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Abstract: Glaucoma is a group of ocular atrophy diseases that cause pro-
gressive vision loss by affecting the optic nerve. Because of its asymptomatic
nature, glaucoma has become the leading cause of human blindness world-
wide. In this paper, a novel computer-aided diagnosis (CAD) approach for
glaucomatous retinal image classification has been introduced. It extracts
graph-based texture features from structurally improved fundus images using
discrete wavelet-transformation (DWT) and deterministic tree-walk (DTW)
procedures. Retinal images are considered from both public repositories and
eye hospitals. Images are enhanced with image-specific luminance and gra-
dient transitions for both contrast and texture improvement. The enhanced
images are mapped into undirected graphs using DTW trajectories formed by
the image’s wavelet coefficients. Graph-based features are extracted from these
graphs to capture image texture patterns. Machine learning (ML) classifiers
use these features to label retinal images. This approach has attained an accu-
racy range of 93.5% to 100%, 82.1% to 99.3%, 95.4% to 100%, 83.3% to 96.6%,
77.7% to 88.8%, and 91.4% to 100% on the ACRIMA, ORIGA, RIM-ONE,
Drishti, HRF, and HOSPITAL datasets, respectively. The major strength
of this approach is texture pattern identification using various topological
graphs. It has achieved optimal performance with SVM and RF classifiers
using biorthogonal DWT combinations on both public and patients’ fundus
datasets. The classification performance of the DWT-DTW approach is on
par with the contemporary state-of-the-art methods, which can be helpful for
ophthalmologists in glaucoma screening.

Keywords: Wavelet-transformation; glaucoma classification; deterministic tree
walk; graph-based features

1 Introduction

Glaucoma is an incurable retinal distortion caused by an increase in intraocular pressure (IOP)
due to uneven generation and flowing “aqueous humor” [1]. A thorough examination of the retinal
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structures such as the optic disc (OD) and the cup (OC) can prevent glaucoma. Expert ophthalmolo-
gists clinically examine the human eye for glaucoma using several practices, such as fundus (retinal)
image structural analysis [2]. However, these are tedious and error-prone due to their non-mechanical
nature. As technology advances, CAD has become a standard medical practice for ophthalmologists
in making quick and accurate glaucoma diagnoses. The CAD follows a fixed approach that contains
major phases such as retinal image pre-processing, region-of-interest (ROI) segmentation, feature
extraction, and classification using artificial intelligence (AI) approaches. The initial CAD phase is
pre-processing, which usually eliminates noise existing in the image and applies various approaches to
enhance the retinal image for a clear structural view. The feature extraction phases identify significant
texture patterns in enhanced images for auto-screening by AI approaches.

In contrast to ordinary images, the structural analysis of fundus images is highly sophisticated
due to the complex retinal tissue textures. In most cases, the textures of both the glaucomatous and
healthy eyes are usually similar, and their discrimination requires a high level of cognitive processing. In
the proposed CAD approach, complex texture analysis has been carried out on qualitatively improved
retinal images using the combination of DTW and DWT for proper identification of the glaucomatous
eye. It extracts the significant retinal texture patterns for the accurate designation of glaucomatous
images. The rest of the paper is presented in different sections: Section 2 gives existing CAD-based
glaucoma detection approaches that are motivated for the proposed approach; Section 3 demonstrates
the proposed retinal image enhancement and the new feature extraction approach for glaucoma image
classification; Section 4 investigates the classification results for scientific findings, and; Section 5
concludes the paper with the future work.

2 Existing Glaucoma Practices and Motivation

There are currently several existing works in the field of CAD-based glaucoma classification.
This section presents a detailed investigation of them in terms of CAD’s major phases: image pre-
processing, feature extraction, and classification. Muthmainah et al. [3] extracted first-order statistical
(FoS) features from contrast-limited adaptive histogram equalization (CLAHE)-based enhanced
retinal images. Then these features are ranked and fed to support vector machines (SVM) and
k-nearest neighbor (k-NN) approaches for glaucoma screening. Afterward, Belgacem et al. [4]
extracted the cup/disc ratio (CDR) of retinal images for glaucoma identification. Later, principal
component analysis (PCA) features are extracted by Christopher et al. [5] to diagnose the glaucoma
progression. Next, both texture and structural features are extracted by An et al. [6] using Visual
Geometry Group (VGG)-19-based transfer learning (TL) approaches, and the classification is done
with a random forest (RF) classifier. Subsequently, Rehman et al. [7] extracted statistical and fractal
features from denoised and edge-enhanced images for glaucoma identification using SVM, RF, Ada,
and RusBoost ML approaches. Later, an anisotropic diffusion filter is utilized by Mohamed et al. [8]
for retinal image denoising before correcting image illumination. Then, the enhanced images’ super-
pixel-based features were classified using the SVM classifier. Afterward, Oh et al. [9] collected
retinal features using a convolutional neural network (CNN) along with the visual field (VF) test
characteristics and then selected using a chi-square test. SVM, RF, and XGBoost classifiers were used
in their study. Thomas et al. [10] then applied artificial neural networks (ANN) to human eye visual
fields for glaucoma screening. Later, Thakur et al. [11] extracted both structural features such as CDR
from vessel-free retinal images and non-structural features of different orders from grayscale images.
These features are ranked and classified using Naive Bayes (NB), SVM, k-NN, and RF classifiers.
Next, histogram-based (HE) enhanced retinal images are segmented by Shanmugam et al. [12] using
an adaptive network (Au-Net) for OD and OC proportions. Nawaldgi et al. [13] extracted the co-
occurrence matrix of gray-level (GLCM) characteristics. Then, DWT features were extracted from
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electro-retinography signals by Gajendran et al. [14]. ML classifiers used these DWT features for early-
stage glaucoma detection. Patel et al. [15] then split the color channels of retinal images into bit-planes
to generate local-binary patterns (LBP) for classification. Later, the retinal image color channels’
LBP features were extracted and classified using SVM by Rebinth et al. [16]. Next, Arsyan et al. [17]
extracted invariant moment features from the HE-enhanced retinal OC and blood vessels. Then k-NN
is applied by considering the five nearest neighbors. Table 1 summarizes the literature survey done for
the proposed method.

Table 1: Summarization of the state-of-the-art approaches

Reference & year Performance measures Observations

[3], 2018 Acc: 93.3%, Spe: 93.3%, Sen: 93.3% CLAHE may over-enhance some
portions of the retinal image.

[4], 2018 Acc: 96% The number of features is limited.
[5], 2018 AUC: 95% The other variants, two-dimensional

(2D)-PCA and 2D2-PCA did not test.
[6], 2019 AUC: 96.3% A single classifier was used without

image pre-processing.
[7], 2019 Acc: 99.3%, Spe: 99.4%, Sen: 96.9% Image pre-processing is done without

regard for the time or frequency
domains.

[8], 2019 Acc: 98.6%, Spe: 92.3%, Sen: 97.6% The super-pixel approach may lead to
unintentional image artifacts.

[9], 2019 Acc: 94.7%, Spe: 95.0%, Sen: 94.1% Image pre-processing has not been
applied.

[10], 2019 Sen & Spe: > 95% This experiment did not include retinal
pictures.

[11], 2020 Acc: 97.2%, Spe: 96%, Sen: 97% Except for SVM, the remaining
classifiers did not perform well with the
extracted features.

