the
function, L ,, as Eq. (8):

L9,R0 = ZY AR, (x) ®)
Thus, the estimated skew of an input image, 4, can be obtained the using proposed Eq. (9):
0 = Argmax (L, x,) )

If the orientation is the same as the local skew, the projection function will result in a semi-
sinusoidal plane wave. If not, the resultant pattern can be an erratic, non-sinusoidal signal with
a smaller amplitude. This fact is shown in Fig. 10. Fig. 10 makes a comparison between Radon
projection patterns on the actual orientation at 8 = 70 (the red line with error = 0) and some incorrect
orientations, such as 71 (error=+ 17), and 60 (error =—10"). This study proposes the curve length
of the projected Radon pattern as a fitness function for skew estimation, and call it the Radon CLF
algorithm.

Radon transform output vs. Projected Angles
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Figure 10: Comparison between Radon projection patterns on the actual orientation at 6 = 70 (the red
line with error = 0), and some incorrect ones such as 71 (error =+ 1") & 60 (error = —10")

It will be shown that in the correct orientation, such as 6 =70 in Fig. 10, the length of the curve
would be well over the curve lengths of other incorrect orientations.

3.5 Performance Evaluation Metrics
Performance metrics are a vital part of every algorithm analysis. To evaluate the performance of
our proposed method, we have used the Mean Squared Error (MSE) (for both the skew estimator
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and image comparison), the Mean Absolute Error (MAE) (for the skew estimator), Accuracy (for
the skew estimator), Peak Signal-to-Noise Ratio (PSNR) (for the images comparison), and Structural
Similarity Measure (SSIM) (for the images comparison) along with the Computational Time.

In statistics, the MSE is considered the Mean Squared Deviation (MSD) of an estimator. It
can measure the average of the square of the errors or the average squared difference between the
actual/ground-truth value and the estimated value ([40]).

I A\ 2

MSE == Zzi:l (91 - 0,) (10)
In Eq. (10), 6, is the true value of the angle for the i sample, and 6, is the estimated angle for it.

The 6, — 6, is the error signal for the i sample, and should be calculated for all n available samples.

In comparison to the MSE, the Mean Absolute Error or MAE is the absolute average of the
difference between the ground-truth and the predicted value [40] (see Eq. (11)).

 — .
MAE = ;ZH 6, — 6, (11)
In addition to MSE and MAE, the Accuracy is defined using Eqs. (12) to (14):
T = card (T) < T:{{w,.eDBw—é:o}} (12)

where | 7T is used for the cardinal of the set 7', and it means the total number of error-free predictions
(true predictions) in the whole dataset (Card (DB)). Similarly, the |F] is used for the cardinal of the set
F which means the total number of false predictions (predictions with error) in the entire dataset.

IF| = card (F) < F={{v1 e DBIo -6 #0}} (13)
|7

Accuracy = ——— 14

YT T o

The 1D MSE formula can be extended to the 2D space ([41,42]): MSE’”. In this study, it is needed
to compare two images as two matrices. Eq. (15) represents the MSE*” for two images:

1 n—1 m—1 L. A

ST dGp) -1a.)) (15)
m X n “—i=0 &=
where I(x, y) is an m x n original image while the 1(x, y) would be whether a noisy image or a
disturbing version of the original image. The MSE*® measures differences between two images and

shows the quality degradation. The zero M.SE*” means that the two images are the identical (the perfect
similarity).

MSE?™ =

The PSNR or Peak Signal-to-Noise Ratio also represents a measure of the image error. Both the
PSNR, and MSE*® are usually used to measure an image’s quality after its variation ([41,42]). The
PSNR can be calculated directly found on the MSE?” ([40]), according to Eq. (16):

255
PSNR =10 x lOglO W (16)

In addition to PSNR and MSE?”, Structural Similarity Measure or SS/M have been deployed in
this paper using Eq. (17) ([42]). In a 2D space, the MSE*® will calculate distance as the mean of the
square error between each corresponding pixel for the two target images. In contrast, the SSTM tries
to do the opposite, and looks for similarities within pixels ([42—44]). To remedy some of the issues
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associated with MSE for image processing, SSIM have used. In Eq. (17), u, and u, are the average of x
and y while o , and o , are the standard deviation of them, respectively. Similarly, x.* and x,* denote the
variances and o ,, 1s the covariance of x and y. The ¢, and ¢, are two adjustable constant parameters.

