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Abstract: Hyperspectral imaging instruments could capture detailed spatial
information and rich spectral signs of observed scenes. Much spatial infor-
mation and spectral signatures of hyperspectral images (HSIs) present greater
potential for detecting and classifying fine crops. The accurate classification of
crop kinds utilizing hyperspectral remote sensing imaging (RSI) has become
an indispensable application in the agricultural domain. It is significant for
the prediction and growth monitoring of crop yields. Amongst the deep
learning (DL) techniques, Convolution Neural Network (CNN) was the best
method for classifying HSI for their incredible local contextual modeling
ability, enabling spectral and spatial feature extraction. This article designs
a Hybrid Multi-Strategy Aquila Optimization with a Deep Learning-Driven
Crop Type Classification (HMAODL-CTC) algorithm on HSI. The proposed
HMAODL-CTC model mainly intends to categorize different types of crops
on HSI. To accomplish this, the presented HMAODL-CTC model initially
carries out image preprocessing to improve image quality. In addition, the
presented HMAODL-CTC model develops dilated convolutional neural net-
work (CNN) for feature extraction. For hyperparameter tuning of the dilated
CNN model, the HMAO algorithm is utilized. Eventually, the presented
HMAODL-CTC model uses an extreme learning machine (ELM) model for
crop type classification. A comprehensive set of simulations were performed
to illustrate the enhanced performance of the presented HMAODL-CTC
algorithm. Extensive comparison studies reported the improved performance
of the presented HMAODL-CTC algorithm over other compared methods.
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1 Introduction

Agriculture is the foundation of the national economy, and crop productivity will affect the day-
to-day lives of humans. Particularly, gaining crops’ spatial distribution and growth status becomes
vital for policy development and agriculture monitoring [1]. But the conventional field measurement,
investigation, and statistical techniques were labour-intensive and time-consuming, makes tougher
to gain agriculture data of a wide area within time. With the advancement of the earth observation
technique, the remote sensing (RS) method was broadly implemented in the agricultural sector for
years since it could reach a wide area of agricultural land with lower costs and high data collection
frequency [2]. A precise and prompt grasp of the data regarding agricultural resources is very
significant for the growth of agriculture. Procurement of the spatial distribution and area of crops was
an imperative way of gaining agricultural data [3]. Conventional approaches acquire crop classification
outcomes by statistics, field measurement, and investigation, which are money-consuming, time-
taking, and labour-intensive. Leaps and bounds will advance remote sensing technology, and the
timeliness and resolution of remote sensing images (RSI) were enhanced, and HSIs were utilized widely
[4]. To be specific, HSI had a crucial role in agricultural surveys and was utilized for agricultural yield
estimation, pest monitoring, crop condition monitoring, etc. In agricultural surveys, the HSI’s optimal
categorization offers crop distribution data. Fine categorization of crops needs images with higher
spectral and spatial resolutions [5]. Recently, airborne HSI technology was advanced rapidly, and the
implementation of airborne HSI could resolve the requirements above.

HSI has obtained significance due to developments in RSI acquisition systems and the rising
obtainability of rich spectral and spatial information by utilizing different sensors [6]. HSI categoriza-
tion is becoming important for practical applications in domains like mineral mapping, agriculture,
forestry, environment, etc. HSI could gain spectral features and variances more meticulously and
comprehensively than panchromatic remote sensing [7]. Thus, this paper will use HSI approaches to
optimally categorize crops and promote the advancement of particular applications of HSI methods
in agriculture, like monitoring agriculture growth and maximizing agriculture sector management [8].
Several techniques have been implemented for HSI categorization in recent times. Early-stage classifier
techniques include random forest (RF), support vector machine (SVM), decision tree, and multiple
logistic regression (LR), which could offer promising classifier outcomes [9]. These classification
techniques could derive the shallow feature data of HSI, which have a capacity constraint for managing
the extremely non-linear HSI dataset and restricts the further development of their classifier accuracy
[10]. In recent times, DL-related techniques have also been extended to HSI classification.