[12], 2021 Acc: 99%, Spe: 95%, Sen: 86% Due to limitations (over-enhancement)
of HE enhancement, the OD and OC
region identification may not be
optimal.

[13], 2022 Acc: 88.86% Image enhancement approaches did
not employ.

[14], 2022 Acc: 91.6%, Spe: 91.6%, Sen: 91.6% The wavelet specifications have not
been given.

[15], 2022 Acc: 95.04%, Spe: 96.3%, Sen: 93.7% There was no image pre-processing.
[16], 2022 Acc: 80.77%, Spe: 77.38%, Sen: 80.5% Image enhancement may improve the

performance of this approach.
[17], 2022 Acc: 81.4% The HE approach over-enhances image

textures.
Note: Acc: Accuracy, Spe: Specificity, Sen: Sensitivity, AUC: Area under the receiver operating characteristic curve.
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2.1 The Proposed Approach’s Contributions
The in-depth literature survey has identified some CAD phase-wise research limitations such as

Image pre-processing: (i) Most of the pre-processing approaches were designed for gray-scale medical
images, (ii) The parameter values for enhancement were manually assigned, (iii) Texture intensity and
structure improvement did not address jointly; Feature extraction & classification: (i) Image features
have extracted without or with minimal usage of time- or frequency-domains, (ii) Most of the feature
extraction approaches are limited by constraints such as threshold values, image dimensions, and
directions, (iii) Inter-pixel relations are extracted with simple mathematical operations, and (iv) Texture
patterns are extracted by considering only immediately adjacent pixels.

The proposed CAD approach has been motivated and designed to address the identified limita-
tions with the following contributions:

Image pre-processing:

• Color retinal images’ brightness and texture improvement are jointly considered.
• Image-specific parameters are scientifically calculated and employed in the enhancement.

Feature extraction and classification:

• Retinal image textures are analyzed using orthogonal (e.g., Daubechies (Db)) and biorthogonal
(e.g., Bior Nr. Nd or Bi Nr. Nd) wavelets.

• Texture patterns have been extracted using graph theory and traveler’s walks for various
memory constraints.

• Texture pattern extraction considers both immediate and non-immediate neighboring pixels.
• All significant graph-based features are extracted to build powerful feature vectors.

3 The Proposed CAD Glaucoma Approach

In this study, retinal images were considered from various public datasets: ACRIMA [18] (396:
glaucomatous, 309: normal), ORIGA [19] (168: glaucomatous, 482: normal), RIM-ONE [19] (325:
glaucomatous, 458: normal), Drishti [16] (70: glaucomatous, 31: normal), and HRF [16] (15: glau-
comatous, 15: normal). Furthermore, patients’ retinal images (110: glaucomatous, 110: normal)
are collected from the Goutami Eye Institute [20] (HOSPITAL) to test the proposed approach’s
performance. This approach has balanced retinal image illumination and structure improvement, and
extracted pixel intensity relationships using DTW on graphs generated from DWT of images. DWT is a
time-frequency localization approach. It explores the frequency and spatial information concurrently
from the given 2D input image using a decimation operation with wavelet filter banks. High-pass and
low-pass filters in filter banks extract details and approximate information from fundus images in
the form of wavelet coefficients. The DTW operation can be interpreted as a tourist planning to visit
randomly located locations on a multi-dimensional graph (map). The traveler begins his journey at a
given point and proceeds to the next-nearest place in a deterministic manner, i.e., move to the next-
nearest place that has not been visited in the most recent steps. This travel can explore neighboring
relationship patterns that characterize the given map. The overall procedure is shown in Fig. 1 and
explained in the following sub-sections.
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Figure 1: The procedural flow of the DWT-DTW-based glaucoma classification approach

3.1 Retinal Image Pre-Processing
The proposed pre-processing has been divided into two stages: Image visual quality improvement

and details enhancement. The entire approach is given in Algorithm 1 (A1) and explained w.r.t step
numbers (A1: Sn). In this study, image edges are preserved by the Regional Laplacian-Filtering (RLF)
approach that constructs Gaussian-pyramid (GP) for each image (IRGB) resolution. It extracts image
lower-resolutions level by level (GPlevel) (A1: S1) by successive down-sampling. The discriminating
details of each successive GPlevel are used to generate Laplacian-pyramid levels (LPlevel). The RLF is
applied image-level-wise as well as coefficient-wise. These are designated by the position (pr, pc) and
pyramid levels (pl) (A1: S2), using three stages:

• Stage 1: Remapping computation: Each sub-region (SRl) is processed with a remapping compu-
tation C(.) using Csd and Cse, operations and τ . The value τ represents pl-level GP coefficient
at the position (pr, pc). The Csd modifies finer scale details by using sf (v), which is generated by
intensity variation (σiv), noise level (nl), mean (Mu), and standard deviation (Sd) of the image.
Using the image average entropy (Entavg), the Csechanges edge amplitudes. Then image sub-
region remapping (C(SRl)) is defined using a simple point-wise operation.

• Stage 2: SR-pyramid generation: Generates a Laplacian pyramid LP [C (SRl)] for C (SRl).
• Stage 3: Updating the output pyramid: The generated level-wise LP coefficients, i.e., LPl [C (SRl)]

(pr, pc) are assigned to the output (TI), i.e., LPl [TI ] (pr, pc).

It is followed by a series of image-specific luminance and gradient modulations on TIRGB(A1:
S3). The luminance transaction (LT) is carried out by mapped luminance levels (GR_Yd) using a
luminance-level ordered set, GYd = {ld1, ld2, . . . , ldn−1}. The GYd is defined as the pair-wise differences of
YsortIRGB = {l1, l2, . . . , ln} and a mapped luminance-level set GRYd

= {rd1, rd2, . . . rdn−1}. Image luminance
enhancement is followed by structural (OD, OC, and blood vessels) improvement using gradient
transition (GT) on LT outcome i.e., LMEIMG. In GT, image gradients SI∂fx and SI∂fy are employed
using a new gradient inflation function (Ifun) that operates on pixel values (pv) at each (pr, pc) location.
Finally, SI∂fx and SI∂fy are integrated (by collapsing) to form complete enhanced retinal images (RIFE)
(A1: S4).
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Algorithm 1: Pre-processing of retinal image
Input: Color retinal image (IRGB).
Process:

• Step 1: ResolutionLow−Degree (IRGB) ← [GP (IRGB)]
• Step 2: for all (pr, pc, pl) do

Stage 1: SRl ← C τ ,σ iv (SRl)

where, C (j) = Csd (j) , if 〈|j − τ | ≤ σiv〉 else Cse (j) ,
⇒ Csd (j) = τ + signum (j − τ) σivsf (|j − τ | /σiv) , where
sf (v) = ((q1 ∗ sm1 + q2 ∗ sm2)/2) ∗ vγ + (1 − (q1 ∗ sm1 + q2 ∗ sm2)/2) ∗ v
sm1 = (v ∗ σiv − nl)/ (2 ∗ nl − nl) ; sm2 = (v − Mu)/Sd, 0 < nl < 1,
⇒ Cse (j) = τ + sgf (j − τ)

(
ef (|j − τ | − σiv) + σiv

)
, ef (v) = Entavg ∗ v

Stage 2:LP ← LP [C (SRl)]
Stage 3:LPl [TI ]

