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Abstract: With the rapid development of Open-Source (OS), more and more
software projects are maintained and developed in the form of OS. These
Open-Source projects depend on and influence each other, gradually forming
a huge OS project network, namely an Open-Source Software ECOsystem
(OSSECO). Unfortunately, not all OS projects in the open-source ecosystem
can be healthy and stable in the long term, and more projects will go from
active to inactive and gradually die. In a tightly connected ecosystem, the
death of one project can potentially cause the collapse of the entire ecosystem
network. How can we effectively prevent such situations from happening?
In this paper, we first identify the basic project characteristics that affect
the survival of OS projects at both project and ecosystem levels through
the proportional hazards model. Then, we utilize graph convolutional net-
works based on the ecosystem network to extract the ecosystem environment
characteristics of OS projects. Finally, we fuse basic project characteristics
and environmental project characteristics and construct a Hybrid Structured
Prediction Model (HSPM) to predict the OS project survival state. The
experimental results show that HSPM significantly improved compared to
the traditional prediction model. Our work can substantially assist OS project
managers in maintaining their projects’ health. It can also provide an essential
reference for developers when choosing the right open-source project for their
production activities.

Keywords: Project survival prediction; open-source ecosystem; open-source
project; open-source health; graph neural networks

1 Introduction

As open-source code gains more acceptance, an increasing number of software projects are being
developed and released in this form. According to GitHub’s 2022 annual review [1], there are over 94
million developers and more than 350 million open-source projects on the platform as of December
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2022. However, not all of these projects are healthy and stable in various open-source ecosystems,
and many are “dying out” due to various factors. Additionally, not all open-source projects are
independent, as they can be reused by other projects, making the prediction of their survival state
important. The OS project is a crucial part of the open-source ecosystem, and its decline can lead to
the collapse of the entire network. Table 1 provides a list of abbreviations for better illustration.

Table 1: A list of abbreviations

Abbreviation Description

OS Open-Source
OSSECO Open-Source Software ECOsystem
HSPM Hybrid Structured Prediction Model
R-GCN Relational Graph Convolutional Network
MLP Multi-Layer Perceptron

Measuring the health of open-source projects is crucial for predicting their survival. Scholars have
proposed various methods, from focusing on single features [2–4] to multiple features of projects [5,6],
and introduced concepts such as project sustainability and viability. Traditional machine learning
methods [7–10] have also been applied to this task in recent years. However, these studies often
ignored the ecosystem environment characteristics of OS projects and only considered the basic
features of projects at the project or ecosystem level. To ensure reliable survival predictions, we need
to comprehensively consider both types of project characteristics.

We collect data on over 1.3 million OS projects from eight ecosystems. Using survival analysis and
GCNs, we determine the project and ecosystem characteristics that impact project survival and create
an OS project survival prediction model. This study aims to assist project managers in maintaining
the health of OS projects, to help examine the risks that exist in their projects, and to identify whether
the project is in a good state of survival. Overall, this study makes the following contributions:

1) In this paper, we design the survival analysis experiment to identify basic project characteristics
that will have an impact on the viability of OS projects from the project level and the ecosystem
level;

2) We analyze the ecosystem network of OS projects by constructing graph convolution networks,
thus determining the characteristics of the ecosystem environment of OS projects;

3) We construct an open-source project survival prediction model based on a hybrid structure,
which has significantly improved in each evaluation metric compared with the traditional
models.

The paper is structured as follows: Section 2 discusses previous work on OS project health. In
Section 3, we analyze the survival of OS projects. Section 4 presents our methodology for predicting
their survival, while Section 5 covers the experimental environment and results. We discuss the
effectiveness and limitations of our approach in Section 6 and conclude the paper with future work in
Section 7.

2 Related Work

Project health has always been one of the significant research contents in software engineering.
With the increasing popularity of open-source, more projects are being developed and managed in this
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form. Traditional health measurement methods for software are unsuitable for OS projects, leading
to more scholars studying OS project health. Early scholars focused on a single characteristic of OS
projects, such as project code, tools for building, and project size [2–4]. As more studies were conducted
on the impact of a single feature on OS project health, scholars began to integrate related metrics [5,
6], such as project output, process, and members, and created methods for defining OS project health
[11–13].

Scholars have expanded the definition of OS project health to include project sustainability and
viability. Raja et al. [14] introduced a method to measure OS project viability with multiple dimensions,
constructing a vitality index to predict project success. Valiev et al. [15] conducted a survival analysis of
PyPI projects to model dormancy risk. Liao et al. [16] introduced an evaluation index system to assess
ecosystem sustainability and determined the OSSECO sustainable development state. Liao et al. [17]
studied the lifecycle of OS projects in the ecosystem and proposed a project life prediction model
based on linear correlation. Yin et al. [18] studied the evolution of projects in the Apache Software
Foundation Incubator from a socio-technical network modeling perspective.

With the popularity of deep learning [19–23], scholars have been applying it to OS project health
prediction. In 2017, Coelho et al. [24] identified that the lack of contributors is the main reason for OS
project failure. And in 2018, they measured the level of maintenance activity of GitHub projects to help
developers select OS projects [25]. Two years later, they proposed a data-driven approach to measuring
the level of maintenance activity of GitHub projects [26]. Eluri et al. [7] used a simple MLP to predict
the survival of OS projects and found that their model achieved excellent accuracy on the GitHub
dataset. In 2021, Osman et al. [8] defined the Bitcoin software ecosystem and established health metrics
based on the social and technical features of the projects. In 2022, Linåker et al. [9] derived a framework
consisting of 107 health characteristics for OS projects. Xia et al. [10] found that traditional estimation
algorithms may make many mistakes and proposed hyperparameter optimization to algorithm error
rates. The latest research [27] suggested improving the configuration of control parameters in machine
learning to mitigate error rates. Additionally, they developed SNEAK [27], a method to predict
OS project health using data clustering. Robinson et al. [28] found that OS projects with a large
development team, frequent updates, and hosted code on multiple platforms are more likely to endure
over time.