This article designs a Hybrid Multi-Strategy Aquila Optimization with a Deep Learning-Driven
Crop Type Classification (HMAODL-CTC) algorithm on HSI. The proposed HMAODL-CTC
model initially carries out image preprocessing to improve image quality. In addition, the presented
HMAODL-CTC model develops dilated convolutional neural network (CNN) for feature extraction.
For hyperparameter tuning of the dilated CNN model, the HMAO algorithm is utilized. Eventually,
the presented HMAODL-CTC model uses an extreme learning machine (ELM) model for crop
type classification. A comprehensive set of simulations were performed to illustrate the enhanced
performance of the presented HMAODL-CTC algorithm.
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The rest of the paper is organized as follows. Section 2 provides the literature review, and Section 3
offers the proposed model. Later, Section 4 depicts the result analysis, and Section 5 concludes
the work.

2 Literature Review

Hamza et al. [11] examine a new squirrel search optimized with deep transfer learning (DTL)-
assisted crop classification (SSODTL-CC) technique on HSI. The presented approach appropriately
recognizes the crop types from HSI. To achieve this, the study primarily develops MobileNet with
Adam optimizing to extract feature procedures. Besides, the SSO approach with the BiLSTM
technique was utilized for crop-type classifiers. Meng et al. [12] concentrated on DL-related crop
mapping employing one-shot HSI, in which 3 CNN algorithms, 1D-CNN, 2D-CNN, and 3D-CNN
techniques, have been used for end-to-end crop maps. Bhosle et al. [13] inspect the employ of DL-
CNN for overcoming the problems rising in crop detection with satellite images. EO-1 Hyperion HSIs
detect mulberry, cotton, and sugarcane crops during the existing works. DL-CNN was related to deep
feedforward neural networks (FFNN).

In [14], the morphological outlines, GLCM texture, and end member abundance features were
leveraged for developing the spatial information of HISs. Several spatial data have been fused with
novel spectral data for producing classified outcomes by utilizing the DNN with conditional random
field (DNN-CRF) technique. With a conditional system, the CRF assumes spatial or contextual data
to reduce misclassification noise but retain the object boundary. Gutierrez et al. [15] establish an
Intelligent Sine Cosine Optimization with DTL depending on the Crop Type Classification (ISCO-
DTLCTC) technique. The proposed approach contains the primary preprocessed step for extracting
the ROI. The information gain-related feature reduction method was utilized for reducing the dimen-
sionality of novel HISs. Besides, a fusion of 3 deep CNNs techniques, such as SqueezeNet, Dense-
EfficientNet, and VGG16, carry out the extraction feature method. Moreover, the SCO technique
with Modified Elman Neural Network (MENN) approach was executed to crop type classifier.

A precise crop classifier approach utilizing spectral-spatial-location fusion dependent upon CRFs
(SSLF-CRF) for UAV-borne HSI was presented in [16]. The presented approach combines the
spatial feature, spectral data, spatial location, and spatial context data from the CRF technique
with probabilistic potentials, offering complementary data to crop discrimination in several views.
Wu et al. [17] presented 2 novel classifier structures that are both created in MLPs. Primarily,
the authors present a dilation-based MLP (DMLP) technique, where the expanded convolution
layer exchanges the conventional convolutional MLP, increasing the receptive field without loss of
resolution and maintaining the relative spatial location of the pixel unmodified. Secondarily, the work
presents DMLP and multi-branch remaining block regarding efficiency feature fusion, then PCA is
named DMLPFFN, creating complete utilization of multi-level feature data of HSIs.

3 The Proposed Model

This article has developed a new HMAODL-CTC technique to classify crops on HSI. The
presented HMAODL-CTC technique mainly intends to categorize different types of crops on HSI.
The presented HMAODL-CTC technique comprises various processes such as image preprocessing,
dilated CNN-based feature extraction, HMAO-based parameter tuning, and ELM classification.
Fig. 1 illustrates the block diagram of the HMAODL-CTC system.
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Figure 1: Block diagram of HMAODL-CTC system

3.1 Stage I: Image Preprocessing
Initially, the presented HMAODL-CTC model carries out image preprocessing to improve image

quality. Gaussian filtering (GF) is an approach that diminishes pixel variance through weighted
averages for image smoothing from various applications [18]. On the other hand, the lower pass filter
couldn’t retain image details, for instance, textures and edges. Next, the f linear transformation variant
function determines the filtering above method in the following:

f (p) =
∑

q

Kp,q (Q) Pq, (1)