(
pr, pc

) ← LPl [C (SRl)]
(
pr, pc

)
end

• Step 3: LMEIMG (lmt) = FTrans (l t) = l t +
(

Entropy(IRGB)

max(GYd) − min(GYd)

)
∗

t−1∑
v=1

(rdv − ldv)

1 ≤ t ≤ n, GR_Yd = {rd1, rd2, . . . rdn−1}, where
rdg = ai + (

rdg − ai
)max(GYd )−min(GYd )

, ai = mean(GYd) ∗ min(GYd)

SI ∂f x ,∂f y(pr,pc) = ∂f x,y(pr,pc). I fun

(
pv

)
Ifun (pv) =

wmax∑
w=1

(−1)
w (Cr)

w−wmax

w. (median (LMEIMG)) !
(pv)

w , 3 ≤ wmax ≤ 5,

Cr = ∑
c=R,G,B

min (LMEIMG (c)) + [max (LMEIMG (c)) − min (LMEIMG (c))]

• Step 4: RIFE ← Integrationcollapsing(SI ∂f x ,SI ∂f y)

Output: An illumination-corrected & structurally improved retinal image: RIFE.

3.2 The Proposed Retinal Image Feature Extraction
The objective is to extract retinal image (i.e., RIFE) texture patterns using various Db and Bior

Nr. Nd wavelets and tourists’ walks. As per the existing literature, our proposed approach is the first
one that extracts DWT and DTW-based retinal image features for glaucoma classification. In this
approach, an undirected graph constructed with DTW trajectories formed using the image’s DWT
coefficients of Wr × Wc size. According to graph theory, a retinal image-mapped graph (IG) is formed
by a vertex-set (Vs) and an edge-set (Es), i.e., IG = (Vs, Es). The mapping is carried out in two phases:
Vs generation and Es construction. Initially, each RIFE’s DWT coefficient is mapped to a vector Vs.
In the next stage, a tourist walks among the vertices (Vs) using the partially self-avoiding property
that forms trajectory paths based on various reminisces (i.e., memory) (RM) values. Since the objective
of feature extraction is to retrieve significant image texture relationship patterns, it uses distance and
similarity measures to identify neighboring vertices as shown in Fig. 2. The distance is measured using
a weighted Euclidean distance (EDc) approach. Weights were generated using cosine similarity between
coefficients. For each source vertex (Sv), the neighborhood (Nh) co-vertex count has been determined

using the radius (R), i.e., Nc =
R∑

r=1

8 ∗ r as shown in Fig. 2e.
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Figure 2: The neighborhood test for various ‘R’ values along with sample DTW whirlpool trajectories

As shown in Eq. (1), the distance covered by R between the source (center) and participating (Ps)
vertices is calculated by a metric EDpusing vertex positions.

EDp =
(

Ws

((
xs − xp

)2 + (
ys − yp

)2
)) 1

2
, p = 1 to Nc (1)

where (xs, ys) is the Sv vertex position, and (xp, yp) is the Ps vertex position. The weight function, Ws is
measured using cosine similarity between positional DWT coefficients using Eq. (2),

Ws = SBs ∗ SBp/

√∑
SBs

2 ∗
√∑

SBp
2, SB ∈ {LL, LH, HL, HH} (2)

where LLs, LHs, HLs, and HHs are DWT coefficients of Sv and LLp, LHp, HLp, and HHp are DWT
coefficients of Ps. The EDpvalues are generated for each pair of Sv and Ps. In this approach, the first
eight closest neighbors (NVs) are considered for each Vs from the neighborhood participation set Nps

based on EDpvalues.

NVs = {
Vp1

, . . . , Vp8

}
, EDp1

< . . . < EDp8
< EDother

, EDother
/∈ NVs , EDother

∈ NPs (3)

Tourists’ walks start by considering each vertex v ∈ Vs to generate corresponding DTW
trajectories. These were controlled by a dual-rule moving protocol (MP) as given in Eq. (4). The first
rule is that each movement should consider the nearest neighbor according to the distance measured
using Eq. (1). The other is that, while considering a vertex as the nearest neighbor for the movement,
it should not have been visited in the previous RM number of steps.

MP = Vpn , if
〈
Rule1 :

(
Vpn ∈ NVs & EDp

(
VPn

)
< EDp

(
VPi

)
, i = 1, . . . , 8 & n 	= i

)
Rule2 : Vpn not visited in last RM steps

〉
(4)

where, Vpn is the next vertex in visiting list. The DTW will continue to visit vertices one-by-one by the
MP until they reach the whirlpool situation. It occurs when a tourist continually visits the same vertex
series without escaping.

Detection of a whirlpool in DTW is a challenging task. During the DTW progression, a vertex
can revisit. According to the second rule of MP, in the current step, recently visited vertices (from
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the last RM steps) cannot be considered. Sample whirlpool situations have shown in Figs. 2a−2d, and
their early detection can save computing resources. A new policy has been adopted for the detection of
whirlpool situations. It is based on the sequence of vertices revisited during DTW, as shown in Fig. 3.
Our policy has utilized a 1D vector Mwp to keep track of visited vertices and a structure Swp for each
vertex that records the number of times it has been visited. The whirlpool identification policy (Ipolicy)
is designed using Eq. (5).

Ipolicy = WP, if
[(

Vpr > Pmax, Vpr ∈ Mwp

) ∨ (
Vsc >= Lmax, Vsc ∈ Swp

) ∨ (||T || == Amax)
]

(5)

Figure 3: (a) The track of DTW’s visited vertices (b) an example of a situation that can lead to a
whirlpool for the DTW trajectory (c) vertex’s visited record structure

This policy covers three situations: (1) the maximum number of times (Pmax), a vertex pattern (Vpr)
appears; (2) a vertex visited step count (Vsc) with a maximum limit (Lmax), and; (3) the DTW trajectory
T that covers the maximum area Amax.

In the proposed approach, Pmax and Lmax values are 3 and 5 respectively. The maximum edge count
(Amax) is set at 25, to avoid boundless paths. Once a whirlpool occurs, DTW progression stops, and the
vertices covered in that journey form a trajectory corresponding to that Vs. This process repeats for
all available vertices in Vs. Finally, an undirected graph (RIG) is constructed by considering all these
DTW trajectories corresponding to each vertex. The proposed approach has generated individual RIG

for different RM values. Retinal image texture patterns are then captured using graph-based features
(Table 2) of RIG.

