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Abstract: Rooftop units (RTUs) were commonly employed in small commer-
cial buildings that represent that can frequently do not take the higher level
maintenance that chillers receive. Fault detection and diagnosis (FDD) tools
can be employed for RTU methods to ensure essential faults are addressed
promptly. In this aspect, this article presents an Optimal Deep Belief Net-
work based Fault Detection and Classification on Packaged Rooftop Units
(ODBNFDC-PRTU) model. The ODBNFDC-PRTU technique considers
fault diagnosis as a multi-class classification problem and is handled using DL
models. For fault diagnosis in RTUs, the ODBNFDC-PRTU model exploits
the deep belief network (DBN) classification model, which identifies seven dis-
tinct types of faults. At the same time, the chicken swarm optimization (CSO)
algorithm-based hyperparameter tuning technique is utilized for resolving
the trial and error hyperparameter selection process, showing the novelty of
the work. To illustrate the enhanced performance of the ODBNFDC-PRTU
algorithm, a comprehensive set of simulations are applied. The comparison
study described the improvement of the ODBNFDC-PRTU method over
other recent FDD algorithms with maximum accuracy of 99.30% and TPR
of 93.09%.
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1 Introduction

Fault detection and diagnostic (FDD) models have gained significant interest in the area of space-
conditioning equipment as an approach to reducing energy consumption and refrigerant emissions and
providing more reliable comfort. Air conditioning equipment utilizes a substantial amount of energy
in the United States. In commercial buildings, mostly medium-sized and small buildings, packaged
rooftop unit (RTU) system becomes the most typical type of air-conditioning system. RTUs were
employed in 46% of all commercial buildings and serve over 60% of commercial building floor space
in the United States [1–3]. The main energy utilization linked with RTUs was beyond 2.6 quads
yearly. Thus, a minor enhancement in efficacy or part load functioning of such units could cause
important minimizations of carbon emissions and energy utility [4]. Apart from discovering methods
for improving the part load performances, there is a necessity to improve the persistence of RTU
functions. For instance, an air-side economizer could offset an important fraction of the cooling
necessities in dry and mild weather conditions [5,6]. But several researchers proved that a substantial
fraction of economists has control over RTUs that do not work as envisioned [7]. Along with the
operational perplexities with air-side economists, several researchers stated issues with the refrigerant-
side functioning as well. Fig. 1 showcases the sample infrastructure of RTU.

Figure 1: Sample structure of RTU in a commercial building

Though the advanced controller grants a substantial development in part load efficacy, it does
not assure the persistence of functions [8–10]. To ensure persistence, there comes a necessity for
automatic fault detection and diagnosis (AFDD) [11]. RTU diagnoses (refrigerant-side and air-side)
were typically positioned offline through a collection of data from the RTUs, which were compiled
for framing automatic mechanisms or utilizing retrofit packages [12]. Diagnosis utilizing offline
approaches [13] was of limited utility because many RTUs do not install every sensor essential
for diagnosis, particularly a refrigerant-side diagnosis. Using a retrofit monitoring and diagnostics
package could ease the sensor’s complexities [14]. But it is costly to install an AFDD method [15]. To
meet the cost, DOE has funded the expansion of a low-cost monitoring and diagnostic approach [16].
The low-cost method minimizes the requirement to sense by utilizing 2 (outdoor-air temperature and
unit power) or 3 sensors. The low-cost approach could identify the degradations in RTU operations
over time; however, it contains confines in detecting the real cause of the fault [17].

Many FDD techniques formulated for packaged air conditioners are rule related means a set
of professional rules which is based on the physical traits of the mechanism were implemented to
measure data [18,19]. Rules are implemented for functioning parameters like observable conduct or
suction superheat [9]. Several rule-related FDD tools were effective, but there comes a challenge. A
common difficulty for the FDD techniques is differentiating unfaulted and faulted operations in
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unusual operating circumstances. Typical rule-related approaches imply an exceeded threshold, and
choosing this threshold suitably becomes difficult [20,21].

Zhang et al. [22] formulated a new analysis method that broadly assesses sensor fault on
sensor choosing and FDD accuracy. Monte Carlo simulations can be implemented for dealing with
many stochastic sensor inaccuracies and offer probabilistic scrutiny fallouts of the effect of sensor
inaccuracies on FDD accuracy and sensor selection. This method emphasizes the net effect of the
fault state over a complete sensor set. The advanced method is utilized for operation stage sensors
maintenance and prior-stage sensor model. Bezyan et al. [23] introduce a new technique for diagnosing
and detecting many faults in the air handling unit (AHU) of the HVAC mechanism of an institutional
building during heating seasons. The presented algorithm guides the search for faults through the
operation flow and information among sensors. Support vector regression (SVR) methods, advanced
from the building automation system (BAS) trend dataset, forecasted air temperatures of 2 targeted
sensors in normal functioning circumstances without familiar issues.