Now, Kp,q indicates the q pixel centered at the p pixel in filter kernels K, Q and P correspondingly
denotes guidance and input images:

Kp,q (Q) = 1
n

exp
(

−‖p − q‖2

σ 2
s

)
· exp

(
−‖Pp − Qq‖2

σ 2
r

)
, (2)

The exponential distribution function is employed to evaluate the impact of spatial distance

usingexp
(

−‖p − q‖2

σ 2
r

)
, and exp

(
−‖Pp − Qq‖2

σ 2
r

)
defines the effect of pixel intensity range. Eq. (2)

simplifies the single image smoothing form if Q and P are similar.

3.2 Stage II: Feature Extraction
At this stage, the presented HMAODL-CTC model applied dilated CNN model for feature

extraction. The multiple hidden layers allow the model to efficiently learn the discriminative feature
in Dilated CNN network [19]. It empowers the computer to understand complex ideas by making
them out of small complexes. The output of the various levels of dilated CNN and attention layers are
accountable for feature selection and extraction. The dilated convolution layer’s deep depth attempts
to discover granular quality, a hierarchical feature utilized to describe compositional feature data. The
feature results are pooled and distributed to the dilated CNN for producing DCV output, different
from standard CNN that instantly implements dilated convolutional operations. Every green colored
dot shows that these blocks are where chosen convolution is implemented. Consequently, the deep
CNN layer produces the subsequent set of parameters as follows:

dcvi = dconv1, dconv2, . . . , dconvn ∈ Rn×d∼
(3)
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Now, d represents the input sequence, and dcv denotes the output of dilated convolution as follows.

DCV l = [dcvl
1, dcvl

2, . . . , rvl
n] ∈ Rn∗d∼

, l ∈ (1, L) (4)

L shows the overall convolution box from the expression, and the block filter has a degree of k in
the following.

W l ∈ Rk∗w∗k, W l ∈ Rk∗w∗d∼
(5)

Such filtering matrixes W apply that the process held in k time, along with weight w vector. The
two neighboring blocks are transformed into

DCV = F
(
W 1, DCV l−1

)
(6)

It is a sliding of filtering with a window utilized to w-length input, where by f indicates linear
algebra formula.

dcvl
t = ReLU(W l ⊕ [

dcvl−1
t+1r]

w−1
t=0

)
(7)

Now, ⊕ represents convolution, and r indicates the levels of the deep layer in the dilation. The
ReLU with every block has the length of (w−1)2L−1. A deep convolutional layer increases exponentially
instead of the parameter’s increasing weight. Lastly, hierarchical maps of DCV 1, DCV 2, . . . . . . , and
DCV l are attained according to the coupling coefficient relationship on the upstream and downstream
layers. SoftMax provides the value of the bio set. Presently, DCV 1 = [dcvl

1, dcvl
2, . . . , dcvl

n] ∈ Rn∗k∼ ,
l ∈ (1, L). The l − th convolution block output is now represented as Rn∗k∼ , l ∈ (1, L). Every k
filter operation output is produced as COV ′

ios value utilized as the final output feature. Then, attain
COV 1 = [COV l

1, COV l
2, . . . , COV l

n] ∈ RM∗dV . The convolutional term size represents dv, and M shows
the quantity of the last convolution. Here, execute the routing DC V l to CO V l for information
generation and last feature extraction. The prediction vector ̂dcvj\l shows the transformation of raw
vector feature viz., evaluated as the multiplication of devi with Wj.

d̂cvJ\l = dcvj ∗ Wj (8)

By decreasing large vectors and raising smaller vectors into unit vectors, these approaches increase
the efficacy of data exchange in the complex routing system. An iteratively layered routing method is
applied to calculate the medium step over a multi-layered dilated convolutional layer. Fig. 2 displays
the architecture of CNN.

Figure 2: Architecture of CNN

Now, the softmax routing function is srfij, and its variation with dcv is set as aij agreement and
evaluated as follows.

aij = covi ∗ d̂cvJ\l + srfij (9)
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Generally, the dilated convolutional process allows scalable and more efficient convolu-
tional routing. In these phases, the autonomous final convolutional layer is calculated as V 1 =
[COV l

1, COV l
2, . . . , COV l

n] ∈ RM∗dV .