Table 2: Graph-based features and their significance in texture pattern identification

S. no Features Description

1 Average degree (Davg) Similar categories of retinal images can have nearly identical
vertex degrees and texture patterns:

DRm
avg =

||Vs||∑
i=1

deg (vi) / ||Vs|| , vi ∈ Vs

2 Joint degree entropy
(Ejd):

This is the entropy of similar degree (JDM) DWT coefficient
connections:

ERM
jd = −

size(JDM ,1)∑
i=1

size(JDM ,2)∑
j=1

P (JDM(i, j)) ∗ log2 P (JDM (i, j))

(Continued)
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Table 2: Continued
S. no Features Description

3 Link density (Ld): It measures the ratio of DWT-coefficient connections to the
total number of possible connections:
LRM

d = 2 ∗ ||Es|| /(||Vs|| ∗ ||Vs|| − 1)

4 Average closeness
centrality (CCavg):

It measures the DWT coefficients’ ability to spread the
pattern information using the shortest path (SP):

CCRM
avg = ||Vs|| /

||Vs||∑
i,j=1

sp
(
vi, vj

)
, i 	= j and vi, vj ∈ Vs

5 Graph entropy (Eg): It finds the information quantity spread among DWT
coefficients:
ERM

g (RIG) = minvx ,vy

(
Entropy(vx)/Entropy(vx| vy)

)
, vx ∈ Vs,

vy: A set with vx

6 Average clustering
coefficient
(Acc):

It finds the degree of the DWT coefficient to form a cluster
using Nh (Zvi) : ARM

CC =
mean

(
2

∣∣{elm : vl, vm ∈ Zvi , elm ∈ Es

}∣∣ / ∣∣∣∣Zvi

∣∣∣∣ ∗ (∣∣∣∣Zvi

∣∣∣∣ − 1
))

,
vi ∈ Vs

7 Eigen centrality (Ce): The significance of each DWT coefficient in the graph is
measured: CRM

e = 1/λ
∑

y∈RIG

Ax,yvy, λ: constant, Ax,y: Adjacent

matrix.
8 Page rank average

(Pavg):
It measures the importance of a DWT coefficient:
PRM

avg = mean ((1/2 |Es|) [deg (v1) , . . . , deg (vn)]) , vi ∈ Vs

9 Meshedness coefficient
(Mc):

The cyclic relationships among DWT coefficients are
determined: MRM

C = (||Es|| − ||Vs||) + 1/ (2 ∗ ||Vs||) − 5
10 Average hop count

(Havg):
It measures the average SP lengths between pairs of DWT
coefficients: HRM

avg = (1/ ||Vs|| ∗ (||Vs|| − 1)) ∗ ∑
i 	=j sp

(
vi, vj

)
11 Eccentricity (Ec): It identifies the longest texture patterns:

ERM
c = max (DISTANCE (vs, vo)) , vs, vo ∈ Vs, and s 	= o

Using these graph-based features corresponding to each RIG, a feature vector is constructed for
each retinal image. This study considers RM values from 1 to 6.

FVRIG
=

{
DRM

avg , ERM
jd , LRM

d , CCRM
avg , ERM

g , CRM
vi

, CRM
e , PRM

avg , MRM
C , HRM

avg , ERM
c

}
, 1 ≤ RM ≤ 6 (6)

All extracted FVRIG
are supplied to ML classifiers for glaucoma screening. The following section

presents the obtained results and the corresponding analysis.

4 Results and Analysis

The entire experiment was carried out on the ROI (i.e., OC and OD areas) of color retinal images.
The whole procedural flow is shown in Fig. 4. Initially, the retinal images’ intensity is improved using
the image-specific edge and details modifier controllers Cse and Csd of the RLF approach. Then LT
and GT operations are applied for luminance enhancement and texture improvement, respectively.
Image-specific parameter-based preprocessing produces better-quality retinal images than existing
methods, such as LM&GM [21] and CLAHE [22]. Some sample results are shown in Fig. 5. When
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compared to the CLAHE and LM&GM approaches, the qualitative results show strong evidence for
both luminance and structural image improvement.

Figure 4: The block diagram of the proposed glaucoma screening approach

Figure 5: (a) Original input images, (b), (c), and (d) enhanced images by CLAHE, LM&GM, and the
proposed pre-processing

The quantitative assessment of the proposed enhancement approach is carried out using three
quality metrics: (i) Structural Similarity Index (SS_Index): It measures the image similarity, which is
a product of image structure, contrast, and luminance, (ii) Mean Square Error (MSE): It measures
the difference between original and enhanced images. A lower MSE value indicates qualitative image
enhancement, and (iii) Blind Image Spatial quality (BIS): It is a blind (no reference) image spatial
measurement for image quality. It returns a non-negative value between [0, 100]. The lower value
indicates a better qualitative image. All these measures for the same sample images from Fig. 5 are
reported in Table 3.

The histogram plots in Fig. 6 show the performance of the proposed enhancement over other
existing approaches. The proposed enhancement keeps the images’ texture similarity (Fig. 6a) much
closer to the original images, and the MSE values (Fig. 6b) are significantly lower than those
of the CLAHE and LM&GM-based enhanced images. The proposed methodology has achieved
qualitatively enhanced retinal images in terms of spatial measurement, i.e., BIS (Fig. 6c), compared to
the other approaches.
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Table 3: Quantitative assessment of the proposed enhancement approach

S. no. Quality
metric

CLAHE LM&
GM

The
proposed
method

S. no. Quality
metric

CLAHE LM&
GM

The
proposed
method

1 SS_Index 0.8140 0.9273 0.9709 5 SS_Index 0.6712 0.8998 0.9304
MSE 0.0549 0.0295 0.0053 MSE 0.1887 0.0942 0.0097
BIS 28.2382 32.9776 24.7823 BIS 35.7184 36.1886 36.1711

2 SS_Index 0.6094 0.7965 0.9238 6 SS_Index 0.6266 0.8700 0.9722
MSE 0.1608 0.0799 0.0095 MSE 0.1357 0.0674 0.0074
BIS 40.7023 35.1752 31.5075 BIS 39.8451 32.2539 29.0974

3 SS_Index 0.6417 0.8689 0.9608 7 SS_Index 0.7100 0.9583 0.9647
MSE 0.1801 0.0883 0.0051 MSE 0.0607 0.0304 0.0054
BIS 34.7092 36.1509 30.4678 BIS 49.5250 46.9446 42.3555

4 SS_Index 0.8615 0.9636 0.9880 8 SS_Index 0.7282 0.8582 0.9448
MSE 0.0385 0.0202 0.0079 MSE 0.0603 0.0311 0.0053
BIS 40.1846 31.6877 24.4849 BIS 39.3425 34.2647 25.4082

Figure 6: Image quality assessment plots by various measures: (a) SS_Index, (b) MSE, and (c) BIS

In this approach, six undirected graphs are built for each retinal image, accounting for all RM

values using DTW trajectories. Sample retinal image-mapped graphs (for images in Fig. 5) are shown
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in Fig. 7. Each DWT and RM combination produced a distinct topological complex graph. This crucial
property enables the proposed approach to retrieve significant texture patterns. The architecture of
each graph depends on the images’ DWT coefficient inter-relationships. Unlike conventional graphs,
the DWT-DTW-based graph’s structurality will dynamically change according to the image’s texture,
which can capture all possible patterns. This characteristic of the DWT-DTW approach is essential
for analyzing retinal (medical) image textures.