Previous studies didn’t fully consider the environment where OS projects exist, which includes the
ecosystem network structure, and didn’t integrate this with the basic characteristics of OS projects to
predict survival. However, the ecosystem environment is vital for predicting the survival of OS projects.
This paper proposes a graph convolutional network-based model that extracts the network structure
characteristics of OS projects from the ecosystem network and combines them with basic project
characteristics to construct a more effective survival prediction model than traditional methods.

3 Survival State Analysis

This section describes the definitions related to the survival of open-source projects and introduces
the survival of OS projects at two levels: the whole project and the ecosystem.

3.1 Data Collection
The original dataset used in this paper is the libraries.io Open Data dataset (https://libraries.io/

data), which collects data from 32 package managers and 3 source code repositories, tracking over
4 million unique open-source packages, 30 million repositories, and their interdependencies. Not all
project dependencies are recorded in libraries.io, and some project dependencies are missing under the
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package manager. Therefore, 1,368,587 OS projects were selected from 4,976,470 projects to conduct
experiments related to project survival. These projects come from package managers of eight popular
development languages, and there is no project dependency across package managers. In the future,
these projects can be naturally divided into eight ecosystems according to the package manager
they belong to and their dependencies. These ecosystem networks vary in size, adding an element
of comparison to observe how OS projects survive at the ecosystem level. Table 2 provides a basic
overview of these eight ecosystems.

Table 2: Basic information on open-source ecosystems

Ecosystem Introduction

CRAN CRAN is a network of FTP and web servers worldwide, which
stores the identical and latest version of the code and
documentation used for the R language.

Dub Dub is the official package manager for the D language.
Elm Elm’s package manager.
NuGet NuGet is the package manager for .NET.
NPM NPM is a package management tool installed with NodeJS.
Packagist Packagist aggregates public PHP packages that can be installed

using Composer.
PyPI A software repository for the Python programming language.
RubyGems Gem hosting service for the Ruby community.

Additionally, some OS projects may have become inactive due to a lack of community participa-
tion. We exclude projects which were created before 2012 in our analysis since source code repositories
like GitHub were not commonly used at that time. According to the criteria outlined in this paper,
projects that haven’t been updated for six months are considered “dead” projects. And the data
collection deadline for this study is September 2021. So we exclude projects created after March 2021
that don’t have sufficient history of observation. As a result, we obtain a total of 1,303,171 projects.

3.2 Definition of Survival State
To ensure consistency in subsequent studies, we need to define the survival state of OS projects

first. Even in large OS projects, project abandonment is a reality, as noted by Avelino et al. in [29].
Meanwhile, Valiev et al. [15] proposed in their study that a project is considered to be dormant if it is
no longer maintained, meaning that development activity has ceased. This paper adopts this concept
and defines the survival state of OS projects as either “dead” or “alive”.

• “Dead” project: An open-source project that hasn’t been updated in 6 months or was marked as
“Deprecated”, “Hidden”, “Removed”, or “Unmaintained” when last updated can be defined
as a project in the “dead” state;

• “Alive” project: An open-source project not in the “dead” state.

3.3 Survival Analysis
Based on the definition of the survival state above, this section conducts analysis experiments on

OS projects’ survival state at the ecosystem level to explore their differences. The primary purpose is
to show why it’s essential to consider the survival of OS projects from an ecosystem perspective.
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Firstly, we analyze the distribution of the OS project survival state. The left side of Fig. 1 shows
the distribution of the survival state of all projects in the dataset. We can see that only 19.86% of the
projects are still updated, while more than 80% of the projects are in the “dead” state until September
2021.

Figure 1: Open-source project survival state distribution (left side); distribution of open-source project
survival state in each ecosystem (right side)

The survival state of OS projects from different ecosystems varies significantly, as shown on the
right side of Fig. 1. Projects in the CRAN ecosystem show the best survival state, with 31.91% of the
projects surviving. In contrast, projects in the Elm and RubyGems ecosystems fare worst, with only
about 7% surviving. And survival projects in the NPM, NuGet, and PyPI ecosystems account for more
than 20%. About 10% of projects survive in the remaining two ecosystems (Dub:12.34%; Packagist:
8.05%).

To estimate the survival probability of current OS projects, we use the product-limit method, also
called the Kaplan-Meier (KM) method. The idea of the KM method is straightforward, that is, to
obtain the final survival function S(t) by recursion. Suppose that the survival function S(t1) at t1 has
been calculated, and we want to calculate the survival function S (t2) (t2 > t1) at t2, then the OS project
must first survive at the time t1 and survive from t1 to t2. It can be shown by the formula as:

S (t2) = Pt2−t1
× S (t1) (1)

Pt2−t1
= 1 − d

n
(2)

Pt2−t1
is the probability that the project will survive from t1 to t2. d represents the number of projects

that are actually “dying” in the period from t1 to t2. n represents the total number of projects that are at
risk of “dying” between t1 and t2 (It can be interpreted as the total number of projects that are still alive
at t1). Obviously, all projects are alive at the beginning of the observation, so S(t0) = 1. The longer the
time, the less likely the OS project is to survive, so S(t) is diminishing. The left side of Fig. 2 shows the
survival probability function curves of OS projects in each ecosystem based on this method.
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Figure 2: Project survival probability function curves for each OS ecosystem (left side); conducting
survival analysis experiment on the OS project according to the degree of project node (right side)

The left side of Fig. 2 illustrates that OS projects in different ecosystems have different survival
situations. The survival probability of OS projects in the Elm ecosystem drops the fastest. The
survival rate of the entire project group falls below 50% after 15 months of observation and declines
rapidly afterward, eventually approaching less than 5%. OS projects in the Packagist ecosystem also
perform poorly, with only about 5% surviving after 20 months of observation. The project groups
in five ecosystems, including Dub, NPM, NuGet, PyPI, and RubyGems, vary uniformly in survival
probability at early observation, but gradually they are divided into two groups. Finally, OS projects in
the Dub and RubyGems ecosystems have survival probabilities below 5%, whereas those in the NPM,
NuGet, and PyPI ecosystems have survival probabilities between 5% and 10%. The CRAN ecosystem
still performs well in this experiment, with the survival probability of the projects in this ecosystem
declining the most slowly. The survival rate remains above 50% after 48 months of observation and
gradually decreases to 25% after 82 months. Ultimately, the survival probability of the project remains
above 5%.