Woradechjumroen et al. [24] devise a new fault-detecting approach for fault HVAC functions
based on issues in repetitive functions and the excess energy utility of the refrigeration mechanism.
Four steps were advanced as a new unfavourable communication approach for identifying abnormal
HVAC functions related to identifying energy signs. Zonal and outdoor air temperatures (OAT and
ZAT) were used to specify common area functions for rooftop units (RTUs). An FD method was
projected related to RTU outliers utilizing plots of ZAT and OAT vs. the refrigeration method’s energy
utilisation related to fixed 10% changes from the indoor relative humidity range. Rogers et al. [25] offer
a technique for obtaining chief functioning parameters for air conditioning systems (system efficiency,
airflow rate, refrigerant mass flow, and cooling capacity) in a way, i.e., more suitable for the residential
sectors. The devised air-side sensing approach needs fewer sensors and is an important benefit for
residential split mechanisms due to the necessity of no outdoor unit sensor.

Granderson et al. [26] offer a primary public dataset with ground-truth data on the absence and
presence of constructing faults. This data spans a range of seasons and operational circumstances and
involves many construction systems kinds. In [27], the difficulty of the VAV technique demonstrating
is dispersed with hierarchical modelling structure, and system level to element scale FDD strategy for
VAV mechanisms utilizing integrated quantitative, residual, and qualitative methods was advanced.
The 3 layers of the modelling structure, like the component layer, system layer, and unit layer, adopt
distinct modelling and FD approaches for improving the FDD’s reliability and accuracy.

This study presents an Optimal Deep Belief Network based Fault Detection and Classification on
Packaged Rooftop Units (ODBNFDC-PRTU) model. The ODBNFDC-PRTU technique considers
fault diagnosis a multi-class classification problem and is handled using DL models. For fault diag-
nosis in RTUs, the ODBNFDC-PRTU model exploits the deep belief network (DBN) classification
model, identifying seven distinct types of faults. At the same time, the chicken swarm optimization
(CSO) algorithm-based hyperparameter tuning technique is utilized for resolving the trial-and-error
hyperparameter selection process. A comprehensive set of simulations is implemented to depict the
improved performances of the ODBNFDC-PRTU method.

The rest of the study is organized as follows. Section 2 offers the proposed model, and Section 3
discusses the performance validation. Finally, Section 4 draws the concluding remarks.
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2 Materials and Methods

In this study, a new ODBNFDC-PRTU model was introduced to identify and classify faults in
PRTUs. The ODBNFDC-PRTU approach considers fault diagnosis as a multi-class classification
problem and is handled using DL models. For fault diagnosis in RTUs, the ODBNFDC-PRTU model
uses the DBN classification model, which identifies seven distinct types of faults. At the same time,
the CSO algorithm-based hyperparameter tuning technique is utilized for resolving the trial-and-error
hyperparameter selection process.

2.1 Data Collection
Faults in RTU methods are separated into 2 classes: soft faults and hard failures. The hard failures

take place rudely and reason RTU to stop operating. The soft faults reduce system efficiency; however,
they allow the continued function of the method. Hard failures like compressor failure often occur
from RTU methods and are costly to repair [28]. But, it can be simply identified and analyzed with an
inexpensive sensor. For the sample, the compressor failure is simply identified and detected by verifying
a compressor’s outlet and inlet temperatures. The hard failures were classically produced by extended
function periods with soft faults. The concentration of this examination is on detecting and diagnosing
the subsequent soft faults: (i) evaporator airflow reduction (EA), (ii) refrigerant undercharge (UC),
(iii) non-condensable gas (NC), (iv) refrigerant overcharge (OC), (v) compressor valve leakage (VL),
(vi) liquid-line restriction (LL), and (vii) condenser airflow reduction (CA).