Figure 7: Sample graphs generated from retinal image mapping using the DWT-DTW approach

Once all the DWT-DTW graphs are generated, graph-based features are extracted to form feature
vectors (FVRIG

). The obtained feature vectors have been randomly split using a 70:30 proportion
without replacement for training and testing by NB, SVM, and RF classifiers. Various wavelets
(DWT and DTW) are used in this study to achieve optimal glaucoma screening. The glaucoma
classification results from various datasets are presented in Table 4 in terms of percentages. In the case
of ACRIMA, both SVM and RF classifiers have achieved 100% accuracy, while the NB classifier’s
performance is moderately low for various wavelets. Despite the high true-positive prediction rates
of SVM and RF classifiers, all these are vulnerable to false-negative predictions. The DWT-DTW
approach has achieved a higher accuracy range, i.e., above 96%, with biorthogonal wavelets than with
orthogonal wavelets. In this approach, the NB classifier achieved 98.1% accuracy with the ORIGA
dataset, while the SVM and RF classifiers secured 99.3% accuracy. The SVM and RF classifiers
have high true-negative prediction rates with ORIGA data, but all classifiers suffer from false-positive
predictions. Especially with orthogonal wavelets, the DWT-DTW approach has a lower true-positive
rate than biorthogonal wavelets. This approach has achieved the highest accuracy on RIM-ONE
data since the dataset size was considerably larger than the remaining datasets. In this case, SVM
classifiers suffer from minor false-negative predictions, while RF classifiers have a maximum true-
negative prediction rate. Through the DWT-DTW approach, all three classifiers suffer from minor
false-positive predictions. However, orthogonal and biorthogonal wavelets are well suited to this
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approach with RIM-ONE data. Based on patient retinal images collected from the hospital, the
proposed DWT-DTW method performs admirably. The highest accuracies achieved by NB, SVM,
and RF classifiers are 97.1%, 98.5%, and 100%, respectively. This proposed approach has lower false-
positive prediction rates than false-negative predictions with the hospital data. With the NB classifier,
this approach has achieved mixed responses with both wavelet types. However, the combination of
biorthogonal wavelet DWT-DTW with the SVM and RF classifiers performs better than orthogonal
wavelets on the patient data. In the case of the Drishti dataset, the maximum accuracy attained by all
three classifiers is 96.6%. This approach’s performance is relatively high even with smaller datasets like
HRF. Overall, the proposed DWT-DTW method has attained maximum performances with the SVM
and RF classifiers for all instances. The corresponding performance graphs are shown in Fig. 8.

Table 4: Glaucoma classification results using the DWT-DTW approach

ACRIMA ORIGA

NB SVM RF NB SVM RF

Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe

Db2 93.5 100 84.7 96.4 100 91.5 97.8 100 94.9 91.2 82.1 93.1 93.8 76.0 100 96.2 78.5 100
Db4 94.2 100 86.4 98.5 100 96.6 99.2 100 98.3 91.2 85.7 92.4 97.5 85.7 100 96.8 82.1 100
Db6 95.7 100 89.8 98.5 100 96.6 99.2 100 98.3 93.1 85.7 94.6 96.8 82.1 100 96.8 82.1 100
Db8 98.5 100 96.6 100 100 100 100 100 100 97.5 92.8 98.4 97.5 85.7 100 96.8 82.1 100
Db10 98.5 100 96.6 99.2 100 98.3 99.2 100 98.3 98.1 96.4 98.4 98.1 89.2 100 98.1 89.2 100
Db12 96.4 100 91.5 97.1 100 93.2 100 100 100 98.1 96.4 98.4 98.1 89.2 100 98.1 89.2 100
Db15 96.4 100 91.5 97.8 100 94.9 99.2 100 98.3 97.5 96.4 97.7 98.1 89.2 100 98.1 89.2 100
Db20 96.4 100 91.5 98.5 100 96.6 100 100 100 97.5 96.4 97.7 98.1 89.2 100 98.1 89.2 100
Db30 97.8 98.7 96.6 99.2 100 98.3 100 100 100 97.5 96.4 97.7 97.5 85.7 100 97.5 85.7 100
Db32 97.8 98.7 96.6 100 100 100 100 100 100 97.5 96.4 97.7 97.5 85.7 100 97.5 85.7 100
Db40 98.5 100 96.6 100 100 100 100 100 100 95 89.2 96.2 98.1 89.2 100 97.5 85.7 100
Db42 98.5 100 96.6 100 100 100 99 100 97.8 95.6 92.8 96.2 98.1 89.2 100 97.5 85.7 100
Bi2.6 96.4 100 91.5 97.1 100 93.2 98.5 100 96.6 96.2 92.8 96.9 97.5 85.7 100 98.1 89.2 100
Bi2.8 97.1 100 93.2 99.2 100 98.3 100 100 100 96.8 92.8 97.7 98.1 89.2 100 98.7 92.8 100
Bi3.3 98.5 100 96.6 100 100 100 100 100 100 96.8 96.4 96.9 99.3 96.4 100 99.3 96.4 100
Bi3.5 98.5 100 96.6 100 100 100 100 100 100 96.8 96.4 96.9 99.3 96.4 100 99.3 96.4 100
Bi3.7 98.5 100 96.6 99.2 100 98.3 100 100 100 97.5 96.4 97.7 99.3 96.4 100 99.3 96.4 100
Bi4.4 97.1 100 93.2 100 100 100 99.2 100 98.3 93.1 85.7 94.6 99.3 96.4 100 96.2 78.5 100
Bi5.5 98.5 100 96.6 99.2 100 98.3 100 100 100 93.1 85.7 94.6 97.5 85.7 100 99.3 96.4 100
Bi6.8 98.5 100 96.6 99.5 100 98.9 100 100 100 96.2 92.8 96.9 98.1 89.2 100 99.3 96.4 100

RIM-ONE HOSPITAL

NB SVM RF NB SVM RF

Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe

Db2 95.2 98.9 92.7 99.1 97.9 100 99.1 97.9 100 92.8 97.1 88.5 92.8 97.1 88.5 92.8 97.1 88.5
Db4 98.7 97.9 99.2 99.1 97.9 100 99.5 98.9 100 95.7 97.1 94.2 97.1 97.1 97.1 97.1 97.1 97.1
Db6 98.2 97.9 98.5 99.5 98.9 100 100 100 100 95.7 100 91.4 98.5 97.1 100 98.5 97.1 100
Db8 98.7 97.9 99.2 100 100 100 100 100 100 95.7 100 91.4 98.5 97.1 100 98.5 97.1 100
Db10 98.7 97.9 99.2 100 100 100 100 100 100 97.1 100 94.2 98.5 97.1 100 98.5 97.1 100
Db12 97.8 97.9 97.8 100 100 100 100 100 100 94.2 97.1 91.4 95.7 97.1 94.2 95.7 97.1 94.2
Db15 97.4 97.9 97 99.5 98.9 100 99.5 98.9 100 94.2 97.1 91.4 95.7 97.1 94.2 95.7 97.1 94.2

(Continued)
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Table 4: Continued
RIM-ONE HOSPITAL