Table 3 shows the Log-Rank test results of the survival probability of OS projects in each
ecosystem. It can be seen that the value of Pr > χ 2 is less than 0.05, indicating that the survival
probability of each ecosystem is significantly different. Additionally, the actual number of project
deaths in the CRAN, NPM, NuGet, PyPI, and RubyGems ecosystems is lower than the theoretical
number, indicating that the survival rate of project groups in these ecosystems is relatively high.
Conversely, the actual number of project deaths in the Elm, Dub, and Packagist ecosystems exceeds
the theoretical number, indicating that the survival rate of project groups in these ecosystems is poor,
consistent with previous analysis.

Table 3: Log-Rank test of survival function of open-source project

Ecosystem Actual death number Theoretical death number

CRAN 3579 5905.02
Dub 1555 1426.55
Elm 1365 720.87
NPM 549675 584529.94

(Continued)
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Table 3: Continued
Ecosystem Actual death number Theoretical death number

NuGet 56731 74253.31
Packagist 252335 178804.65
PyPI 104084 117723.13
RubyGems 74993 80953.53

Note: χ2 (7) = 26919.38, Pr > χ2 = 0.0000

This series of survival analysis experiments all demonstrate that the ecosystem in which OS
projects reside has an impact on their survival state. It is necessary to identify the factors affecting
the survival state of OS projects from an ecosystem perspective and construct a predictive model for
OS project survival.

4 Survival Prediction Mode

Predicting the survival state of OS projects is vital for the long-term sustainability of the
ecosystem. Thus, this paper aims to design a survival prediction model for OS projects to help
developers avoid projects in a bad survival state when choosing OS projects for production activities.
Or help projects that are not in a good state of survival to effectively avoid the risk of “death”. Based on
this, it is necessary to determine the input characteristics of the model when constructing the prediction
model.

We utilize the Cox proportional hazard regression model to identify the basic characteristics
of OS projects and then employ GCNs to extract the characteristics of the OS project ecosystem
environment. Subsequently, we build an OS project survival prediction model based on the concept
of mixed structure in the integration model, allowing us to address the issues of sample imbalance
and lack of integration diversity in the survival prediction of OS projects. The overall workflow of
HSPM is depicted in Fig. 3. The pipeline of HSPM comprises four key stages: (a) extraction of basic
characteristics of projects at both the project and ecosystem levels, (b) construction of an open-source
ecosystem network, (c) extraction of node features through an R-GCN autoencoder, and (d) training
of our Hybrid Structure Prediction Model.

4.1 Determination of the Basic Characteristics of OS Projects
Previous studies have identified large amounts of project attribute and developer behavior data in

OS projects that affect these projects’ health. However, it remains to be debated whether these data,
as the basic characteristics of the project, will directly impact the OS projects’ survival. Based on this,
this paper respectively collects a series of project attribute data and developer behavior data from the
project level and the ecosystem level. Then we combine these data with the survival analysis experiment
to explore whether the basic characteristics of these projects directly affect the survival of OS projects.

1) Basic characteristics at the project level. The basic characteristics selected in this paper at
the project level are derived from the study by Franco-Bedoya et al. [30], which include the
following: the formalization of OS projects (whether stored on GitHub, presence of keyword
information, presence of a readme file, presence of a separate homepage, presence of a valid
open-source license, use of version control to manage project iteration, use of semantic version
control for all versions, etc.); stability of OS projects (age of OS projects, whether there are
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released versions and number of project versions, whether they were created from other fork
projects, etc.); popularity of OS projects (number of Stars in projects, number of project
subscribers, number of projects forked, etc.); open-source project activity (number of project
contributors, amount of project contributions, project response speed, etc.).
2) Basic characteristics at the ecosystem level. In order to select more comprehensive project
characteristics from the ecosystem level, the ecosystem network needs to be constructed from
the perspectives of technology dependencies and contributor relationships.

Figure 3: The overall workflow of HSPM

a) Technology-dependent Network: The libraries.io Open Data holds the technical dependencies
of OS projects, recorded in the project manifest files or readme files. Dependencies between
projects can be added manually by users or generated automatically by package managers when
OS projects are created and updated. When cleaning the data stored in the Dependencies table,
we find that some dependent projects aren’t recorded in the Projects table. If these projects are
included in the network, external factors could influence the analysis of the factors affecting
the survival of OS projects based on the technology-dependent network. Thus, this kind the
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dependency relationship needs to be removed first. Secondly, different versions of each OS
project rely on the same project repeatedly. For example, the 1.1 and 1.2 versions of an archivist
are technically dependent on the project RCurl. For this dependency, the data needs to be
merged, and the version information of the OS project must be ignored. So we record that the
data for the project archivist technically relies on the project RCurl twice.

Technology-dependent networks can be expressed as GTD = (V , E, W). V = {Vi} represents a
set of OS projects. E = {

Eij

}
represents the technology dependencies that exist between OS projects.

W = {
Wij

}
is the weight set, representing the number of technical dependencies between OS projects.

