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Abstract: The Internet of Things (IoT) is determine enormous economic open-
ings for industries and allow stimulating innovation which obtain between
domains in childcare for eldercare, in health service to energy, and in devel-
oped to transport. Cybersecurity develops a difficult problem in IoT platform
whereas the presence of cyber-attack requires that solved. The progress of
automatic devices for cyber-attack classifier and detection employing Arti-
ficial Intelligence (AI) and Machine Learning (ML) devices are crucial fact to
realize security in IoT platform. It can be required for minimizing the issues of
security based on IoT devices efficiently. Thus, this research proposal estab-
lishes novel mayfly optimized with Regularized Extreme Learning Machine
technique called as MFO-RELM model for Cybersecurity Threat classifica-
tion and detection from the cloud and IoT environments. The proposed MFO-
RELM model provides the effective detection of cybersecurity threat which
occur in the cloud and IoT platforms. To accomplish this, the MFO-RELM
technique pre-processed the actual cloud and IoT data as to meaningful
format. Besides, the proposed models will receive the pre-processing data and
carry out the classifier method. For boosting the efficiency of the proposed
models, the MFO technique was utilized to it. The experiential outcome of the
proposed technique was tested utilizing the standard CICIDS 2017 dataset,
and the outcomes are examined under distinct aspects.

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.036735
https://www.techscience.com/doi/10.32604/csse.2023.036735
mailto:salshahrani@su.edu.sa


856 CSSE, 2023, vol.47, no.1

Keywords: Mayfly optimization; machine learning; artificial intelligence;
cybersecurity; threat detection

1 Introduction

The Internet of Things (IoT) is central to digital transformation in several industrial sectors [1].
Owing to the pervasive nature of such gadgets and due to the simplicity of observing and controlling
gadgets from distant places, there occurs a fast advancement in framing various new applications in
numerous fields like connected industrial and manufacturing sensors and equipment, smart home
devices, health monitoring gadgets, energy management gadgets, wearable devices, etc. [2,3]. The main
concern in the IoT network was managing the device’s security and data protection from assaults.
Cyber-attacks were unauthorized access or intentional exploitation of infrastructures or information
of other organizations or individuals [4]. Protection of IoT gadgets from assaults becomes a problem
because of the heterogeneity of protocols and gadgets, direct exposure of gadgets to the internet, and
resource limits on devices. The mitigation method presented for IT networks does not suit the IoT
atmosphere, and some Machine Learning (ML) techniques were advanced for detecting assaults based
on IoT traffic paradigms [5,6]. ML techniques will be appropriate since they can be implemented in
several applications like anomaly detection (AD), data classification, and clustering [7].

Several research works are focused on solving the security problems and difficulties of cloud
computing (CC) and IoT by utilizing a lightweight authentication procedure, the data security
searching and sharing of cloud-related IoT [8]. They could operate the consistency and accuracy of IoT
data for its complete lifetime [9]. Thus, these cyber-attacks should be solved for safe IoT usage [10].
Subsequently, massive efforts to manage the security problems in the IoT method were made recently.
Another cyber threat was malware. Malware or malicious software has software which can be fixed on
a computer for disrupting their function and damage electrical data. Trojan horses, viruses, spyware,
ransomware, malvertising, worms, and adware are important malware forms [11]. Malign intrusions
on the computer network and gadgets were other cyber-attack to cyberspace. Such intrusions were
utilized for identifying and scanning the susceptibilities of a computer system or network [12]. An
intrusion detection system (IDS) can be utilized for protecting beside such intrusion [13]. ML has
become the most effective and basic technique for competing with cyber-attacks and solving the limits
of predictable security mechanisms. Disdain has all its charms, and ML methods have their limitations
and constraints. ML is a subclass of AI [14]. The captivating superiority of ML methods was that
ML methods did not program explicitly since they could mechanically learn from their experience for
generating the outcomes.