COV l = [COV l, COV l, . . . , COV l] (10)

Afterwards the execution, the action would be passed all over the hierarchical layer. Extracted
feature [COV l, COV l, . . . , COV l] of dilated convolutional would be allocated.

3.3 Stage III: Hyperparameter Tuning
For hyperparameter tuning of the dilated CNN model, the HMAO algorithm is utilized. Aquila

Optimizer (AO) is a metaheuristic approach, and it is stimulated by the predation behaviors of Aquila
[20]. There exist 4 hunting approaches while the Aquila attack several types of prey.

Expanded exploration of the behavior of Aquila higher soar with a vertical stoop is exploited
for hunting birds in a fight. They fly higher levels over the ground and explore the search space for
better prey regions. When they find the prey, Aquile takes a vertical dive, and it can be mathematically
expressed as follows:

X1(t + 1) = Xprey(t) ×
(

1 − t
T

)
+ r1 × (XM(t) − Xprey(t)) (11)

In Eq. (11), Xprey(t) represents the better solution, and XM signifies the standard location of the
candidate. t and T indicate the amount of existing iteration and the maximal iteration count.

Narrowed exploration (X2): The behavior of Aquila contour fight with the shortest glide attack,
and it is better suited for breeding grouse, hunting ground squirrels, or sea birds. They fly low around
the selected region and apply the shortest glide to attack the prey. The mathematical expression is given
below:

X2 (t + 1) = Xprey (t) × Levy (D) + XR (t) + r2 × (y − x) (12)

In Eq. (12), XR(t) specifies a random location of the candidate, Levy (D) indicates the levy fight
(LF) distribution function, and D represents the dimension size. It is expressed in the succeeding
expression:⎧⎨⎩y = r × cos(θ), x = r × sin(θ)

r = r3 + U × D1, θ = −ω × D1 + 3
2
π

(13)

In Eq. (13), U indicates a constant value equivalent to 0.00565, ω is fixed as 0.005, and D1 denotes
an integer number amongst 1 and the dimension size (D).

Expanded exploitation (X3): The nature of Aquila lower fight with slower descent attack. They
employ these approaches for hunting slow prey, namely hedgehogs, rattlesnakes, tortoises, and foxes, or
prey without escape response. Afterwards, finding the prey, they prepared for landing and attack. This
lower fight altitude to get closer to the prey and observes the reaction of prey, and it is mathematically
expressed as follows:

X3 (l + 1) = (
Xprey (t) − X (t)

) × α − r4 + ((Ub − Lb) × r5 + Lb) × δ (14)
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In Eq. (14), α and δ indicate exploitation adjustment parameters. Note that the AO is well-
performed when they are set to 0.1. UB and LB indicate the upper and lower bounds of the search
space.

Narrowed exploitation: Aquila’s nature is to grab prey, generally large prey. Such behaviours are
expressed in the following equation:⎧⎪⎪⎨⎪⎪⎩

X4(t + 1) = QF(t) × Xprey(t) − (G1 × X(t) × r6)

−G2 × Levy(D) + r7 × G1

QF(t) = tG1

2 × r8 − 1
(1 − T)2

, = 2 × r9 − 1, G2 = 2 ×
(

1 − t
T

) (15)

QF(t) indicates the quality function utilized to equilibrium the search strategy. G1 represents
different motions of Aquila while tracing prey that is a random value within (−1, 1), and G2 represents
the fight slope of Aquila that is reduced from 2 to 0.

Still, the AO has specific problems even though it is satisfactory. Especially the AO needs to
balance the exploration and exploitation stages. The evolution from exploration to exploitation process
is so stiff that it does not match the present situation. Similarly, the LF distribution function cannot
assist the AO exploits the particular search space.

To overcome this problem, the escaping energy (E) and exploitation strategy is used from Harris
Hawks Optimization (HHO):

E = 2 × E0 ×
(

1 − t
T

)
= G1 × G2 (16)

In Eq. (16), E0 shows a number within (−1, 1) in all the iterations. If |E| ≥ 1, they explore to find
the prey location. If |E| < 1, they begin to exploit the nearby space of prey.