It’s worth noting that open-source ecosystem technology-dependent networks are directed graphs.
Edge A → B represents that project A technically depends on project B, and project B is the upstream
project.

b) Contributor-Project Network: The contributor-project network is a two-mode social network
in which nodes represent two different sets, contributors or projects, and the link between the
two nodes indicates that the contributor has contributed to the project. This network has the
following characteristics:

• Bipartite graph: The contributor node and the project node are two subsets of nodes in the
network, and each edge in the network connects nodes from different subsets. This is because,
in this case, there is no direct connection between two contributors or two projects.

• Nondirectional feature: In this network, we only focus on which projects are connected by
contributors, not on the relationship between projects and contributors.

The contributor-project network can be represented as a graph GCP = (C ∪P, E). C is a collection
of contributors. P is a collection of projects. E is a collection of edges. If c makes a contribution to p ,
there is an edge e ∈ E between contributor c ∈ C and project p ∈ P.

After constructing the ecosystem network, we select the following characteristics as the basic
characteristics of the project at the ecosystem level. These characteristics are chosen because they can
be effectively measured by relevant techniques in complex networks.

a) dead_dependencies: In the OS community, developers can find the development techniques or
product features they need in other projects to quickly develop their own projects. However, the
downside of this approach is that when one of the projects on which an OS project’s technology
depends crashes, this OS project’s survival may be affected.

b) dependency_hierarchy: Valiev et al. [15] stated that OS projects that are further downstream
in the project technology-dependent network are more prone to risks. When constructing
the open-source project technology-dependent network, it’s observed that the technology-
dependent relationship between projects sometimes has more than one layer. Sometimes, there
are layers of dependencies where project A depends on project B, and project B depends on
project C. In this case, the impact may be transitive when a bug occurs in project C. We divide
the level of technology dependency of open-source projects and try to study its influence on
the existence of OS projects.

c) direct_technical_importance: OS projects that are further downstream in the project technology-
dependent network are more vulnerable. Contrarily, OS projects that are further upstream or
depended on by a greater number of projects are more secure because they are more critical.
In this paper, the degree centrality of nodes in the technology-dependent network is used to
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represent the degree of technical importance of OS projects. However, the original definition
of degree centrality didn’t consider the edge direction and the edge weight between nodes in
the network. To calculate the degree centrality of nodes in technology-dependent networks, we
use the JP-Degree centrality method, which takes into account the number of adjacent nodes
of projects, the direction of connecting edges, and the weight of edges. The calculation formula
of JP-Degree centrality is as follows:

S (i) = ki (1 − α) × sα

i (3)

Cα

WD (i) = 3
√

Sout (i) × Sin (i) × 1
2
(Sout (i) + Sin (i)) (4)

Eq. (3) is the measurement formula of the node degree centrality in undirected weighted networks.
S(i) indicates the strength of node i. si represents the sum of weights of the edges connected to the node
i. ki indicates the number of nodes adjacent to node i. α is a weighted index. On the basis of Eqs. (3),
(4) divides S (i) into the output and input strength of the node. Output strength Sout(i) only considers
the weight of the output edge and the number of nodes to point to at node i. Input strength Sin(i)only
considers the weight of the input edge of node i and the number of nodes pointing to node i. Cα

WD(i)
denotes the JP-Degree centrality of node i.

d) indirect_technical_importance: In the technology-dependent network of OS projects, it’s not
just direct dependencies that can make a big difference in the life or death of a project. As
mentioned in a previous report, a JavaScript package called 11-LOC wasn’t well known in the
whole community. But thousands of projects crashed when 11-LOC was removed from the
community by developers only because another critical project referred to it [26]. Thus, we use
the feature vector centrality of project nodes to represent their indirect technical importance
and explore its impact on the survival of OS projects.

e) social_importance: The contributor-project network constructed in this paper contains two
types of nodes, contributor, and project, which can effectively reflect the social relations of the
OSSECO. Since the network is a heterogeneous information network in nature, contributor
and project nodes cannot be separated when measuring the importance of nodes. Based
on the concept of meta-path in heterogeneous information networks, we measure the social
importance of OS projects. Different meta-paths can represent different semantic information.
If contributors are represented as C and projects as P, the meta-paths extracted from the
contributor-project network can be represented in Table 4.

Table 4: Meta-paths and their semantic information in the contributor-project network

Meta path Semantic information

P
contributed−→ C Project P is contributed by Contributor C

C
contribute−→ P

contributed−→ C Project P is jointly contributed by multiple
contributors

In general, OS projects involving high-importance contributors are also important, and there
are many contributors within the same open-source ecosystem. On the premise that the contribution
behavior of each contributor is equally important, the more the contributors contribute, the more
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important they are, and each OS project will be participated by multiple contributors. Based on this,
this paper measures the social importance of OS projects, as shown in Eq. (5):

rP(i) =
m∈Num(P(i))∑

j=1

contribution
(
C(j)

)
rC(j) (5)

rC(j) = 1
Rank(j) (6)

contribution
(
C(i)

) = N−(K−1)∑N
j=1 j (7)

rP(i) represents the social importance of the OS project i. rC(j) represents the importance of
the contributor j. The calculation formula is shown in Eq. (6). Rank (j) represents the ranking of
contributor j based on their contributions to the ecosystem. Num(P(i)) represents the number of
contributors to the OS project i. contribution

(
C(j)

)
represents the contribution of a contributor to

an OS project. The sum of the contributions of each project is 1. The contribution of contributors is
calculated as shown in Eq. (6). N indicates that an OS project has N contributors. K represents the
ranking of contributions. For example, if there are seven contributors to a project, the contribution of

the highest contributor is:
7 − (1 − 1)∑7

j=1 j
= 0.25.

f) information_dissemination_capability: We also find that OS projects in the technology-
dependent network can be simply divided into four categories according to the input and
output of project nodes: I) Only input (only depended on by other projects); II) Both in and out
(that is, depended on by other projects and also dependent on other projects); III) Availability
only (only dependent on other projects); IV) Completely independent (i.e., not dependent on
other projects nor depended on by other projects).