NB SVM RF NB SVM RF

Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe

Db20 97 97.9 96.3 99.1 97.9 100 99.5 98.9 100 95.7 100 91.4 97.1 97.1 97.1 97.1 97.1 97.1
Db30 95.7 97.9 94.1 97.8 97.9 97.8 100 100 100 97.1 97.1 97.1 94.2 97.1 91.4 94.2 97.1 91.4
Db32 97 97.9 96.3 99.1 97.9 100 99.1 97.9 100 91.4 97.1 85.7 97.1 97.1 97.1 97.1 97.1 97.1
Db40 97 97.9 96.3 100 100 100 100 100 100 94.2 97.1 91.4 95.7 97.1 94.2 94.2 94.2 94.2
Db42 97 97.9 96.3 99.5 98.9 100 100 100 100 91.4 97.1 85.7 94.2 94.2 94.2 94.2 94.2 94.2
Bi2.6 98.2 97.9 98.5 99.1 97.9 100 99.5 98.9 100 91.4 97.1 85.7 97.1 97.1 97.1 97.1 97.1 97.1
Bi2.8 98.2 97.9 98.5 99.1 97.9 100 100 100 100 92.8 100 85.7 97.1 97.1 97.1 97.1 97.1 97.1
Bi3.3 98.7 97.9 99.2 100 100 100 100 100 100 94.2 100 88.5 94.2 97.1 91.4 97.1 97.1 97.1
Bi3.5 97.8 98.9 97 99.5 98.9 100 99.5 98.9 100 92.8 100 85.7 95.7 97.1 94.2 98.5 97.1 100
Bi3.7 98.7 97.9 99.2 99.5 98.9 100 100 100 100 92.8 100 85.7 94.2 97.1 91.4 97.1 97.1 97.1
Bi4.4 97.4 97.9 97 100 100 100 100 100 100 95.7 100 91.4 97.1 97.1 97.1 100 100 100
Bi5.5 97.8 98.9 97 100 100 100 100 100 100 95.7 100 91.4 98.5 97.1 100 98.5 97.1 100
Bi6.8 98.2 97.9 98.5 99.5 98.9 100 100 100 100 97.1 100 94.2 98.5 97.1 100 98.5 97.1 100

DRISHTI HRF

NB SVM RF NB SVM RF

Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe

Db2 86.6 85 90 76.6 65 100 73.3 60 100 55.5 50 60 66.6 75 60 66.6 75 60
Db4 90 90 90 90 85 100 76.6 65 100 66.6 75 60 66.6 75 60 77.8 50 100
Db6 93.3 90 100 90 85 100 96.6 95 100 77.7 75 80 88.9 75 100 88.8 75 100
Db8 96.6 95 100 86.6 80 100 96.6 95 100 88.9 75 100 88.9 75 100 88.8 75 100
Db10 96.6 95 100 90 85 100 93.3 90 100 88.9 75 100 88.9 75 100 88.8 100 80
Db12 93.3 90 100 96.6 95 100 93.3 90 100 77.7 75 80 77.7 75 80 77.8 50 100
Db15 90 90 90 83.3 75 100 93.3 90 100 66.6 75 60 77.7 75 80 77.8 50 100
Db20 83.3 90 70 93.3 90 100 93.3 90 100 66.6 75 60 77.7 75 80 77.8 50 100
Db30 80 80 80 90 85 100 90 90 90 66.6 75 60 77.7 75 80 66.6 75 60
Db32 90 85 100 90 85 100 90 90 90 66.6 75 60 77.7 75 80 66.6 75 60
Db40 80 85 70 90 85 100 90 90 90 66.6 75 60 77.7 75 80 66.6 75 60
Db42 83.3 85 80 90 85 100 90 90 90 66.6 75 60 77.7 75 80 77.8 50 100
Bi2.6 83.3 80 90 93.3 90 100 93.3 90 100 77.7 75 80 88.8 1000 80 77.8 100 60
Bi2.8 90 85 100 93.3 90 100 93.3 90 100 77.7 75 80 77.7 75 80 77.8 100 60
Bi3.3 96.6 95 100 96.6 95 100 96.6 95 100 88.8 100 80 88.8 1000 80 88.8 75 100
Bi3.5 93.3 90 100 90 85 100 93.3 90 100 88.8 100 80 77.7 75 80 77.8 50 100
Bi3.7 93.3 95 90 96.6 95 100 96.6 95 100 88.8 100 80 77.7 75 80 77.8 50 100
Bi4.4 96.6 95 100 96.6 95 100 93.3 90 100 77.7 75 80 77.7 75 80 88.8 100 80
Bi5.5 96.6 95 100 93.3 90 100 96.6 95 100 77.7 75 80 88.8 1000 80 88.8 100 80
Bi6.8 96.6 95 100 96.6 95 100 96.6 95 100 77.7 75 80 88.8 1000 80 88.8 100 80

Notes: Acc: Accuracy, Spe: Specificity, Sen: Sensitivity.

Due to the moderate patient data size, the NB classifier has attained lower classification accuracy
than other cases. In this DWT-DTW approach, the performance plots of all classifiers with RIM-ONE
data are more consistent and reliable. More fluctuations are seen in classification accuracy plots by
orthogonal wavelets than by biorthogonal wavelets. Referring to the other classification measures, the
proposed approach has more stable true-negative prediction rates (i.e., specificity) than true-positive
prediction rates (i.e., sensitivity). Because regularity improves with the order, all performance plots
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hit the minimal values only with the lower-order orthogonal wavelets rather than with the higher-
order orthogonal and biorthogonal wavelets. The corresponding confusion matrix metrics, such as
true and false positives and negatives, are shown in Table 5. The proposed approach has either 0 or 1
false-negative prediction, with a maximum of 9 false-positive predictions for the ACRIMA dataset. In
the case of ORIGA data, the approach has both types of false predictions with the NB classifier but
zero false-positive predictions with other classifiers. This approach has very few incorrect predictions
with RIM-ONE data. The proposed approach has generated a considerably lower range of incorrect
predictions in the patient retinal dataset case. In the case of the Drishti dataset, the approach has
higher true-negative predictions by all three classifiers. This approach also achieved steady, correct
predictions with the HRF dataset.

Figure 8: The DWT-DTW glaucoma classification (a) accuracy, (b) sensitivity, and (c) specificity
graphs

Table 5: Confusion matrix metrics by DWT-DTW-based glaucoma classification
ACRIMA ORIGA

NB SVM RF NB SVM RF

Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn

Db2 118 13 0 79 118 7 0 85 117 5 1 87 39 6 11 139 38 0 12 145 43 0 7 145
Db4 118 12 0 80 118 3 0 89 118 2 0 90 39 6 11 139 45 0 5 145 44 0 6 145
Db6 118 9 0 83 118 3 0 89 118 2 0 90 40 3 10 142 44 0 6 145 44 0 6 145
Db8 118 3 0 89 118 0 0 92 118 0 0 92 46 1 4 144 45 0 5 145 44 0 6 145
Db10 118 3 0 89 118 2 0 90 118 2 0 90 48 1 2 144 47 0 3 145 49 0 1 145
Db12 118 7 0 85 118 6 0 86 118 0 0 92 48 1 2 144 47 0 3 145 49 0 1 145
Db15 118 7 0 85 117 5 1 87 118 2 0 90 46 1 4 144 47 0 3 145 49 0 1 145
Db20 118 7 0 85 118 4 0 88 118 0 0 92 46 1 4 144 45 0 5 145 49 0 1 145

(Continued)
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Table 5: Continued
ACRIMA ORIGA

NB SVM RF NB SVM RF

Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn

Db30 117 5 1 87 118 2 0 90 118 0 0 92 46 1 4 144 45 0 5 145 45 0 5 145
Db32 117 5 1 87 118 0 0 92 118 0 0 92 46 1 4 144 45 0 5 145 45 0 5 145