This paper designs a novel mayfly optimized with Regularized Extreme Learning Machine
approach called as MFO-RELM model, for cybersecurity threat classifier and detection in the cloud
and IoT environments. The proposed MFO-RELM model primarily pre-processes the actual cloud
and IoT data as to meaningful format. Besides, the proposed methodology will receive the pre-
processing data and carry out the classifier system using the RELM model. For boosting the efficiency
of the proposed models, the MFO algorithms are utilized to it. High-accurate simulations and several
scenarios of experiments will be performed. The experimental validation of the presented systems will
be tested utilizing standard databases in several features.



CSSE, 2023, vol.47, no.1 857

2 Related Works

Kumar et al. [15] introduced an intellectual cyber-attack detection mechanism for IoT systems
with the use of a new hybrid feature minimized technique. This method initially executes feature
ranking utilizing correlation co-efficient, RF, mean diminishing accuracy, and gaining ratio for gaining
3 distinct feature sets. After, features were integrated through the usage of a suitable devised system
(AND operations), for gaining a single optimizer feature set. At last, the gained diminish feature sets
were given to 3 renowned ML techniques like RF, K-NN, and XGBoost, for detecting cyberattacks.
In [16], the cognitive ML-enabled attack detection structure was devised for sharing medical data
securely. The healthcare CPS is efficient in dispersing the accumulated data to cloud storage. ML
approaches forecast cyber-attack behaviour in the healthcare decision support system. In [17], the
authors sightsee an assault and AD method based on ML approaches like KNN, LR, RF, SVM, ANN,
and DT for defending against and mitigating IoT cybersecurity menaces in smart cities. Or otherwise,
prevailing studies that concentrate on one classifier, the authors even sightsee ensemble approaches
such as stacking, bagging and boosting for enhancing the activity of the detection mechanism.

A decentralized system of security was offered in [18] utilizing a SDN compiled with blockchain
(BC) for IoT in fog and mobile edge computing. The SDN incessantly analyses and observes the traffic
of a system to offer an assault recognition approach. The BC was leveraged for overcoming the failure
problems faced in the current techniques by distributing a decentralized attack recognition technique
that identifies assaults in fog and minimizes it in edge nodes. In [19], the authors rendered the complete
advancement of novel intellectual and autonomous DL-related classification and detection mechanism
for cyber threats in IoT transmission network which uses the power of CNN is named IoT-IDCS-CNN
(IoT related intrusion detection and classifier mechanism utilizing CNN). The presented IoT-IDCS-
CNN uses higher efficiency computing which uses the powerful Compute Unified Device Architecture
(CUDA) related parallel processing and Nvidia GPUs that uses high-speed I9-core-related Intel CPUs.

Elsisi et al. [20] present a compiled IoT structure for managing the issue of cyber-attacks related
to an advanced DNN having a rectified linear unit for providing secure and reliable online observation
for automated guided vehicle (AGV). The advanced IoT structure related to a DNN introduced a novel
technique for network monitoring of AGVs towards cyberattacks with an easy and cheap application
as an alternative to conventional cyberattack detection techniques. This DNN can be well-trained
related to new AGV data that indicate the AGV’s real state and various kinds of cyber-attacks involving
a sinusoidal attack, random assault, pulse assault, and ramp assault that can be inserted by attacker
as to internet network. In [21], the authors devise a technique utilizing advanced DL for recognizing
cyberattacks in IoT systems. To be Specific, this technique compiles an LSTM set modules into a
collective of detectors. Such elements were compiled utilizing a DT for arriving at a combined output
at the last phase.

3 The Proposed Model

In this work, a novel MFO-RELM model was introduced for cyber-attack detection and classi-
fication in the cloud-enabled IoT platform. The proposed MFO-RELM model provides the effective
identification of cybersecurity attacks which occur from the cloud and IoT platforms. Fig. 1 represents
the overall workflow of the MFO-RELM system.
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Figure 1: Workflow of MFO-RELM system

3.1 Data Normalization
Firstly, the MFO-RELM approach pre-processed the actual cloud and IoT data into a meaningful

format. Raw information for the analysis can sometimes be unsuitable for a set of statistical tests,
and to be capable of using those statistical tests and to raise the performance of the analysis,
and we should make some modifications to the raw information. Such modifications are named
data conversion, which is mathematical modelling used to change parameters that don’t follow the
statistical assumption of uniform linearity, scattering, and normality, or have a pattern with unusual
outliers.