The right side of Fig. 2 shows the results of an OS project survival analysis experiment based on
the categories above. Obviously, OS projects that are completely independent have the worst survival
state, followed by OS projects that rely solely on other projects. OS projects with both output and
input are the best performers when the survival time of the OS project is less than 100 months. In
the actual development process, all technical information flows between further upstream and further
downstream projects pass through these projects. Thus, we use the mediating centrality of project
nodes to represent the information dissemination ability of OS projects and explore its impact on the
survival of OS projects.

g) technical_independence: In the complex network, the aggregation coefficient can measure
the degree of node aggregation. Meanwhile, the degree of node aggregation can be used to
represent the degree of independence and dependence on OS project technology in technology-
dependent networks.

h) social_independence: The contributor-project network constructed in this paper can effectively
reflect the social relations of the OSSECO, and the aggregation degree of project nodes can
indicate the social independence of OS projects. Critically, the heterogeneous information
network must be converted into a homogeneous network to assess the independence of projects.
In the contributor-project network GCP = (C ∪ P, E), C is a set of contributors, P is a set of
projects, and E is a set of edges. If c makes a contribution to p, there is a side e ∈ E between
contributor c ∈ C and project p ∈ P. Based on this, if there are two edges, e1 and e2, connecting
p1 and c, p2 and c respectively, then e1, e2 and c are deleted and an edge is added between p1 and
p2 . If n contributors are connected to both p1 and p2, the weight of the edge between p1 and
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p2 in the new network is n. According to this rule, this section constructs a new network of OS
project ecosystem G′

CP = (V , E, W). V represents a set of nodes for OS projects. E represents
the combination of edges between projects. W represents the set of weights of the edges. Then,
the aggregation coefficient of nodes is calculated to determine the social independence of OS
projects.

3) Identify basic project characteristics that affect the survival of OS projects. In this paper, Cox
proportional risk regression model is used to explore the actual impact of project characteristics
on the survival state of OS projects. Cox proportional risk regression model is a multi-factor
analysis method commonly used in the field of survival analysis, which can analyze the impact
of multiple risk factors on the survival probability of OS projects. The Cox proportional risk
model is defined as Eq. (8):

h (t, Xi) = h0 (t) ∗ exp (Xiβ) (8)

h0(t) is the baseline risk formula, which could be any non-negative formula for time t. Xi is the value
of the ith influencing factor. β is the parameter vector, understood as the partial regression coefficient
of the influencing factor. According to the results of the survival analysis experiment, the data features
that have a real impact on the survival of OS projects can be obtained, as shown in Table 5.

As shown in Table 5, a total of 23 measurable features are found to impact the survival state of
OS projects after ignoring collinearity factors and factors that don’t affect the survival of OS projects.
There are 15 measurable features at the project level and 8 at the ecosystem level. The Haz. Ratios of
these factors are all greater than 0, and values of P > |z| are less than 0.05. That is, these 23 variables
are all independent risk factors for the endpoint event (OS projects turn “dead”), and the results are
significant (P > |z| value is 0, less than 0.05), and they can effectively influence the survival state of
OS projects.

Table 5: Basic project characteristics affecting the viability of OS projects

Independent variable Haz. Ratio P>|z| 95% Confidence Interval

host_is_GitHub 0.909 0.00 (0.896, 0.922)
have_key 0.834 0.00 (0.821, 0.848)
have_readme 0.835 0.00 (0.804, 0.866)
have_home_page 1.327 0.00 (1.255, 1.403)
license_present 0.896 0.00 (0.874, 0.918)
versions_present 0.774 0.00 (0.754, 0.794)
more_than_6_months 0.001 0.00 (8.97E-4, 1.45E-3)
more_than_20_months 6.08E-4 0.00 (5.02E-4, 7.36E-4)
one_point_oh 0.925 0.00 (0.907, 0.943)
is_fork 0.718 0.00 (0.682, 0.757)
stargazers_count 0.999 0.033 (0.999747, 0.999989)
subscribers_count 0.991 0.00 (0.990, 0.993)
forks_count 0.999 0.00 (0.998, 0.999)
contributions_count 0.957 0.00 (0.955, 0.960)

(Continued)
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Table 5: Continued
Independent variable Haz. Ratio P>|z| 95% Confidence Interval

commit_count 0.999 0.00 (0.9999990, 0.9999996)
dead_dependencies 1.674 0.00 (1.539, 1.821)
dependency_hierarchy 0.889 0.00 (0.874, 0.903)
direct_technical_importance 3.390 0.00 (3.335, 3.447)
indirect_technical_importance 4.54E-23 0.00 (3.25E-31, 6.33E-15)
social_importance 0.999 0.008 (0.999602, 1.000190)
information_dissemination_power 1.137 0.00 (1.130, 1.144)
technical_independence 0.834 0.00 (0.781, 0.891)
social_independence 1.116 0.00 (1.102, 1.131)

4.2 Capture of Environmental Characteristics of Open-Source Project Ecosystem
In Section 4.1, we carry out a detailed analysis of the main factors that affect the survival state of

OS projects. At the project level, OS projects have 15 basic attribute features affecting their survival
state as independent entities. At the ecosystem level, OS projects have 8 node characteristics that affect
their survival state as network nodes. If only the basic features of OS projects are used in the prediction
model, the environmental features of the ecosystem where the projects are located may be neglected,
and this can affect the accuracy of the survival prediction results. Therefore, this section employs GCNs
to extract the environmental characteristics of OS projects.