(Zl’l’xl’l‘y + cl) (20-);}? + CZ) (17)
W+ w+a) (ol +or+0)
It is worth mentioning that the SSIM can vary between —1 and 1; where SSIM = 1 indicates the
perfect similarity ([40,43,44]).

SSIM =

3.6 Skew Correction

When the skew angle is detected by an algorithm, the next step would be Skew Correction.
Technically, it is just a simple rotation procedure for a 2D image. So far, different methods such
as contour-oriented projection, direct/indirect based method, and others, have been introduced to
correct skewed images. In our simulation, the rotation of an input image is done through the Affine
Transformation (AT) using Eqgs. (18) and (19) ([45]):

X* = cos (é) X + sin (é) y (18)
y* = —sin (é) X + cos (é) y (19)

Here, the (x, y) is the coordinates of a pixel in the skewed input image,  denotes the detected
angle, and (x*, y*) is a new place of the pixel.

4 Experimental Results

The introduced method was implemented in the Python programming environment using an
Intel(R) Core(TM) i7-7700HQ 2.80 GHz CPU. To evaluate the model, a dataset called DSIS000 was
created and developed by us. It has about 5696 Directional Synthetic Images (DSI) with different
amplitudes (intensities), orientations (dominant directions), and frequencies (repetitive line patterns).
In addition to DSI5000, many real-world scanned image documents were also included in our
simulations. Both handwriting and printed samples were gathered at various resolutions from different
Persian, Arabic, English, and multilingual resources.

In the first experiment, the Radon projections were calculated for an input image with an actual
orientation of # =70. In Fig. 11, the Radon projections were illustrated for angles between 60 and
80 (including the true angle at & =70). It is a semi-sinusoidal pattern with well-defined harmonics
and the highest amplitude for the projection angle = 70 (the correct orientation). 8, refers to all other
projection angles, such as 60, 65, 68, 69, 71, 72, 75, and 80. These angels have noticeably lower
amplitudes. For 6,, it can be seen the more significant gap between a signal’s peaks compared to the
peaks of the signal associated with the actual angle (6). Then, Fig. 12 plots the Fitness Function vs. 6.
It illustrates that the fitness function of a synthetic image with 6 =70 in the orientation ranges from 1
to 180 degrees has just one global minimum at 8 = 70. Therefore, the skew of the image can be detected
precisely and uniquely by the proposed fitness function. Our simulations indicate that the proposed
feature extraction approach based on the curve length of the projected signal has the potential to
discriminate these variations among projected signals, finely.
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Radon transform output vs. Projected Angles
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Figure 11: Radon Transform output for different projection angles (The correct orientation: 6 = 70)
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Figure 12: Fitness Function vs. 6. It has a global minimum at 6 = 70 (the dominant angel)

4.1 Evaluation of the Noise Effect

One of the most important things related to any algorithm is its robustness against noise effects.
This section, hankers for drawing a broad picture of the noise tolerance of our model. Fig. 13
represents an input directional image with its noisy version (An additive Gaussian noise with o = 10).
The Error image, which is defined as a differential image between two images, also is depicted in this
experiment. The Error energy shows that the degrading effect of the additive Gaussian noise is so high.
To make an appropriate compassion to Fig. 13, the experiment is repeated; but this time, the image
space is replaced by the Radon space.

In Fig. 14, the Radon projection maps are depicted for the input image, its noisy version, and
the Error image in the Radon space. When the noisy image in the signal space in Fig. 13 is compared
with the noisy image in the Radon space in FFig. 14, it shows that in the Radon space, the information
related to the orientation can still be extracted from the noisy image. In contrast, its corresponding
noisy image in the signal space has almost no helpful information about the actual direction. It indeed
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means that the noise effect in the Radon space is much lower, and an appropriate estimator can spot
a dominant orientation even with a high power noise.