2.2 Fault Detection and Classification
In this study, the DBN method was employed to detect and classify faults. Based on biological

neural networks, a DBN is a probability generation module that has been proposed [29]. The DBN
infers the sampling distribution for the input dataset based on the joint likelihood distribution. The
whole network generates an inherent feature dataset with maximal probability by fine-tuning the
weight coefficients between the network layers. Fig. 2 showcases the infrastructure of DBN, which
is generally composed of a classifier and restricted Boltzmann machine (RBM) a. A classifier is a
crucial component in accomplishing fault detection in a DBN. In this study, different kinds of faults
should be identified. Consequently, an RBM and a Softmax classification are selected to construct the
DBN. Unlike the conventional binary classifiers, a Softmax classification is preferable for classifying
many conflicting events.

If θ = {Wij, ai, bj}, where Wij implies the connection weighted among the hidden element j and
the visible unit i. m, n was the amount of visible and hidden cells, correspondingly. The hidden and
visible components were binary variables. Explicitly, ∀i, j, vi ∈ {0, 1} , hj ∈ {0, 1} , ai was the set of the
visible unit i, v indicates a visible layer unit, bj denotes the offset of visible component j, T denotes the
sample number, and h denotes a hidden layer unit.

RBM is an undirected graph method that is utilized for resolving the value of the variable θ to fit
the provided training dataset and the extracted features.

The RBM task was utilised to fit the input-trained dataset, design the optimum parameter θ , and
perform feature extraction. The variable θ is learned in the training subset to exploit the logarithmic
probability function:

θ ∗ = arg max L (θ) = arg max
∑T

t=1
log P

(
V (t)|θ)

. (1)



CSSE, 2023, vol.47, no.1 225

Figure 2: Structure of DBN

Whereas

L (θ) =
T∑

t=1

log P
(
V (t)|θ) =
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log
∑

h

P
(
V (t), h|θ)
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(log
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∑

v

∑
h
exp [−E (v, h|θ)]. (2)

The aim is to resolve the optimum variable θ ∗ to attain the partial derivative of log P(V (t)|θ) for
Wij, ai, bj, and other variables. Assume that θ ′ was a variable value of θ , the logarithmic probability
function concern θ ′ as

∂L
∂θ ′ =

T∑
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∂
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∑
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−
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v
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h
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v

∑
h exp [−E(ν, h|θ)]
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)

=
T∑

t=1

(〈
∂(−E(V (t), h|θ))

∂θ

〉
P(h|V(f ) ,θ)
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−
〈
∂ (−E (ν, h|θ))

∂θ

〉
P(v,h|θ). (3)

Because the sample count of T was identified, the partial derivative of the logarithmic likelihood
function for the connection weight Wij, the offset ai of the visible unit, and the offset bj of the
hidden element is formulated as P(h|V (t), θ) and P(v, h|θ). P(h|V (t), θ) indicates a hidden likelihood
distribution of training instance V (t); P(v, h|θ) was a joint likelihood function for a provided state
(v, h) as follows

P (v, h|θ) = e−E(v,h|θ)

Z (θ)
. (4)

In Eq. (4), E(v, h|θ) denotes the energy function of RBM, and Z (θ) indicates the normalization
factor.

E (v, h|θ) = −
∑n

i=1
aivi −

∑m

j=1
bjhj −

∑n

i=1j

∑m

=1
viWijhj. (5)

Z (θ) =
∑

v,h

e−E(v,h|θ).

2.3 Hyperparameter Tuning
The CSO technique was utilised in this work for optimal modification of the hyperparameters

related to the DBN method. The concept for the basic CSO algorithm is shown in the following [30]:

1) Chicken swarm comprises distinct groups. Each group has a pair of hen, chick, and dominant
roosters.

2) According to the fitness value estimated for individuals in this chicken swarm, an individual
with a good fitness value is applied as a rooster, whereas some individuals with poor fitness
value are applied as a chick. Other individuals are applied as hens.

3) Given that the several roosters in a chicken swarm as RN, several hens as HN, several chicks
as CN, and several chick mothers as MN. The individual hen is arbitrarily chosen as the chick
mother from each group.

4) Afterwards, for each G iteration, the individual is re-determined based on the fitness value and
is applied as a rooster. An individual is applied as a hen, and other individuals are applied as a
chick.

5) Within each population group, the hen follows the rooster to discover food and compete
arbitrarily with other individuals for food. An individual with a better fitness value in the
population is more likely to receive food.