Amongst them, data normalized has higher efficacy. Normalization has distinct statistical mean-
ing, the simple usage is to normalize variables or data, and is a technique that puts information in
a similar field once they are not. In other words, a data miner may encounter conditions whereby
the property of the information involves viz., various domains or ranges. The larger-value features
could have a larger impact on the cost function than the lowest feature values. These problems can
be overcome by normalizing the properties so that the values are in the same range. While creating
a Meta model from the information, beforehand model training initiates, the information is divided
into large values to be normalized to values amongst [0, 1] to minimalize the impact of the full scale
and have nearly every input in a similar range.

The min-max technique is the simplest and most popular normalization approach in medicinal
imaging [22]. In the study, the unifying data scale, data changing edges would be distributed within
[0, 1]. By assuming attribute X , mapping from the dataset among Xmin and Xmax, the min-max
normalization (Xnorm) can be accomplished as follows:

Xnorm = X − Xmin

Xmax − Xmin

. (1)

3.2 RELM-Based Cyber Threat Detection
At this stage, the proposed model will receive the pre-processing data and carry out the classifier

procedure using the RELM model. For achieving a robust solution to the network resultant weight
Wout in terms of perturbations to data representation from the ELM space, it can resolve the subsequent
optimized problems [23]:
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J = argWout
min ‖W T

outφ − T‖2
F , (2)

subject to : W T
outϕi = W T

outϕ̃i,m, i = 1, . . . , N, m = 1, . . . , M, (3)

whereas ϕ̃i,m ∈ R
L refers to the perturbed copy of ϕi. Specifically, it will be similar to learned network

resultant weight, which generates network outcomes of perturbed instances ϕ̃ that is as nearby as
feasible to the network outcomes to the original instances ϕi, that is, W T

outϕ̃i,m = õi,m � 0i = W T
outϕi, but

(simultaneously) the network trained error is as lower as feasible.

An identical technique was exploited in AEs, controlling to suppose that De-noising AEs. In recent
times, it can also be demonstrated that an identical manner is used to train FFNNs. In any case, it
can be demonstrated that the implementation of perturbed instances is a result of the regularization
of the attained network parameters that improve the generalized capability of trained networks and
controls to optimum generalized performances. For incorporating such a regularization manner in
Backpropagation (BP) based network training, the training set has generally developed by creating
arbitrary perturbations of trained data as the network resultant weights are attained dependent upon
closed procedure solution. Fig. 2 showcases the framework of ELM.

Figure 2: Architecture of ELM

The perturbed instance ϕ̃i,m was attained by copying the jth element of ϕi with probability
equivalent to p, or by setting the equivalent element corresponding to 0 with probability identical
to (1 − p). This procedure is formulated as ϕ̃i,m = bi,m ◦ ϕi, whereas bi,m ∈ R

L, taking their elements
equivalent to one with probability p, or zero with probability (1 − p) and ◦ refers to the element-wise
product of 2 vectors. With setting ϕi,m = ϕi − ϕ̃i,m, the constraint Eq. (3) is interchanged with the
succeeding one:

W T
outϕi,m = 0, i = 1, . . . , N, m = 1, . . . , M. (4)

By replacing Eqs. (4) with (2) and taking the corresponding dual problem, it can be attained:

JD = argWout
min ‖W T

out� − T‖2
F + c

M

∑M

m=1
‖W T

out�m‖2
F , (5)
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whereas �m = [ϕ1,m, . . . , ϕN,m]. In Eq. (5), the network resultant weighted were achieved as:

Wout =
(
��T + c

∑M

m=1
�m�T

m

)−1

�TT . (6)

Therefore, for calculating the network resultant weighted by utilizing the presented regularized
technique, it can enrich our dataset with the addition of M arbitrary perturbations of all the samples
(once demonstrated from the ELM space). But this technique is simply executed from the small- and
medium-scale problems, it can be applied to large-scale, complex problems. But, it can be assumed
that the count of utilized perturbations is higher (M → ∞), dependent upon the weak law of huge

numbers the regularized term R = 1
M

∑m

m=1�m�T
m in Eq. (6) converges to their estimated value:

R → E
[

1
M

∑M

m=1
�m�T

m

]
M→∞

= (
��T

) ◦ P, (7)

In which P = (1 − p)21 + (1 − p)2I and 1 ∈ R
L×L is a matrix of ones. Utilizing Eqs. (7), (6) are

formulated as:

Wout = (��T + c
[
��T

] ◦ P)−1�TT = (
[
��T ]◦[ 1 + cP

]
)−1�TT . (8)

So, it is detected that either the time or memory complexity of presented regularization ELM is
similar to ELM and RELM.

3.3 MFO-Based Parameter Optimization
For boosting the efficiency of the proposed models, the MFO technique is utilized to it. The

mayflies in a swarm for the MFO approach are classified into male and female individuals [24]. Also,
male mayflies are often the strongest ones, and therefore, they are well performed in optimization.
Based on individual swarming in the PSO approach, the individuals in the MFO method upgrade the
location based on the current location pi (t) and velocity vi (t) at the existing iteration:

pi (t + 1) = pi (t) + vi (t + 1) (9)

Every female and male mayfly upgrades its position based on the above equation. However, the
velocity gets upgraded in different ways.

Movement of male mayfly

Male mayfly in swarming executes exploration or exploitation processes in iteration. The velocity
is upgraded according to the existing fitness value f (xi) and the past optimum fitness value in
trajectories f

(
xhi

)
. When f (xi) > f

(
xhi

)
, then the male mayfly upgrades the velocity based on the

present velocity, as well as the distance between them and the optimum global locations, the past
optimum trajectories:

vi (t + 1) = g · vi (t) + a1e−βr2
p
[
xhi

− xi (t)
] + a2e−βr2

q ,
[
xg − xi (t)

]
(10)

In Eq. (10), g indicates a variable that linearly declined from the highest value to the lowest one.
a1, a2, and β symbolize 2 constants to balance the value. RP and rg specify 2 variables applied for
Cartesian distance betwixt the individuals and past and global optimum position in the swarm:

∣∣∣∣xi − xj

∣∣∣∣ =
√∑n

k=1

(
xik − xjk

)2
(11)
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On the other hand, if f (xi) < f
(
xhi

)
, the male mayfly upgrades the velocity from the present one

using a random dance co-efficient d:

vi (t + 1) = g · vi (t) + d · r1 (12)

In Eq. (12), r1 symbolizes the random number in uniform distribution and selected from the range
−1 and 1.

Movement of female mayfly

The female will upgrade the velocity based on different styles. Generally, the female mayfly with
wings lives for 1 to 7 days at the most. Therefore the female mayfly would be onrush to find the male
mayfly to mate and reproduce itself. In the MFO method, the optimum male and female mayflies are
treated as the 1st mate, and 2nd optimum female male mayfly is processed as 2nd mate, etc. therefore,
for i-th females, when f (yi) < f (xi):

vi (t + 1) = g · vi (t) + a3e−βr2
mf [xi (t) − yi (t)] (13)

In Eq. (13), a3 indicates an additional constant and is exploited to balance the velocity. rm shows
the Cartesian distance amongst themselves. At the same time, when (yi) < f (xi), the female mayfly
upgrades the velocity from the present one using random dance fl:

vi (t) = g · vi (t) + fl · r2 (14)

Consider r2 indicates a uniformly distributed random number within [−1, 1].