In the above study, we construct the technology-dependent network and the contributor-project
network of OS projects, both of which can reflect a specific relationship between projects in the
OSSECO. If we want the network structure characteristics of the whole ecosystem in the past, we
need to integrate the two networks to get a complete OS project ecosystem network. Therefore, this
section constructs a heterogeneous information network to reflect the relationship between projects
and projects and that between projects and contributors in the open-source ecosystem.

Fig. 3b shows an example of an OS ecosystem network as a directed graph G = (V , E) with
object type mapping ϕ : V → A and link type mapping ψ : E → R. |A| = 2, |R| = 3. There
exists a relationship of direct or indirect technology dependence between projects and a relationship
of contribution between projects and contributors. In the study of Zhao et al. [31], they used GCNs
to conduct the fusion learning of node features and network structure features in undirected weighted
networks, obtaining feature vectors that can be used to determine the importance of nodes. Inspired by
this research, we also use GCNs to learn the representation vector of project nodes in the open-source
ecosystem network.

The network structure and node features of the OSSECO are input into the graph encoder
composed of GCNs. Each node is mapped to a truth vector ei ∈ R

d as entity vi ∈ V to obtain a
graph coding matrix T that integrates network structure and node features. Meanwhile, DistMult (a
scoring function) is used as a decoder to reconstruct the edges of the OS ecosystem network based on
node representation vectors to continuously optimize the GCN learning result. The specific process is
shown in Fig. 3c.

The OS ecosystem network we construct is a directed heterogeneous network, but the traditional
GCN model cannot directly solve related problems. Thus, R-GCN [32] model is introduced, which is
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an optimization model that applies the GCN framework to the directed or undirected network with
multiple relations and nodes. The working principle of R-GCN is shown in Eq. (9):

h(l+1)

i = σ

(∑
r∈R

∑
j∈N r

i

1
ci,r

W l
r h

(l)
j + W l

0h
(l)
i

)
(9)

h(l)
i ∈ R

d(l) is the hidden state of node vi in the l-th layer of the neural network, with d (l) being the
dimensionality of this layer’s representations. σ (·) is an element-wise activation function.N r

i represents
the set of neighbor nodes of node i whose relationship is r. ci,r is a regularized constant, the value of
which is generally

∣∣N r
i

∣∣. W l
r is a linear transformation function whose main purpose is to transform

the neighbor nodes of the same edge of node i. The number of W l
r is the number of edge types of the

node i.

The R-GCN model updates nodes’ representation by gathering information from nearby nodes
with different relationships. The information is aggregated based on edge types, then transformed and
passed through an activation function to get the node representation. Notably, the update uses shared
parameters for each node, including self-connection, and the computation is done in parallel. To
predict links, a DistMult layer is stacked on top of the R-GCN layer. The DistMult layer reconstructs
network edges based on the node representations obtained from the R-GCN layer. The model trains
using negative sampling and cross-entropy loss (refers to [33]) to score observable triplets higher than
negative ones.

4.3 Construction of Open-Source Project Survival Prediction Model
In the survival analysis experiment, we find that the proportion of OS projects that are “alive”

versus “dead” is around 1:4. As a result, imbalanced samples will occur when training the prediction
model with this dataset. So properly solving the imbalance of positive and negative samples is the
key to constructing the OS project survival prediction model. Meanwhile, homogeneous “individual
learners” can be chosen in common ensemble learning methods for model integration. However, using
homogeneous “individual learners” in binary classification problems may lead to a low diversity of
model integration. To solve these problems, we first iterate the basic model on the serial link to get a
primary classifier to solve the problem of unbalanced sample data. Then several primary classifiers
with low correlation are trained on parallel links to solve the problem of insufficient diversity in
ensemble learning. Finally, the combined strategy is used to output a secondary classifier as the
final prediction model. The novelty of this model is its ability to effectively address the challenges of
sample imbalance and integration diversity in the prediction model with the use of two-layer ensemble
learning. The model structure is shown in Fig. 3d.

1) Training strategy for the primary classifiers: The problem of sample imbalance needs to be
solved in the training process of the primary classifiers. And there are many solutions to the
problem of unbalanced sample data. The simplest one is to solve the problem directly from the
data level by over-sampling, under-sampling, or random sampling. In addition, labeled weight
models can also be used for training. For example, the scale_pos_weight parameter in XGBoost
can be used to adjust the proportion of positive and negative samples to help the model get
better training convergence when samples are not balanced. However, the prediction model
proposed in this paper focuses more on the determination of “dead” projects, which constitute
the majority of the samples. Therefore, we can refer to the Self-paced Ensemble algorithm to
solve the sample imbalance problem when training the primary classifier.
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2) Training strategy for the secondary classifiers: The training of the secondary classifiers mainly
needs to solve the problem of insufficient diversity of “individual learners” in ensemble learn-
ing. The concept of “individual learner” diversity is easy to understand, that is, the differences
between “individual learners”. Previous studies showed that the errors of “individual learners”
will accumulate after integration, and Eq. (10) is the formula for calculating the expected
cumulative errors of the integration model.

errssv
add (H) = 1 + θ (T − 1)

T
erradd (h) (10)

θ represents the relationship between different “individual learners”. erradd (h) represents the
cumulative error expectation of “individual learners”. T represents the size of the integration scale.

In practice, it’s challenging to get the “individual learner” with high diversity on the same task
and training set. Even if various “individual learners” are obtained through some strategies, the
performance of these learners isn’t often optimal under the task, and the performance of the ensemble
model still cannot be effectively improved. To solve this problem, we divide the data in the original
dataset into n parts and train a primary classifier based on each dataset. Then the n heterogeneous
primary classifiers are integrated and learned with appropriate combination strategies to obtain the
final secondary classifiers.