Chicks, roosters, and hens in the chicken swarm utilize different position upgrading equations,
and it is shown in the following

xR
i (t + 1) = xR

i (t)
∗ (

1 + N
(
0, σ 2

))
(6)

Consider R represents the individual rooster, N
(
0, σ 2

)
denotes a Gaussian distribution with mean

and variance, σ 2, and it is given below.
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σ 2 =

⎧⎪⎪⎨
⎪⎪⎩

1 if fi < fk

exp
(

(fk − fi)

|fi| + ε

)
, or else

i, k ∈ [1, 2, . . . , RN] , k �= i

. (7)

Now, ε is applied to prevent zero division error, and ε shows the minimal constant. i and k ∈
[1, 2, . . . , RN] indicate the rooster index arbitrarily chosen from the rooster groups, where i do not
often correspond to k. fi and fk characterize the fitness value of i-th and k-th roosters as follows

xH
i (t + 1) = xH

i (t) + S∗
1rand∗ (

xR
r1 (t) − xH

i (t)
) + S∗

2rand∗ (
xr2 (t) − xH

i (t)
)

. (8)

S1 = exp
(

fi − fr1

abs (fi) + ε

)
. (9)

S2 = exp (fr2 − fi) . (10)

Here, rand characterizes a uniformly distributed arbitrary number within [0, 1]. R signifies that
the individual was a rooster. H denotes that the individual was a hen. r1 ∈ [1, 2, . . . , RN] denotes
the rooster index, viz., i-th hen groupmate, where r2 ∈ [1, 2, . . . , RN + HN] characterizes the chicken
index (hens or roosters), viz., chosen arbitrarily from the swarm. r1 isn’t often corresponding to r2,
as follows

xC
i (t + 1) = xC

i (t) + FL ∗ (
xH

m (t) − xC
i (t)

)
. (11)

Here, m denotes the chick mother indices in the i-th group, C shows the individual is a chick,
and H shows the individual is a hen. FL signifies a uniformly distributed arbitrary number within
[0, 1].

The CSO system grows a fitness function (FF) for accomplishing higher classifier performances. It
explains a positive numeral for representing optimal performances of candidate results. The minimized
classifier error rate was supposed to be that FF is providing in Eq. (12).

fitness (xi) = Classifier Error Rate (xi)

= the number of misclassified samples
total number of samples

∗ 100. (12)

3 Results and Discussion

This section assesses the performance of the ODBNFDC-PRTU method utilizing a dataset
comprising 2851 samples under eight classes, as illustrated in Table 1.

Table 1: Dataset details

Class No. of samples

UC 398
OC 512
VL 533
LL 336
CA 406

(Continued)
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Table 1: Continued
Class No. of samples

EA 366
NC 252
NF 48
Total No. of samples 2851

Fig. 3 emphasizes the confusion matrices generated by the ODBNFDC-PRTU algorithm on
applied data. With the entire dataset, the ODBNFDC-PRTU approach identified 382 instances under
the UC class, 508 instances under the OC class, 521 instances under the VL class, 329 instances under
the LL class, 394 instances under the CA class, 357 instances under EA, 238 instances under NC, and 26
instances under NF. Additionally, with 70% of training (TR) data, the ODBNFDC-PRTU approach
has identified 274 instances under the UC class, 351 instances under the OC class, 362 instances under
the VL class, 228 instances under the LL class, 278 instances under the CA class, 247 instances under
EA, 165 instances under NC, and 18 instances under NF. Moreover, with 30% of Testing (TS) data, the
ODBNFDC-PRTU algorithm has identified 108 instances under the UC class, 157 instances under
the OC class, 159 instances under the VL class, 101 instances under the LL class, 116 instances under
the CA class, 110 instances under EA, 73 instances under NC, and 8 instances under NF.

Figure 3: (Continued)
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Figure 3: Confusion matrices of ODBNFDC-PRTU approach (a) entire dataset, (b) 70% of TR data,
and (c) 30% of TS data

Table 2 and Fig. 4 demonstrate the overall results of the ODBNFDC-PRTU approach on the
entire dataset. The experimental values inferred from the ODBNFDC-PRTU algorithm have obtained
enhanced results under each class. For instance, in UC class, the ODBNFDC-PRTU model has offered
accuy, PPV, TPR, Fscore, and FPR of 98.70%, 94.79%, 95.98%, 95.38%, and 0.86%. Next, in OC class,
the ODBNFDC-PRTU technique has presented accuy, PPV, TPR, Fscore, and FPR of 99.33%, 97.13%,
99.22%, 98.16%, and 00.64%. Then, in the VL class, the ODBNFDC-PRTU approach has granted
accuy, PPV, TPR, Fscore, and FPR of 99.09%, 97.38%, 97.75%, 97.57%, and 00.60%. Also, in LL
class, the ODBNFDC-PRTU methodology has provided accuy, PPV, TPR, Fscore, and FPR of 99.44%,
97.34%, 97.92%, 97.63%, and 00.36%.