Mating of mayfly

Every male and female mayfly was mated and provided a pair of childrens. The offspring is
established randomly from the parent:

offspring1 = L ∗ male + (1 − L) ∗ female (15)

offspring2 = L ∗ female + (1 − L) ∗ male (16)

Now, L indicates the random value in the Gauss distribution. The MFO approach initiates with
the initialization of female and male mayfly populations. Next, the velocity and solution of the mayfly
are upgraded. Then, the ranking procedure of mayfly is performed, and the worst solution will be
replaced with the optimal solution. The MFO approach makes extraction of a Fitness Function (FF)
for achieving enriched classifier result. It ascertains positive values for denoting enhanced outcomes
of the candidate result. During this work, the decrease of the classifier rate of errors were regarded as
the FF is given in Eq. (17).

fitness (xi) = ClassifierErrorRate (xi) = number of misclassified samples
Total number of samples

∗ 100 (17)

4 Results and Discussion

The presented method was simulated utilizing Python 3.6.5 tool on GeForce 1050Ti 4 GB,
PC i5-8600k, 250 GB SSD, 1TB HDD, and 16 GB RAM. The parameter setting are provided as
follows: epoch count: 50, rate of learning: 0.01, batch size: 5, activation: ReLU, and dropout: 0.5.
The simulation outcome of the MFO-RELM approach was tested using CICIDS 2017 dataset under
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two aspects: binary classification and multi-classification. Table 1 depicts the details of the binary
classification dataset. The presented technique was simulated utilizing the Python tool.

Table 1: Details on binary classification dataset

Class No. of samples

Normal 80000
Abnormal 219451

Total number of samples 299451

Fig. 3 represents the confusion matrix generated by the MFO-RELM algorithm on the binary
classifier of the CICIDS 2017 database. With the entire database, the MFO-RELM model has
recognized 79254 instances into the normal class and 217611 instances into the abnormal class. Also,
with 70% of TRS, the MFO-RELM approach has recognized 55520 instances into the normal class
and 152308 instances into the abnormal class. Meanwhile, with 30% of TSS, the MFO-RELM system
has recognized 23734 instances into the normal class and 65303 instances into the abnormal class.

Table 2 and Fig. 4 report the binary classifier result of the MFO-RELM model. On the entire
database, the MFO-RELM approach has obtainable average accuracy of 99.14%, Precn of 98.69%, recal

of 99.11%, Fscore of 98.90%, and MCC of 97.81%. Additionally, on 70% of TRS, the MFO-RELM
approach has a reachable average accuracy of 99.15%, Precn of 98.71%, recal of 99.13%, Fscore of 98.92%,
and MCC of 97.84%. Similarly, on 30% of TSS, the MFO-RELM algorithm has an accessible average
accuracy of 99.11%, Precn of 98.66%, recal of 99.09%, Fscore of 98.87%, and MCC of 97.74%.

Figure 3: (Continued)
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Figure 3: Confusion matrices of MFO-RELM system under binary database (a) entire database,
(b) 70% of TRS, and (c) 30% of TSS

Table 2: Classifier outcome of MFO-RELM system with various measures under binary database

Binary dataset
Labels Accuy Precn Recal Fscore MCC

Entire dataset
Normal 99.14 97.73 99.07 98.39 97.81
Abnormal 99.14 99.66 99.16 99.41 97.81
Average 99.14 98.69 99.11 98.90 97.81

Training phase (70%)
Normal 99.15 97.76 99.08 98.42 97.84
Abnormal 99.15 99.66 99.17 99.42 97.84
Average 99.15 98.71 99.13 98.92 97.84

Testing phase (30%)
Normal 99.11 97.66 99.04 98.34 97.74
Abnormal 99.11 99.65 99.14 99.39 97.74
Average 99.11 98.66 99.09 98.87 97.74
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Figure 4: Average outcome of the MFO-RELM system under binary database

The TACC and VACC acquired by the MFO-RELM system on binary dataset are displayed in
Fig. 5. The performance outcome stated that the MFO-RELM algorithm had obtained enhanced
values of TACC and VACC. In specific, the VACC considered that higher than TACC.