Db40 118 4 0 88 118 0 0 92 118 0 0 92 43 2 7 143 44 0 6 145 45 0 5 145
Db42 118 4 0 88 118 0 0 92 118 2 0 90 43 1 7 144 44 0 6 145 45 0 5 145
Bi2.6 118 7 0 85 118 6 0 86 118 4 0 88 44 1 6 144 45 0 5 145 49 0 1 145
Bi2.8 118 6 0 86 118 2 0 90 118 0 0 92 45 1 5 144 44 0 6 145 48 0 2 145
Bi3.3 118 4 0 88 118 0 0 92 118 0 0 92 45 1 5 144 49 0 1 145 49 0 1 145
Bi3.5 118 4 0 88 118 0 0 92 118 0 0 92 45 1 5 144 49 0 1 145 49 0 1 145
Bi3.7 118 4 0 88 118 2 0 90 118 0 0 92 45 1 5 144 49 0 1 145 49 0 1 145
Bi4.4 118 6 0 86 118 0 0 92 118 2 0 90 40 3 10 142 49 0 1 145 43 0 7 145
Bi5.5 118 4 0 88 118 2 0 90 118 0 0 92 40 3 10 142 45 0 5 145 49 0 1 145
Bi6.8 118 4 0 88 118 1 0 91 118 0 0 92 44 1 6 144 49 0 1 145 4 0 1 145

RIM-ONE HOSPITAL

NB SVM RF NB SVM RF

Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn

Db2 96 10 1 127 95 0 2 137 95 0 2 137 34 4 1 31 34 4 1 31 34 4 1 31
Db4 95 1 2 136 95 0 2 137 96 0 1 137 34 2 1 33 34 1 1 34 34 1 1 34
Db6 95 2 2 135 96 0 1 137 97 0 0 137 35 3 0 32 34 0 1 35 34 0 1 35
Db8 95 1 2 136 97 0 0 137 97 0 0 137 35 3 0 32 34 0 1 35 34 0 1 35
Db10 95 1 2 136 97 0 0 137 97 0 0 137 35 2 0 33 34 0 1 35 34 0 1 35
Db12 95 3 2 134 97 0 0 137 97 0 0 137 34 3 1 32 34 2 1 33 34 2 1 33
Db15 95 4 2 133 96 0 1 137 96 0 1 137 34 3 1 32 34 2 1 33 34 2 1 33
Db20 95 5 2 132 95 0 2 137 96 0 1 137 35 3 0 32 34 1 1 34 34 1 1 34
Db30 95 8 2 129 95 3 2 134 97 0 0 137 34 1 1 34 34 3 1 32 34 3 1 32
Db32 95 5 2 132 95 0 2 137 95 0 2 137 34 5 1 30 34 1 1 34 34 1 1 34
Db40 95 5 2 132 97 0 0 137 97 0 0 137 34 3 1 32 34 2 1 33 33 2 2 33
Db42 95 5 2 132 96 0 1 137 97 0 0 137 34 5 1 30 33 2 2 33 33 2 2 33
Bi2.6 95 2 2 135 95 0 2 137 96 0 1 137 34 5 1 30 34 1 1 34 34 1 1 34
Bi2.8 95 2 2 135 95 0 2 137 97 0 0 137 35 5 0 30 34 1 1 34 34 1 1 34
Bi3.3 95 1 2 136 97 0 0 137 97 0 0 137 35 4 0 31 34 3 1 32 34 1 1 34
Bi3.5 96 4 1 133 96 0 1 137 96 0 1 137 35 5 0 30 34 2 1 33 34 0 1 35
Bi3.7 95 1 2 136 96 0 1 137 97 0 0 137 35 5 0 30 34 3 1 32 34 1 1 34
Bi4.4 95 4 2 133 97 0 0 137 97 0 0 137 35 3 0 32 34 1 1 34 35 0 0 35
Bi5.5 96 4 1 133 97 0 0 137 97 0 0 137 35 3 0 32 34 0 1 35 34 0 1 35
Bi6.8 95 2 2 135 96 0 1 137 97 0 0 137 35 2 0 33 34 0 1 35 34 0 1 35

DRISHTI HRF

NB SVM RF NB SVM RF

Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn

Db2 17 1 3 9 13 0 7 10 12 0 8 10 2 2 2 3 3 2 1 3 3 2 1 3
Db4 18 1 2 9 17 0 3 10 13 0 7 10 3 2 1 3 3 2 1 3 2 0 2 5
Db6 18 0 2 10 17 0 3 10 19 0 1 10 3 1 1 3 3 0 1 5 3 0 1 5
Db8 19 0 1 10 16 0 4 10 19 0 1 10 3 0 1 5 3 0 1 5 3 0 1 5
Db10 19 0 1 10 17 0 3 10 18 0 2 10 3 0 1 5 3 0 1 5 4 1 0 4
Db12 18 0 2 10 19 0 1 10 18 0 2 10 3 1 1 3 3 1 1 3 2 0 2 5
Db15 18 1 2 9 15 0 5 10 18 0 2 10 3 2 1 3 3 1 1 3 2 0 2 5
Db20 18 3 2 7 18 0 2 10 18 0 2 10 3 2 1 3 3 1 1 3 2 0 2 5

(Continued)
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Table 5: Continued
DRISHTI HRF

NB SVM RF NB SVM RF

Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn Tp Fp Fn Tn

Db30 16 2 4 8 17 0 3 10 18 1 2 9 3 2 1 3 3 1 1 3 3 2 1 3
Db32 17 0 3 10 17 0 3 10 18 1 2 9 3 2 1 3 3 1 1 3 3 2 1 3
Db40 17 3 3 7 17 0 3 10 18 1 2 9 3 2 1 3 3 1 1 3 3 2 1 3
Db42 17 2 3 8 17 0 3 10 18 1 2 9 3 2 1 3 3 1 1 3 2 0 2 5
Bi2.6 16 1 4 9 18 0 2 10 18 0 2 10 3 1 1 3 3 1 1 3 4 2 0 3
Bi2.8 17 0 3 10 18 0 2 10 18 0 2 10 3 1 1 3 3 1 1 3 4 2 0 3
Bi3.3 19 0 1 10 19 0 1 10 19 0 1 10 4 1 0 4 3 0 1 5 3 0 1 5
Bi3.5 18 0 2 10 17 0 3 10 18 0 2 10 4 1 0 4 3 1 1 3 2 0 2 5
Bi3.7 19 1 1 9 19 0 1 10 19 0 1 10 4 1 0 4 3 1 1 3 2 0 2 5

Bi4.4 19 0 1 10 19 0 1 10 18 0 2 10 3 1 1 3 3 1 1 3 4 1 0 4
Bi5.5 19 0 1 10 18 0 2 10 19 0 1 10 3 1 1 3 3 1 1 3 4 1 0 4
Bi6.8 19 0 1 10 19 0 1 10 19 0 1 10 3 1 1 3 3 1 1 3 4 1 0 4

Notes: Tp: True positives, Fp: False positives, Tn: True negatives, Fn: False negatives.

The proposed DWT-DTW glaucoma classification approach’s performance has been compared
with similar state-of-the-art methods, as shown in Table 6. Irrespective of feature extraction
approaches, the SVM classifier is widely used. Several approaches have attained an accuracy range
above 97% with the RIM-ONE dataset. The highest classification measures reported [23] among
existing methods are 97.6% accuracy, 94.33% sensitivity, and 99.09% specificity in various cases. The
application of the time-frequency domain (i.e., DWT) is utilized by several approaches [24] and [25]
for feature extraction. In the case of patient retinal data, the performance of the existing approaches
[26] and [27] is moderately low.