Noisy image Error image

Figure 13: Image signal space: Input image vs. Noisy image vs. Error image

Input image Noisy image Error image

Figure 14: Radon signal space: Radon Transform of the input image vs. Noisy image vs. Error image

We compare the MSE?”, PSNR, and SSIM for the input image and the noisy image in both image
signal space and Radon space to perform a more thorough analysis. Fig. 15 shows the MSE?” for two
different spaces in various noise powers. In our implementations, the o was increased from 0 to 65.

The MSE comparison between two spaces

4000 1 === Image space /
we= Radon space .
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Figure 15: Comparing the MSE between the image signal space, and the Radon space

The figure indicates that the MSE*®~% (the MSE in the signal space) is growing up exponentially
with rising noise power. On the opposite side, MSE**** (the MSE in the Radon space) is well below
the corresponding values in the signal space with little variations of the MSE between o =0 to o = 65.

In addition to the MSE, the PSNR is also illustrated in Fig. 16 for two different spaces. The

achieved results show that there is a big gap between the PSNR in the signal space (PSNR%) (the red
line) and the PSNR in the Radon space (PSNR®) (the blue line). Indeed, the PSNR* is dominated by
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the PSNR®. This indicates the Radon space keeps up the image quality rather than the signal space.
Then, in order to remedy some of the issues associated with MSE and PSNR, SSIM is deployed. As
mentioned, the SSIM value can vary between —1 and 1, where 1 indicates the perfect similarity. Fig. 17
compares the SSIM between the signal space and the Radon space for different values of the o. The
results unveil that SSIM®S (SSIM in the Radon space) decreased gradually from 1 to about 0.8 with
increasing of the o while SSIM® (SSIM in the signal space) was diving sharply from 1 to almost 0
during similar noise conditions. This indicates the perfect similarity is more achievable in the Radon
space rather than signal space, providing that an appropriate feature extraction procedure is available.
It is worth mentioning that all inputs were normalized using Eq. (20) before computing the Error
Image, MSE?**, PSNR, and SSIM.
X = Xpin

X =—" (20)

Xmax — Xmin

The PSNR comparison between two spaces
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Figure 16: Comparing the PSNR between the image signal space and the Radon space

The SSIM comparison between two spaces
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Figure 17: Comparing the SSIM between the image signal space and the Radon space
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In Eq. (20), x; is the scaled version (the normalized version), and x is the input image (either in
the signal space or the Radon space). Alongside, x,,, and x,,, are the minimum and maximum of the
x, respectively.

In image processing problems where feature detection is the only need, mapping of an original
image from image space to corresponding feature space via a useful transform, with subsequent
processing in lower dimension feature space, would be an appropriate. Radon domain, when properly
executed, can lead to minimum entropy or maximum sparseness. High-resolution Radon Transform
methods can efficiently remove random or correlated noise, improve signal clarity, by utilizing the
move-out or curvature of the signal of interest. This article has deployed 2D Mean Square Error
(MSE? ), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Measure (SSIM) to evaluate
the accuracy of the proposed feature extraction algorithm. There are noticeable gaps between Red &
Blue lines, corresponding to Image & Radon spaces for all three evaluation metrics. This indicates
the proposed feature detection method is strong enough to benefit the Radon space potential
characteristics, such as getting the least entropy or the most sparseness.

In a new scenario, the aim is to evaluate the noise power impact on the fitness function variations.
In Fig. 18, several fitness functions are drawn for noisy images with o =0 (no noise) to o =11 with
6 =80. In almost all experiments, the fitness function has a global minimum of about 6 =80 (the
perfect estimation). The second extremum is also highlighted in this figure. When the noise power
increases sharply, a local minima may change and even be converted to a fake global minimum. This
phenomenon will be investigated in the succeeding scenario. In Fig. 19, the skew and frequency of
the synthetic input image are upgraded. In almost all curves for noisy images with o =0 (no noise)
to o =9, the fitness function has a global minimum of about # = 30. This means the estimator is
doing magnificently even with a relatively high noise power. This indicates that the proposed approach
tolerates noise effects marvelously. Now, the noise power increases, manifestly. Fig. 20, shows that
when o rises from 10 to 45, there is no longer a regular pattern. Besides, for the very high noise
powers such as o = 30, 40, and 45 the real extremums were flipped, and replaced by other false local
minimums. As a result, in presence of the very high power additive Gaussian noise, the error can be
grown sharply.