Figure 5: TACC and VACC outcome of MFO-RELM system under binary dataset

The TLS and VLS attained by the MFO-RELM methodology on binary dataset are depicted in
Fig. 6. The performance outcome pointed out that the MFO-RELM method has achieved minimal
values of TLS and VLS. In certain, the VLS is lower than TLS.
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Figure 6: TLS and VLS outcome of MFO-RELM system under binary database

Table 3 demonstrates a detailed description of the multi-classification dataset. Fig. 7 demonstrates
the confusion matrix generated by the MFO-RELM method under the multi-classification of the
CICIDS 2017 dataset. With the entire database, the MFO-RELM system has detection 78227 samples
in the N class, 3 samples in the A1 class, 1894 samples in the A2 class, 21395 samples in the A3 class,
25248 samples in the A4 class, 19029 samples in A5 class, 8134 samples into A6 class, 7181 samples
into A7 class, 36981 samples into A8 class, 39105 samples into A9 class, and 38833 samples into A10
class.

Table 3: Details on the multi-classification dataset

Label Class No. of samples

N Normal 80000
A1 Botnet 1974
A2 DoSSlowhttptest 7851
A3 FTP-Pastor 22147
A4 SSH-Patatpr 27215
A5 DoSGoldenEye 21235
A6 DoSslowloris 9519
A7 Hearbleed 9510
A8 PortScan 40000

(Continued)
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Table 3: Continued
Label Class No. of samples

A9 DDoS 40000
A10 DosHulk 40000
Total Number of Samples 299451

Figure 7: Confusion matrices of MFO-RELM system on multiclass database (a) entire database,
(b) 70% of TRS, and (c) 30% of TSS
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Table 4 and Fig. 8 report the multi-classification outcome of the MFO-RELM technique. On the
entire database, the MFO-RELM approach has obtainable average accuracy of 98.58%, Precn of 82.52%,
recal of 77.21%, Fscore of 76.28%, and MCC of 76.86%. Moreover, on 70% of TRS, the MFO-RELM
system has offered average accuracy of 98.58%, Precn of 82.83%, recal of 77.17%, Fscore of 76.25%, and
MCC of 76.80%. Lastly, on 30% of TSS, the MFO-RELM system has an existing average accuracy of
98.58%, Precn of 82.52%, recal of 77.21%, Fscore of 76.28%, and MCC of 76.86%.

Table 4: Classifier outcome of the MFO-RELM system with various measures under the Multiclass
database

Multiclass dataset
Labels Accuy Precn Recal Fscore MCC

Entire dataset
N 99.15 99.03 97.78 98.40 97.83
A1 99.34 30.00 00.15 00.30 02.10
A2 97.81 75.85 24.12 36.61 42.03
A3 99.04 90.99 96.60 93.71 93.24
A4 98.99 95.93 92.77 94.32 93.78
A5 98.93 95.06 89.61 92.26 91.73
A6 94.66 35.75 85.45 50.41 53.24
A7 99.00 91.68 75.51 82.81 82.71
A8 98.79 98.40 92.45 95.33 94.70
A9 99.33 97.23 97.76 97.50 97.11
A10 99.32 97.78 97.08 97.43 97.04
Average 98.58 82.52 77.21 76.28 76.86

Training phase (70%)
N 99.15 99.03 97.76 98.39 97.81
A1 99.34 33.33 00.07 00.14 01.53
A2 97.82 76.07 24.05 36.55 42.03
A3 99.03 90.99 96.52 93.67 93.20
A4 98.99 95.89 92.84 94.34 93.80
A5 98.93 95.11 89.50 92.22 91.70
A6 94.65 35.89 85.40 50.54 53.32
A7 98.99 91.43 75.33 82.60 82.50
A8 98.81 98.41 92.56 95.40 94.77
A9 99.34 97.29 97.83 97.56 97.18
A10 99.30 97.75 97.01 97.38 96.97
Average 98.58 82.83 77.17 76.25 76.80