If rand ≥ 0.5, utilize Soft and Hard besiege approaches in HHO as an exploitation strategy. If
|E| ≥ 0.5, Aquila gently encircles the prey to consume the prey’s energy and later attack it. Such
behaviors are shown below:{

X5(t + 1) = 	X(t) − E|JXprey(t) − X(t)
	X (t) = Xprey (t) − X (t) , J = 2 × (1 − r10)

(17)

In Eq. (17), 	X(t) signifies the difference between Xprey(t) and (t). E represents the escaping energy,
J refers to the random jump strength of the prey.

If |E|<0.5, then the prey has slight energy to escape, making the Aquila readily encircle the prey
and attack:

X6 (t + 1) = Xprey (t) − E |	X (t)| (18)

Note that Xprey characterizes the better location attained so far has greater effects on outcomes.
Hence, Elite Evolution Strategy (ESS) is intended for enhancing xprey. EES primarily involves two
techniques: elite random mutation and elite natural evolution. In ESS, three elite chromosomes
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are developed for evolution which are E1, E2, and E3. The mathematical expression of the cross-
recombination of genes is given below:

X

‘

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E1, r11 < sp
E2, r11 > sp and r12 ≥ 0.5
E3, r11 > sp and r12 < 0.5

sp = rand(−1, 1) ×
(

1 − t
T

) (19)

In Eq. (19), X ′ characterizes a new E1, E2 and E3. sp control the proportion of E1 in the novel
chromosome. Elite random mutation aim is to mutate some genes of E1. It gives E1 further possibilities
to escape from local optimal, and it is mathematically expressed in the following equation:

X ′ =
{

CL + N(μ = 0, σ = 1)|CL − E1|, r13 < sp
E1, r13 > sp

(20)

In Eq. (20), CL characterizes the center location vector. N(μ = 0, σ = 1) indicates a sequence
that conforms to Gaussian probability distribution. r1 − r13 shows random numbers within (0,1). By
using ESS, a novel chromosome X ′ is attained. If it is better than the present xprey, replace xprey with X ′.
For every strategy, utilize a greedy selection model; hence the best location is chosen as the following
location for the novel iteration.

3.4 Stage IV: Crop Type Classification
Finally, the presented HMAODL-CTC model uses the ELM model for crop type classification.

It is a single hidden unit that could arbitrarily alter and produce hidden layer numbers with these
properties; the ELM-based AL technique saves much training time [21]. As an SLNN, compared to
other conventional SLFN techniques, ELM could promise to learn accuracy while fast learning speed.
ELM applies biases b and weights w. Furthermore, training databases are represented by Dtrain ∈ Rl,
which is previously encoded using TF-IDF as {X , Y} = {{x1, y1}, . . . , {xj, yi}, . . . , {χl,yl

}}, while χj

indicates the instance and yi denotes the ground truth label. g() represents the sigmoid activation
function in the (h) hidden layer. Therefore, it is formulated in the following equation:

F (x) = βg (X , w, b) (21)

While β indicates the weighted matrixes, w represents the weight between input and hidden nodes,
and b implies the bias. Compared to the normal SLFN, the primary objective of ELM is that the initial
parameter in β is randomly produced afterwards, fixing the activation functions and several hidden
units as follows:

L(X , Y , β) = ‖Y − βH‖2 → 0 (22)

H = g (X , w, b) (23)

From the expression, X indicates the text, Y denotes the true textual emotion labels, and H
represents the collection matrix regarding the activation function as follows.

β̂ = H∗Y , (24)

In Eq. (24), H∗ specifies the Moore-Penrose generalized inverse of H. Additionally, the learned
variable β̂ plays a primary role in forecasting raw Chinese textual emotion labels. By considering
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ELM, the study separated its architecture into predicting and learning. During the learning process,
the objective is to learn the β̂ parameter.