4.2 Computational Time

To reduce the run-time, the image size can be reduced by a scale factor «. This step can potentially
speed up the processing time but it may lead to a reduction in the accuracy. As a result, in this section,
the aim is to analyze the proposed re-scaling procedure effects on not only the run-time but also some
critical algorithm’s performance measures such as the Accuracy, MSE, and MAE. For this purpose,
a 65 x 65 synthetic image with 6 =70 is considered in Fig. 21. In this new experiment, the scaling
factor (@) is selected from the set [1.0, 0.9, 0.7, 0.5], and o = 1 means there is no re-scaling procedure.
Fig. 21 demonstrates that the global minimum of the fitness function has no drift due to the re-scaling
procedure. Therefore, the estimator can detect the skew accurately for even o =0.5 for a very tiny
input image with the original size of 65 x 65. Then, the experiment is extended for a 600 x 600 synthetic
image with 6 = 70 at several scale factors, such as 1.0, 0.9, 0.7, 0.5, 0.4, 0.3, 0.15, and also 0.1. Similarly,
the results are very satisfying even for « = 0.1 for the recent example (See Fig. 22).
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the estimated 6 = 30
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Figure 21: The fitness function for a 65 x 65 synthetic image with 6 = 70 at different scale factors

To have more discussions, the outcomes of some new experiments are reported in both Tables 1,
and 2. In these tables, « is the scale factor, Image size* is the size of the scaled image, 6 is the dominant
orientation of an input image, § represents the estimated skew, Error = 6 — 6, while Time shows the
run-time in the second. In Table 1, for all scale factors that range between 0.1, and 1, the estimation
error would be precisely zero, while the computation time decreases from 3.16612 s for « =1 (Image
size* = 600 x 600) to just 0.08803 s for « = 0.1 (Image size* = 60 x 60). This means the proposed Radon
CLF is not only an accurate algorithm but also can reduce the run-time blatantly. In Table 2, the error
would be zero except for « = 0.3, with a remarkably tiny image including only 20 rows and 20 columns
of pixels. In this table, the estimation error is still zero for any Image size* greater than 20 x 20. This
implies that any more reduction of the input size can increase the probability of the error. Furthermore,
Table 2 denotes that with re-scaling the input image from its original size of 65 x 65 to 26 x 26, the run-
time falls from 0.09996 s to 0.04103, and at the same time, there is still no error.
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Figure 22: The fitness function for a 600 x 600 synthetic image with 6 = 70 at different scale factors

Table 1: The results of the proposed Radon CLF algorithm for a 600 x 600 synthetic image with 6 = 70
and different scale factors («)

Row Scale factor  Image size* 6 ] Error Time (s)
1 a=1.00 600 x 600 70 70 0 3.1661
2 a=0.90 540 x 540 70 70 0 2.4341
3 a=0.70 420 x 420 70 70 0 1.4540
4 a=0.50 300 x 300 70 70 0 0.7380
5 a=0.40 240 x 240 70 70 0 0.5046
6 a=0.30 180 x 180 70 70 0 0.3119
7 a=0.15 090 x 090 70 70 0 0.1220
8 a=0.10 060 x 060 70 70 0 0.0880

Table 2: The results of the proposed Radon CLF algorithm for a 65 x 65 synthetic image with 6 =10
and different scale factors («)

Row Scale factor  Image size* 6 ] Error  Time (s)
1 a=1.00 65 x 65 10 010 0 0.09996
2 a=0.90 58 x 58 10 010 0 0.07100
3 a=0.70 46 x 46 10 010 0 0.06199
4 a=0.50 32x32 10 010 0 0.05199
5 a=0.40 26 x 26 10 010 0 0.04600
6 a=0.30 20 x 20 10 167 —157 0.04103

Table 3 shows the achieved results due to running the Radon CLF algorithm on about 5696
images in the DSI5000 dataset. The dataset has been divided into two parts named DSI5000-p1 and
DSI5000-p2. Each part has an equal number of samples, around 2848 images. According to Table 3,
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the DSI5000-p1 includes images with a lower size (65 x 65). In comparison with the DSI5000-p2, the
DSI5000-p1 has a lower run-time together with a lower accuracy.