Testing phase (30%)
N 99.15 99.03 97.78 98.40 97.83
A1 99.34 30.00 00.15 00.30 02.10
A2 97.81 75.85 24.12 36.61 42.03
A3 99.04 90.99 96.60 93.71 93.24
A4 98.99 95.93 92.77 94.32 93.78

(Continued)
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Table 4: Continued
Multiclass dataset

Labels Accuy Precn Recal Fscore MCC

A5 98.93 95.06 89.61 92.26 91.73
A6 94.66 35.75 85.45 50.41 53.24
A7 99.00 91.68 75.51 82.81 82.71
A8 98.79 98.40 92.45 95.33 94.70
A9 99.33 97.23 97.76 97.50 97.11
A10 99.32 97.78 97.08 97.43 97.04
Average 98.58 82.52 77.21 76.28 76.86

Figure 8: Average analysis of the MFO-RELM approach under a multiclass database

Table 5 and Fig. 9 showcase the MFO-RELM approach with existing methods on binary clas-
sification. The simulation values inferred that the MFO-RELM algorithm had shown enhanced
performance over other models. The XGB model has shown ineffectual performance with minimal
accuracy of 94.56%. In addition, the RF and ANN models have obtained certainly improved accuracy

values of 97.92% and 97.86%, respectively. Moreover, the Rearguard, NB-SVM, and DBN models
have reached reasonable accuracy of 98.95%, 98.48% and 98.73%, respectively. But the MFO-RELM
model has shown superior performance with increased accuracy of 99.15%.

Fig. 10 demonstrates the MFO-RELM approach with existing techniques on multiclass classi-
fication. The experimental values inferred that the MFO-RELM system had demonstrated higher
performance over other techniques. The RF approach has exhibited ineffectual performance with
minimal accuracy of 96.39%. Besides, the Support Vector Classifier (SVC) and ANN systems have
obtained higher accuracy values of 96.91% and 97.37%, respectively. Furthermore, the Rearguard, mul-
tilayer perceptron (MLP), and XGB models have obtained reasonable accuracy of 98.16%, 97.69% and
97.87%, correspondingly. Finally, the MFO-RELM technique has portrayed superior performance
with enhanced accuracy of 98.58%.
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Table 5: Comparative outcome of MFO-RELM system with existing algorithms on binary database

Binary dataset

Methods Accuracy (%)

MFO-RELM 99.15
Rearguard 98.95
NB-SVM 98.48
RF Model 97.92
DBN Model 98.73
XGB Model 94.56
ANN Model 97.86

Figure 9: Comparative outcome of MFO-RELM system under binary database

Figure 10: Comparative outcome of the MFO-RELM system on multiclass database
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5 Conclusion

In this work, a novel MFO-RELM model was introduced for cyber-attack detection and classi-
fication in the cloud-enabled IoT platform. The proposed MFO-RELM model provides the effective
identification of cybersecurity attacks which occur from the cloud and IoT platforms. In order to
realize this, the MFO-RELM approach pre-processed the actual cloud and IoT data as to meaningful
format. Also, the proposed approach will receive the pre-processing data and carry out the classifier
system using the RELM model. For boosting the efficiency of the proposed models, the MFO
technique will be utilized to it. A series of simulations were carried out on CICIDS 2017 dataset
and the outcomes are inspected with respect to various measures. A widespread comparison study
portrayed the enhanced performance of the proposed model. Thus, the presented MFO-RELM
model accomplishes maximum detection efficiency over other existing models. In future, advanced
DL approaches are combined as to the MFO-RELM system for improved classifier efficacy. Besides,
the computation complexity of the MFO-RELM approach was investigated in future.

Funding Statement: The authors extend their appreciation to the deanship of scientific research at
Shaqra University for funding this research work through the project number (SU-NN-202210).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
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