5 Experiments and Results

Since the survival state of OS projects is divided into two categories: “dead” and “alive”, the
survival prediction of OS projects can be transformed into a binary classification problem. Therefore,
we adopt the most commonly used metric indicators in binary classification problems, including
Recall, Precision, Accuracy, F-measure, ROC curve, and AUC, to evaluate the prediction model.

In previous studies, few scholars explored the survival state of OS projects from the perspective
of the ecosystem, and no one applied the characteristics of the ecosystem environment of OS projects
to predict the survival state of OS projects. Therefore, we design a hybrid structure prediction model
(HSPM) based on the ecosystem boundary. This section focuses on the following questions:

Question 1: Can ecosystem-level influence factors effectively improve the accuracy of open-source
project survival state prediction?

Question 2: Does the HSPM prediction model perform better than the traditional prediction
model in the dataset used in this paper?

Question 3: Is the feature extraction module for the open-source project ecosystem environment
designed in this paper effective?

All experiments are conducted on a workstation with the Intel(R) Xeon(R) Silver 4210 CPU, the
NVIDIA GTX2080TI GPU, 256 GB memory, and 8 TB hard disk. The whole experiment process takes
about 71 min to train the R-GCN, 54 min to train the primary classifiers, and 40.8 min for ensemble
learning. Thus, the time complexity of the entire pipeline is about 165 min. Next, the corresponding
experimental analysis will be carried out for the above three problems.

To answer question 1, we use XGBoost to calculate the importance of 23 measurable features.
And the experimental results are shown in Fig. 4 that all of the 23 measurable features identified in
this paper are necessary for predicting the survival state of OS projects.
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Figure 4: Importance ranking of model features

Then, we respectively input project-level (PL) measurable features and project-level + ecosystem-
level (PL + EL) measurable features into traditional machine learning models to explore whether
the ecosystem-level factors identified in this paper have an impact on predicting the survival state
of OS projects. In this paper, 7 traditional machine learning models are selected, including k-NN,
decision tree, random forest, ExtraTrees, GBDT, LightGBM, and Adaboost. Fig. 5a illustrates the
ROC curves of 7 machine learning models at the project level and the ecosystem level. And Table 6
shows the specific performance of the 7 machine learning models above on recall, precision, accuracy,
F-measure, and AUC at the project level and the ecosystem level.

Figure 5: Comparison of ROC curves of basic models (a); ROC curves of the HSPM prediction
model (b)



CSSE, 2023, vol.47, no.1 447

Table 6: The prediction effect of basic models

Model Recall Precision Accuracy F-measure AUC

PL PL +
EL

PL PL +
EL

PL PL +
EL

PL PL +
EL

PL PL +
EL

k-NN 0.46 0.47 0.60 0.66 0.89 0.90 0.52 0.55 0.71 0.72
Decisiontree 0.58 0.75 0.59 0.73 0.89 0.93 0.59 0.74 0.76 0.85
Randomforest 0.54 0.74 0.71 0.90 0.91 0.95 0.61 0.81 0.75 0.86
ExtraTrees 0.55 0.74 0.67 0.84 0.90 0.95 0.61 0.79 0.76 0.86
GBDT 0.37 0.70 0.75 0.91 0.90 0.95 0.49 0.79 0.67 0.84
LightGBM 0.33 0.68 0.81 0.94 0.90 0.95 0.47 0.79 0.66 0.84
adaboost 0.36 0.69 0.71 0.91 0.89 0.95 0.48 0.78 0.67 0.84

Answer 1: All 23 basic characteristics of OS projects selected in this paper are deemed significant
in predicting project survival. These features can effectively help project managers avoid the risk of
project death. And the basic characteristics of projects at the ecosystem level we identify can effectively
improve the performance of OS project survival prediction models.

Fig. 5a shows that the ROC curves of the 7 machine learning models both at the project level and
the ecosystem level are significantly better than those only at the project level (In the figure, dotted
lines represent the ROC curves of 7 machine learning models at project-level, and solid lines represent
the ROC curves at project-level + ecosystem-level). Obviously, DecisionTree is the most effective
model, while k-NN is the least. Therefore, we choose DecisionTree as the baseline and select five other
models, apart from k-NN and DecisionTree, as the primary classifiers (LightGBM, RandomForest,
ExtraTrees, GBDT, and Adaboost in order). Table 6 also indicates that the recall, precision, accuracy,
F-measure, and AUC of the 7 machine learning models at both levels are higher than those only at the
project level.

To answer question 2, we conduct a comparative analysis of the performance of the HSPM
prediction model against that of the optimal basic model identified in the first experiment, as well
as five primary classifiers, in an effort to evaluate the validity of the ecosystem survival prediction
model based on the hybrid structure proposed in this paper. The experimental results are shown in
Table 7.

Table 7 illustrates that the performance of five primary classifiers is not as good as that of tradi-
tional machine learning algorithms. However, in terms of evaluation indexes such as recall, precision,
accuracy, F-measure, and AUC, the HSPM prediction model demonstrates superior performance.
It can be seen from Fig. 5b that the ROC curve of the HSPM prediction model performs the best
compared with the traditional machine learning model (baseline) and the primary classifiers. Based
on this, it’s clear that the OS project survival prediction model (HSPM) proposed in this paper
can effectively predict the survival state of OS projects and has a significant improvement over the
traditional machine learning algorithms.
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Table 7 Open-source project survival prediction model (HSPM) evaluation results

Model Recall Precision Accuracy F-measure AUC

baseline 0.737 0.896 0.953 0.809 0.862
primary classifier1 0.802 0.731 0.933 0.765 0.878
primary classifier2 0.807 0.770 0.941 0.788 0.885
primary classifier3 0.801 0.728 0.933 0.763 0.877
primary classifier4 0.747 0.843 0.947 0.792 0.863
primary classifier5 0.858 0.604 0.905 0.709 0.885
HSPM 0.954 0.963 0.959 0.958 0.959

Answer 2: The HSPM prediction model finally obtained in this paper performs better than the
traditional prediction model on the dataset used in this paper, showing that HSPM can help project
managers get an accurate picture of the survival state of OS projects.