Algorithm 1: ELM-based active learning algorithm

Input: Training set Dtrain ∈ Rl, Raw set Dsample−pool ∈ Rlen(Dsample−pool )

Output: Update training set Dupdaied− irain

repeat
Learn multi-label emotion classification ELM on X ;
repeat
i implies the similarity measurement CE, KL, EM
Du

sample−pool ← max partition (Dsample−pool, Di)

until stopping condition 1
repeat
j implies the similarity measurement CE, CEb, EMb

Dr
sample−pool ← minpartition

(
Du

samplepool
Sim (x′) j

)
until stopping condition 2
achieve ground truth label from Human Oracle yt for Dr

sample−pool

Dupdated− irain = Dtrain +
(
Dr

sample−pool′yt

)
until stopping condition 3
return Dupdated−train

4 Results and Discussion

In this section, the crop type classification results of the HMAODL-CT model are tested using
three databases, namely INB [22], UPB [23], and SSB [24]. The parameter settings are as follows:
learning rate: 0.01, dropout: 0.5, batch size: 5, stride: 4, epoch count: 50, and activation: ReLU. The
CNN model has 2 convolution layers, 2 pooling layers, 2 fully connected, and 1 softmax layer.

Fig. 3 demonstrates the overall crop type classification results of the HMAODL-CT technique on
the IND database. These results indicated that the HMAODL-CT system had reached better results in
all cases. For example, with 5% of TR data, the HMAODL-CT technique has offered overallaccy, avgaccy,
and kappa of 87.67%, 86.03%, and 83.75%, correspondingly. In addition, with 15% of TR data, the
HMAODL-CT approach has presented overallaccy, avgaccy, and kappa of 99%, 98.24%, and 97.82%,
correspondingly. Also, with 25% of TR data, the HMAODL-CT method has granted overallaccy, avgaccy,
and kappa of 99.87%, 99.64%, and 99.45%, correspondingly.

Fig. 4 illustrates an overall crop type classification result of the HMAODL-CT methodology on
the UPB database. These specified HMAODL-CT approaches have obtained enhanced results in all
cases. For example, with 5% of TR data, the HMAODL-CT technique has offered overallaccy, avgaccy,
and kappa of 98.47%, 97.77%, and 96.78%, correspondingly. Moreover, with 15% of TR data,
the HMAODL-CT technique has presented overallaccy, avgaccy, and kappa of 99.81%, 99.74%, and
99.82%, correspondingly. Also, with 25% of TR data, the HMAODL-CT algorithm has rendered
overallaccy, avgaccy, and kappa of 99.97%, 99.91%, and 99.89%, correspondingly.

Fig. 5 portrays an overall crop type classification result of the HMAODL-CT methodology
on the SAB database. These results denoted the HMAODL-CT approach has reached enhanced
results in all cases. For example, with 5% of TR data, the HMAODL-CT technique has provided
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overallaccy, avgaccy, and kappa of 99.26%, 99.15%, and 98.93%, correspondingly. Also, with 15% of TR
data, the HMAODL-CT technique has shown overallaccy, avgaccy, and kappa of 99.98%, 99.96%, and
99.97%, correspondingly. Also, with 25% of TR data, the HMAODL-CT approach has displayed
overallaccy, avgaccy, and kappa of 99.99%, 99.98%, and 99.99%, correspondingly.

Fig. 6 presents the accuracy and loss graph analysis of the HMAODL-CT method under three
databases. The fallouts displayed that the accuracy value tends to rise, and the loss value tends to
decline with an increasing epoch count. Note that the training loss is lower, while the validation
accuracy is higher in the three databases.

Figure 3: Result analysis of the HMAODL-CT approach under the IND database

Figure 4: Result analysis of HMAODL-CT approach under UPB database
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Figure 5: Result analysis of the HMAODL-CT approach under the SAB database

Figure 6: (Continued)
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Figure 6: (a and b) Graph of Accuracy and Loss-INB Database (c and d) Graph of Accuracy and
Loss-UPB Database (e and f) Graph of Accuracy and Loss-SAB Database

Fig. 7 represents the training time (TRT) examination of the HMAODL-CT technique with the
existing HDSRN approach. The experimental results revealed that the HMAODL-CT model offers
minimal values of TRT under all databases. For example, on the INB database, the HMAODL-CT
technique has provided a lower TRT of 432 s, while the HDSRN method has attained an increased
TRT of 570 s. Moreover, on the UPB database, the HMAODL-CT approach has presented a lower
TRT of 695 s, while the HDSRN algorithm has reached an increased TRT of 940 s. Additionally, on
the SAB database, the HMAODL-CT method has exhibited a lower TRT of 702 s, while the HDSRN
technique has increased TRT of 930 s.