Table 3: Comparing the achieved results of the proposed Radon CLF algorithm for all samples in the
dataset

DB Image size MSE MAE Accuracy Time (s)
DSI5000-p1 065 x 065 0.0014060 0.0014071 99.85 0.044
DSI5000-p2 120 x 120 0.0000062 0.0000093 99.99 0.087

In addition to DSI5000, many real-world scanned image documents were also included in our
simulations. Both handwriting, and printed samples, at various resolutions, were gathered from differ-
ent Persian/Arabic & English multilingual resources such as books, booklets, letters, and newspapers.
Fig. 23 shows some samples and the result of the Radon CLF algorithm. Our method can accurately
detect the skew in real photos, according to experimental results.

I

v

(a) (b) (©) (d)

(e 6 (2) (h)

Figure 23: Examination of the proposed algorithm on real documents

Finally, Table 4 draws a comparison between the proposed approach and other available algo-
rithms. Experimental results show that our algorithm is capable of skew compensating for large
documents far faster than well-known existing methods, with a run-time of about 0.048 s and an
Accuracy of 99.87% for DSI5000 dataset.
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Table 4: The performance comparison among different algorithms

Row Algorithm Accuracy Average Time (s)
1 Radon CLF (the proposed) 99.87% 0.048
2 Al-Shatnawi et al.[20] 87.00% 0.390
3 Yu et al. [46] 97.38% 0.420
4 Chethan et al. [15] 99.73% 1.710
5 Le et al. [38] 99.66% 2.330
6 Sarfraz et al. [47] 99.66% 2.330
7 Narasimha et al. [7] 99.20% 17.90
8 Ravikumar et al. [48] 98.00% 1.500

5 Conclusion and Future Works

In this paper, we proposed a novel, fast, and reliable skew detection algorithm for text images based
on the Radon Transform and Curve Length Fitness Function (CLF). In addition, approximately 5696
synthetic images were incorporated into a new dataset called DSI5000. Many real image documents
were also included in our simulations along with synthetic images. From various Persian, Arabic,
English, and multilingual sources, random handwriting and printed samples of some books, booklets,
letters, and newspapers, were collected at different resolutions.

The resilience of signal and image processing algorithms against noise effects is one of the most
crucial issues. Through the utilization of many performance indicators, such as accuracy, MSE, MAE,
PSNR, SSIM, and error signal comparison in both the signal space and the Radon space, we have
created a detailed picture of the noise tolerance of our model in this study. Our approach is superior to
other existing methods in terms of accuracy as well as timing efficiency, as shown by the results with
the Accuracy of about 99.87% & run-time of around 0.048 (s) for DSI5000 dataset. For multilingual
manuscripts with various font types, sizes, and styles, the suggested Radon CLF approach could find
skews between 0" and 90°.

Machine Learning (ML) is a fast-growing and interesting field of applied research with high
demands in scientific communities and advanced technologies. Deep Learning (DL) is a branch of
ML that makes use of Artificial Neural Networks (ANN) to simulate how the human brain learns [49—
51]. In the future, we intend to utilize DL models. They can be used to develop Radon CLF method
for other computer vision applications, such as Camera Rotations Automatic Recovery, Rotation
estimation in the urban environment, Fingerprint Recognition etc., which are particularly sensitive
to directional patterns. Directional patterns have two main attributes: Dominant Orientation and
Frequency. In our future studies, we will focus more on the joint estimation of both features using
deep learning and Radon CLF.
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