It’s worth mentioning the failure case of the HSPM model. For example, we find that Project
react-fetch is marked as “dead” by the model, but it’s actually “alive”. Further analysis shows that
this project was wrongly linked to a repository (Legitcode/react-fetch) that hasn’t been updated for a
long time. The project was actually moved to another repository (Facebook/react), which was being
updated regularly. This finding highlights the need to study the effect of such changes on the survival
of a project.

To answer question 3, we combine ecosystem environment characteristics with basic project features
and input them into the OS project survival prediction model to evaluate the effectiveness of the open-
source ecosystem network structure module. The experimental results are shown in Table 8.

Table 8 Effectiveness of ecosystem environmental feature extraction module

Model Recall Precision Accuracy F-measure AUC

HSPM 0.954 0.963 0.959 0.958 0.959
HSPM + R-GCN1 0.973 0.985 0.979 0.979 0.980
HSPM + R-GCN2 0.973 0.987 0.980 0.980 0.990
HSPM + R-GCN3 0.973 0.983 0.978 0.978 0.978
HSPM + R-GCN4 0.953 0.982 0.968 0.967 0.968
HSPM + R-GCN5 0.802 0.775 0.942 0.788 0.936



CSSE, 2023, vol.47, no.1 449

Answer 3: The environmental feature extraction module designed in this paper is extremely effective.
The performance of the HSPM is further improved after the addition of ecosystem environment
characteristics.

6 Discussion

6.1 Why does HSPM Work?
We design an OS project survival prediction model based on a hybrid structure called HSPM. With

the selection of basic classifiers and the combination strategy, the HSPM model solves the problems
of sample imbalance and the lack of integration diversity in predicting the OS project survival state.
Firstly, HSPM iterates the basic machine learning model on the serial link to obtain the primary
classifier to solve the problem of unbalanced sample data. Secondly, to solve the problem of insufficient
ensemble diversity in ensemble learning, several primary classifiers with low correlation are trained on
parallel links, and secondary classifiers are output by stacking strategy. Experimental results show that
the HSPM model performs better than the traditional machine learning models in each evaluation
metric.

Furthermore, only entering the basic features of OS projects can lead to the loss of the characteris-
tics of the ecosystem environment in which OS projects are located. Therefore, we use GCNs to obtain
the ecosystem environment characteristics of OS projects, that is, the network structure characteristics
of the OSSECO. In this paper, the basic features of OS projects and the network characteristics of
the ecosystem are input into a graph encoder composed of R-GCN to integrate node features and
network structure features. Meanwhile, DistMult is used as a decoder to reconstruct the edge of the
OS ecosystem network according to the node representation vector so as to continuously optimize the
learning results of R-GCN. Then, the contributor nodes are deleted from the finally learned graph to
obtain feature vectors with only project nodes. Later, the measurable features impacting the project
survival are fused with the normalized data, and this composite input is then utilized as the input
for the classifier component of the HSPM model to predict the survival state of OS projects. The
final experiment shows that the performance of the OS project survival prediction model is further
improved after the ecosystem-level features are added.

6.2 Threat to Validity
The main threat to construct validity is the particular encoder-decoder architecture we adopt in

this paper. We select R-GCN as the autoencoder because it can apply GCN framework to the directed
or undirected network with multiple relations and nodes, and we choose DisMult as the decoder
because it was used to reconstruct the edges of the open-source ecosystem network to continuously
optimize the R-GCN learning result. However, other architectures may have their own strengths, and
as future work, we will test and compare other encoder-decoder architectures, such as Graph Neural
Networks (GNN) with masked generative reconstruction [34], to see how they perform and to provide
a more comprehensive understanding of the strengths and limitations of different architectures for
this task.

Threats to internal validity related to internal factors of our evaluation that could have an
impact on the results. One possible threat is the way in which we select the baseline. By conducting
a comparative analysis of the performance of the 7 traditional machine learning models, we choose
the optimal model as the baseline. Another threat may be that we don’t migrate our dataset to other
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advanced methods. Due to inconsistent datasets and different classification criteria for project survival
state, we cannot fairly compare other state-of-the-art approaches with our method. Thus, we will unify
the form of input data and the standards of classification and add a comparison to strongly prove the
superiority of the HSPM model.

The threat to external validity is that we only select OS projects published in eight package
managers, including CRAN, Dub, Elm, NuGet, NPM, Packagist, PyPI, and RubyGems. Although the
amount of data is large enough, it is still necessary to continue to expand the research boundary facing
the huge open-source world and obtain more open-source data to analyze the survival state of OS
projects in other ecosystems. In future work, we will combine project data from code hosting platforms
(GitHub, GitLab, and Bitbucket, etc.) and community Q&A platforms (for example, Stack Overflow)
to train open-source project survival prediction models that can be applied to various platforms.

7 Conclusion

In this paper, we propose a hybrid structured prediction model, namely HSPM, to predict the
survival state of OS projects both from the project and ecosystem perspectives. Moreover, HSPM
solves the problems of sample imbalance and the lack of integration diversity in the prediction of
the OS project survival state from the selection of the basic classifier and combination strategy. The
experimental results show that the ecosystem environment features of OS projects are helpful for
the prediction model, and HSPM performs better than the traditional machine learning models in
each evaluation metric. In the future, we will try other advanced encoder-decoder architectures to
get better performance and combine project data from different platforms to make the HSPM model
widely available. The source code of HSPM can be found at the following website: https://github.com/
Dandelion-F/HSPM.
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