Figure 7: TRT analysis of the HMAODL-CT approach under three databases

Fig. 8 signifies the testing time (TST) analysis of the HMAODL-CT algorithm with the current
HDSRN approach. The experimental outcomes show the HMAODL-CT approach provides minimal
values of TST under all databases. For example, on the INB database, the HMAODL-CT algorithm
has rendered a lower TST of 2 s while the HDSRN technique has reached an increased TST of 3 s.
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Furthermore, on the UPB database, the HMAODL-CT technique has offered a lower TST of 4 s, while
the HDSRN approach has gained an increased TST of 8 s. Also, on the SAB database, the HMAODL-
CT approach has presented a lower TST of 5 s, while the HDSRN method has reached an increased
TST of 8 s.

Figure 8: TST analysis of the HMAODL-CT approach under three databases

A detailed comparative analysis is made to affirm the superior outcomes of the HMAODL-CT
model [15]. Fig. 9 demonstrates a brief overallaccu assessment of the HMAODL-CT technique with the
current approach. The figure revealed that the HMAODL-CT system had attained increasing values
of overallaccu. For example, on the INB database, the HMAODL-CT model has depicted a maximum
overallaccu of 99.97% while the HDSRN methodology has decreased overallaccu by 99.70%. Next, on the
UPB database, the HMAODL-CT approach has shown a maximum overallaccu of 99.97%, while the
HDSRN technique has decreased overallaccu by 99.86%. Finally, on the SAB database, the HMAODL-
CT algorithm has represented a maximum overallaccu of 99.99% while the HDSRN approach has
decreased overallaccu by 99.97%.

Figure 9: Overall accuracy analysis of the HMAODL-CT approach under three databases
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Fig. 10 illustrates a detailed averageaccu assessment of the HMAODL-CT technique with the
existing method. The figure specified the HMAODL-CT approach had reached increasing values of
averageaccu. For example, on the INB database, the HMAODL-CT technique has portrayed a maximum
averageaccu of 99.58%, while the HDSRN algorithm has decreased averageaccu by 99.70%. Next, on
the UPB database, the HMAODL-CT model has described a maximum averageaccu of 99.89%, while
the HDSRN approach has resulted in decreased averageaccu of 99.83%. At last, on the SAB database,
the HMAODL-CT model has shown a maximum averageaccu of 99.98%, while the HDSRN model has
resulted in decreased averageaccu of 99.97%.

Figure 10: Average accuracy analysis of the HMAODL-CT approach under three databases

Fig. 11 illustrates a brief kappa assessment of the HMAODL-CT technique with the existing
approach. The figure designated the HMAODL-CT algorithm has achieved increasing values of
kappa. For example, on the INB database, the HMAODL-CT approach has shown a maximum kappa
of 99.58%, while the HDSRN technique has decreased kappa by 99.70%. Next, on the UPB database,
the HMAODL-CT method has portrayed a maximum kappa of 99.89%, while the HDSRN approach
has decreased kappa by 99.83%. Finally, on the SAB database, the HMAODL-CT technique has
illustrated a maximum kappa of 99.98%, while the HDSRN method has resulted in decreased kappa
of 99.97%. These results pointed out the enhanced performance of the HMAODL-CT approach over
other techniques on crop type classification.
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Figure 11: Kappa analysis of HMAODL-CT approach under three databases

5 Conclusion

In this article, a new HMAODL-CTC technique has been developed to classify crops on HSI.
The presented HMAODL-CTC technique mainly intends to categorize different types of crops on
HSI. Initially, the presented HMAODL-CTC model carries out image preprocessing to improve image
quality. Then, the presented HMAODL-CTC model was applied dilated CNN model for feature
extraction. For hyperparameter tuning of the dilated CNN model, the HMAO algorithm is utilized.
Finally, the presented HMAODL-CTC model uses the ELM model for crop type classification.
A comprehensive set of simulations were performed to illustrate the enhanced performance of the
presented HMAODL-CTC model. Extensive comparison studies reported the improved performance
of the presented HMAODL-CTC model over other compared methods. In future, the proposed model
can be tested on large-scale databases.
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