Table 6: Performance appraisal of the glaucoma screening state-of-the-art approaches

Ref. & year Approach Performance

Dataset Classifier Acc (%) Sen (%) Spe (%)

[11] 2020 Structural and RIM-ONE, SVM 97.2 97 96
non-structural-based DRISHTI RF 94.4 94 93
hybrid features. NB 89.6 88 89

[23] 2021 Fourier-Bessel RIM-ONE RF 97.6 94.33 99.09
series-based EWT
approach

SVM 90 90 90

[24] 2020 Empirical WT
(EWT)-based GLCM
features.

RIM-ONE SVM 93.65 93.5 96.67

[25] 2020 Flexible analytic ORIGA SVM 92.92 94.04 92.53
DWT-based approach RIM-ONE 90.76 94.5 87.84

[26] 2020 DWT-based statistical
and texture features.

Hospital
images

k-NN 89.4 87.9 90.9

HRF 96.9 93.3 100

(Continued)
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Table 6: Continued
Ref. & year Approach Performance

Dataset Classifier Acc (%) Sen (%) Spe (%)

[27] 2021 Gradient boosting-based
structural features.

Hospital
images

DT 89 74.5 95.6

[28] 2021 DWT-based histogram
features.

HRF and
MESSIDOR

SVM 93.14 79.4 94.7

[29] 2021 2D-DWT-based
GLCM features.

RIM-ONE k-NN 92.5 93.10 95.20

[30] 2021 Gradient histogram and
DWT-based features.

HRF ELM 96.5 86.9 93.8

[31] 2022 DWT-based statistical
features.

RIM-ONE SVM 91.22 85.51 98.50

[32] 2022 Multimodal ACRIMA SVM 90.12 90 91
Fusion-based approach. RF 89.27 89 89

NB 83.26 83 83
ORIGA SVM 77.14 75 76

RF 79.52 76 78
NB 68.57 65 69

The ACRIMA NB 98.5 100 96.6
DWT-DTW SVM 100 100 100
glaucoma
classification

RF 100 100 100

(The proposed ORIGA NB 98.1 96.4 98.4
method). SVM 99.3 96.4 100

RF 99.3 96.4 100
RIM-ONE NB 98.7 97.9 99.2

SVM 100 100 100
RF 100 100 100

HOSPITAL NB 97.1 100 94.2
SVM 98.5 97.1 100
RF 100 100 100

Drishti NB 96.6 95 100
SVM 96.6 95 100
RF 96.6 95 100

HRF NB 88.8 100 80
SVM 88.8 80 100
RF 88.8 75 100

Notes: Acc: Accuracy, Spe: Specificity, Sen: Sensitivity.

In the proposed approach, using DWT-DTW-based retinal image features, NB classifiers attained
98.5%, 98.1%, 98.7%, 96.6%, 88.8%, and 97.1% accuracies on the ACRIMA, ORIGA, RIM-ONE,
Drishti, HRF, and HOSPITAL datasets, respectively. The SVM and RF classifiers attained similar
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performance, i.e., 100%, 99.3%, 100%, 96.6%, 88.8%, and 98%–100% accuracy on the considered
datasets, respectively. In the case of patients’ retinal datasets, this approach has attained 97% accuracy
with extremely high correct prediction rates.

The optimal performance of the DWT-DTW method is due to an extensive retinal texture
enhancement and analysis, which offers the following benefits:

• Pre-processing:
1. Balanced enhancement: Images’ textures, as well as illumination, are jointly improved.
2. Image-dependent enhancement: The enhancement process considered image-specific

details rather than manually supplied constant values.
• Feature extraction and classification:

1. In-depth time-frequency analysis: An extensive image’s time-frequency domain analysis
has been done using various wavelets for texture identification.

2. Image’s specific pattern exploration: Image texture-dependent methodologies (such as
image-mapped graphs) are utilized in pattern extraction.

3. Diversified texture analysis: Each image texture is analyzed in various dimensions using
special techniques (such as different graph architectures).

4. Robust performance: The classification performs well on public retinal repositories and
patients’ retinal data.

These advantages are compared with the state-of-the-art approaches (from Table 6). The summa-
rized report has been given in Table 7. It shows a strong reason for using the DWT-DTW method for
glaucoma classification rather than existing approaches.

Further, the phase-wise research findings of the proposed CAD-based glaucoma screening method
are as follows:

• Retinal image pre-processing: (i) Qualitative retinal images have been generated due to enhance-
ment of the images’ luminance and texture; (ii) The suggested approach improves the images
without affecting the original texture using image-specific characteristics.

• Retinal image feature extraction: (i) DTW trajectories corresponding to various wavelets’
coefficients and RM values enable us to extract significant image texture patterns; and (ii)
Various topological graphs make the texture analysis powerful.

• Retinal image classification: (i) Biorthogonal wavelet-based graph features are stronger for
glaucoma classification than orthogonal wavelets; (ii) SVM and RF classifiers have achieved
high glaucoma classification accuracy.

Table 7: The state-of-the-art approaches comparison with the proposed method’s advantages

Approaches/
advantages

[11] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] The DWT-
DTW method

Balanced
enhancement

X X X X X • • X X X • �

(Continued)
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Table 7: Continued
Approaches/
advantages

[11] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] The DWT-
DTW method

Image dependant
enhancement

� X X X X • • X � � • �

In-depth
time-frequency
analysis

X X X � X X X X X X X �

Image’s specific
pattern exploration

X � X X X X � X � � � �

Diversified texture
analysis

� � X X X X � X � � � �

Robust performance X X X X X X X X X X X �
Notes: �: Achieved, X: Not Achieved, •: The corresponding CAD phase is not included.

Overall, it has been determined that the combination of the biorthogonal wavelet family and
DTW-based graph theory is optimal for glaucoma screening.

5 Conclusions and Future Work

The proposed CAD-based glaucoma classification is a unique approach that utilizes the combina-
tion of time-frequency localization and graph theory. Images’ textures are improved in a balanced way
using image-dependent details. Various topological graphs have been generated for each retinal image
to explore pixels’ neighborhood relationships using in-depth time-frequency analysis. It identifies
significant directional texture patterns for accurate screening. Results have proven that the proposed
enhancement improves the images’ quality without altering their texture patterns. The proposed DWT-
DTW-based glaucoma screening has achieved an average accuracy of 99.5%, 98.9%, 99.56%, 96.6%,
88.8%, and 98.5%, sensitivity of 100%, 96.4%, 99.3%, 95%, 100%, and 99.03%, and specificity of
98.06%, 99.4%, 99.7%, 100%, 80%, and 98.06% on the ACRIMA, ORIGA, RIM-ONE, Drishti,
HRF, and HOSPITAL datasets, respectively. Our approach has achieved optimal performance for
biorthogonal DTW and RF or SVM classifiers combination. Moreover, the DWT-DTW method
has achieved highly satisfactory classification accuracy in the case of patient data. The performance
of the proposed method has been compared with state-of-the-art methods, and its performance is
far better than existing methodologies. Thus, this CAD approach will become a powerful aid for
ophthalmologists in providing faster and more accurate glaucoma screening. However, the proposed
approach has fewer limitations, which include that the classification accuracy is slightly lower with
smaller datasets and that this approach suffers from incorrect predictions for some combinations.
These limitations will be addressed in our future work using multi-level graph CNNs.
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