Table 2: Result analysis of the ODBNFDC-PRTU approach with different class labels under the entire
dataset

Labels Accuracy PPV TPR F-score FPR

Entire dataset

UC 98.70 94.79 95.98 95.38 00.86
OC 99.33 97.13 99.22 98.16 00.64
VL 99.09 97.38 97.75 97.57 00.60
LL 99.44 97.34 97.92 97.63 00.36
CA 99.12 96.81 97.04 96.92 00.53
EA 99.33 97.28 97.54 97.41 00.40
NC 99.12 95.58 94.44 95.01 00.42
NF 99.12 89.66 54.17 67.53 00.11

Average 99.16 95.75 91.76 93.20 00.49
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Figure 4: Average analysis of the ODBNFDC-PRTU approach under the entire dataset

Table 3 and Fig. 5 illustrate detailed results of the ODBNFDC-PRTU algorithm on 70% of TR
data. The experimental values denoted by the ODBNFDC-PRTU approach have gained enhanced
results under each class. For example, in UC class, the ODBNFDC-PRTU technique has presented
accuy, PPV, TPR, Fscore, and FPR of 98.60%, 94.16%, 96.14%, 95.14%, and 00.99%. Then, in OC class,
the ODBNFDC-PRTU method has rendered accuy, PPV, TPR, Fscore, and FPR of 99.35%, 97.23%,
99.15%, 98.18%, and 00.61%. Afterwards, in VL class, the ODBNFDC-PRTU approach provided
accuy, PPV, TPR, Fscore, and FPR of 99.15%, 97.57%, 97.84%, 97.71%, and 00.55%. In addition to
that, in LL class, the ODBNFDC-PRTU algorithm has offered accuy, PPV, TPR, Fscore, and FPR of
99.45%, 97.44%, 97.85%, 97.64%, and 00.34%.

Table 3: Result analysis of ODBNFDC-PRTU approach with different class labels under 70% of TR
data

Labels Accuracy PPV TPR F-score FPR

Training phase (70%)

UC 98.60 94.16 96.14 95.14 00.99
OC 99.35 97.23 99.15 98.18 00.61
VL 99.15 97.57 97.84 97.71 00.55
LL 99.45 97.44 97.85 97.64 00.34
CA 99.00 96.19 96.86 96.53 00.64
EA 99.25 97.24 96.86 97.05 00.40
NC 98.90 93.75 93.75 93.75 00.60
NF 99.10 94.74 51.43 66.67 00.05

Average 99.10 96.04 91.24 92.83 00.52
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Figure 5: Average analysis of ODBNFDC-PRTU approach under 70% of TR data

Table 4 and Fig. 6 portray the overall results of the ODBNFDC-PRTU approach on 30% of TS
data. The experimental values implicit in the ODBNFDC-PRTU technique have reached enhanced
results under each class. For example, in UC class, the ODBNFDC-PRTU approach has presented
accuy, PPV, TPR, Fscore, and FPR of 98.95%, 96.43%, 95.58%, 96.00%, and 00.54%. Afterwards, in
OC class, the ODBNFDC-PRTU technique has rendered accuy, PPV, TPR, Fscore, and FPR of 99.30%,
96.91%, 99.37%, 98.12%, and 00.72%. Next, in the VL class, the ODBNFDC-PRTU approach has
provided accuy, PPV, TPR, Fscore, and FPR of 98.95%, 96.95%, 97.55%, 97.25%, and 00.72%. In LL
class, the ODBNFDC-PRTU algorithm has granted accuy, PPV, TPR, Fscore, and FPR of 99.42%,
97.12%, respectively 98.06%, 97.58%, and 00.40%.

Table 4: Result analysis of ODBNFDC-PRTU approach with different class labels under 30% of TS
data

Labels Accuracy PPV TPR F-score FPR

Testing phase (30%)

UC 98.95 96.43 95.58 96.00 00.54
OC 99.30 96.91 99.37 98.12 00.72
VL 98.95 96.95 97.55 97.25 00.72
LL 99.42 97.12 98.06 97.58 00.40
CA 99.42 98.31 97.48 97.89 00.27
EA 99.53 97.35 99.10 98.21 00.40
NC 99.65 100.00 96.05 97.99 00.00
NF 99.18 80.00 61.54 69.57 00.24

Average 99.30 95.38 93.09 94.08 00.41
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Figure 6: Average analysis of ODBNFDC-PRTU approach under 30% of TS data

The training accuracy (TRA) and validation accuracy (VLA) reached by the ODBNFDC-
PRTU methodology on the test dataset is shown in Fig. 7. The experimental outcome represents the
ODBNFDC-PRTU algorithm has acquired maximum values of TRA and VLA. Seemingly the VLA
is greater than TRA.

Figure 7: TRA and VLA analysis of ODBNFDC-PRTU methodology

The training loss (TRL) and validation loss (VLL) obtained by the ODBNFDC-PRTU approach
on the test dataset were depicted in Fig. 8. The experimental result indicated the ODBNFDC-PRTU
method had exhibited least values of TRL and VLL. Particularly, the VLL is lesser than TRL.

A clear precision-recall analysis of the ODBNFDC-PRTU algorithm on the test dataset is
depicted in Fig. 9. The figure signifies the ODBNFDC-PRTU technique has resulted in enhanced
values of precision-recall values in all classes.
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Figure 8: TRL and VLL analysis of ODBNFDC-PRTU methodology

Figure 9: Precision-recall analysis of ODBNFDC-PRTU methodology

A brief ROC analysis of the ODBNFDC-PRTU method on the test dataset is depicted in Fig. 10.
The outcomes represented the ODBNFDC-PRTU algorithm exemplified its ability to categorize
distinct classes on the test dataset.
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Figure 10: ROC analysis of ODBNFDC-PRTU methodology

Table 5 reports an overall comparison study of the ODBNFDC-PRTU model with recent models
interms of accuy and TPR [30]. Fig. 11 demonstrates a brief accuy investigation of the ODBNFDC-
PRTU approach with existing methods. The figure implied the LR and RF approaches had exposed
poor results with minimal accuy of 80.01% and 82.18%, respectively. Then, the QDA, LDA, BA,
AD, and XGB models have resulted in slightly enhanced accuy of 83.27%, 83.95%, 84.5%, 85.36%,
and 85.79%, respectively. Following, the SVM model has obtained a considerable accuy of 89.08%.
Although the KNN model has reached a reasonable accuy of 93.85%, the ODBNFDC-PRTU model
has shown enhanced results with a minimal accuy of 99.30%.

Table 5: Comparative analysis of ODBNFDC-PRTU approach with existing methodologies

Methods Accuracy TPR

ODBNFDC-PRTU 99.30 93.09
LDA 83.95 82.74
KNN 93.85 82.78
RF 82.18 80.01
AD 85.36 86.86
BA 84.50 83.13
XGB 85.79 88.48
QDA 83.27 86.46
LR 80.01 80.25
SVM 89.08 83.43
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Figure 11: Accuy analysis of ODBNFDC-PRTU approach with existing methodologies

Fig. 12 validates a brief TPR study of the ODBNFDC-PRTU approach with existing techniques.
The figure implied the LR and RF algorithms have exhibited poor results with minimum TPR of
80.25% and 80.01% correspondingly. Next, the QDA, LDA, BA, AD, and XGB models have resulted
in slightly enhanced TPR of 86.46%, 82.74%, 83.13%, 86.86%, and 88.48%, correspondingly. Then, the
SVM algorithm acquired a considerable TPR of 83.43%. Although the KNN approach has gained a
reasonable TPR of 82.78%, the ODBNFDC-PRTU technique has exposed enhanced results with a
minimal TPR of 93.09%.

Figure 12: TPR analysis of ODBNFDC-PRTU approach with existing methodologies

From these results and discussion, it is assumed that the ODBNFDC-PRTU model has accom-
plished enhanced performance over other models.

4 Conclusion

In this paper, a new ODBNFDC-PRTU technique was introduced for the identification and clas-
sification of faults in PRTUs. The presented ODBNFDC-PRTU technique considered fault diagnosis
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as a multi-class classification problem and is handled by the use of DL models. For fault diagnosis in
RTUs, the ODBNFDC-PRTU model makes use of the DBN classification model, which identifies
seven distinct types of faults. At the same time, the CSO algorithm-based hyperparameter tuning
technique is utilized for resolving the trial-and-error hyperparameter selection process. For showing
the enriched performances of the ODBNFDC-PRTU model, a comprehensive set of simulations is
applied. The comparison study reported the improvement of the ODBNFDC-PRTU technique over
other recent FDD methodologies with maximum accuracy of 99.30% and TPR of 93.09%. In future,
data handling and feature selection algorithms are incorporated to enhance the classification results.
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