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Abstract: Statistics are most crucial than ever due to the accessibility of
huge counts of data from several domains such as finance, medicine, science,
engineering, and so on. Statistical data mining (SDM) is an interdisciplinary
domain that examines huge existing databases to discover patterns and con-
nections from the data. It varies in classical statistics on the size of datasets
and on the detail that the data could not primarily be gathered based on
some experimental strategy but conversely for other resolves. Thus, this
paper introduces an effective statistical Data Mining for Intelligent Rainfall
Prediction using Slime Mould Optimization with Deep Learning (SDMIRP-
SMODL) model. In the presented SDMIRP-SMODL model, the feature
subset selection process is performed by the SMO algorithm, which in turn
minimizes the computation complexity. For rainfall prediction. Convolution
neural network with long short-term memory (CNN-LSTM) technique is
exploited. At last, this study involves the pelican optimization algorithm
(POA) as a hyperparameter optimizer. The experimental evaluation of the
SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising
23682 samples in the negative class and 1865 samples in the positive class.
The comparative outcomes reported the supremacy of the SDMIRP-SMODL
model compared to existing techniques.
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1 Introduction

Data mining represents extracting or mining knowledge from massive quantities of data. In other
words, data mining is the science, art, and technology of discovering huge and complex bodies of data
for beneficial patterns. Practitioners and Theoreticians are constantly searching for more appropriate
approaches to make the process accurate, more efficient, and cost-effective [1]. The statistical data
mining (SDM) technique is established for effectively processing massive quantities of data that
are usually multi-dimensional and probably of many complex types [2]. Some traditional statistical
methods for data analysis, particularly for numerical data. This method has been extensively used for
scientific records (viz., records from experiments in manufacturing, physics, engineering, medicine, and
psychology) and data from the social sciences and economics. Rainfall prediction remains a serious
concern and has drawn the consideration of industries, governments, the scientific community, and
risk management entities [3]. Rainfall is a climatic factor that affects several human events, such as
construction, agricultural production, forestry and tourism, and power generation, amongst others
[4]. In that regard, rainfall prediction is crucial since this parameter has the maximum correlation with
adversarial natural disasters like flooding, landslides, avalanches, and mass movements. This incident
has adversely impacted society in recent years. As a result, having an improved technique for rainfall
prediction could allow taking mitigation and preventive measures for these natural phenomena [5].

Besides, this prediction facilitates the supervision of construction, agriculture activities, transport,
health, and tourism, amongst others [6]. For events accountable for disaster prevention, providing
precise meteorological prediction helps decision-making despite the probable occurrence of natural
events [7]. To achieve this prediction, there exist different methodologies, which ranges from naive
method to those that use complicated approaches like artificial intelligence (AI), and artificial neural
network (ANN), has been the most attractive and valuable approaches for the prediction task [8].
ANN, vs. conventional approaches in meteorology, depends on a self-adaptive mechanism that learns
from examples and captures functional relationships amongst data. However, the relationship still
needs to be determined or explained [9]. Recently, the Deep Learning (DL) algorithm has been used as
an effective method in ANN for resolving difficult challenges. DL is a common term used to represent a
sequence of multi-layer architecture that can be trained using unsupervised algorithms [10]. The major
development is learning a valid, non-linear, and compact presentation of data through unsupervised
methods, hoping that the novel data presentation contributed to the prediction technique.

Suparta et al. [11] intend to forecast rainfall by exploring the implementation of AI methods
like Adaptive NeuroFuzzy Inference System (ANFIS). The modelled approach compiles NN learning
capabilities having transparent linguistic representations of fuzzy systems. The ANFIS approach has
several input structures and membership functions tested, constructed, and trained to evaluate the
model’s ability. Dada et al. [12] presented 4 non-linear approaches like Artificial Neural Networks
(ANN) for predicting rainfall. ANN is capable of mapping various output and input patterns. The
Elman Neural Network (ENN), FFNN, RNN, and Cascade Forward Neural Network (CFNN) are
employed for rainfall prediction. Wang et al. [13] inspect the applicability of numerous predicting
methods based on wavelet packet decomposition (WPD) in the annual prediction of rainfall, and a
novel hybrid precipitation prediction structure (WPD-ELM) was devised with WPD and ELM. These
works are described as follows: WPD can be employed for decomposing creative precipitation data
into numerous sublayers; ELM method, BPNN, and ARIMA were used to realize the decomposed
sequences’ forecasting computation.
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Manoj et al. [14] modelled the rainfall predictive method related to the DL network, the
convolutional LSTM (convLSTM) method that promises to forecast related to the spatial-and-
temporal paradigms. The convLSTM weights were fine-tuned utilizing the projected Salp-stochastic
gradient descent algorithm (S-SGD) that can be the amalgamation of the Salp swarm algorithm
(SSA) presented in stochastic gradient descent (SGD) approach for facilitating the global fine-tuning
of the weights and for assuring a superior predictive accuracy. In contrast, the formulated DL
structure can be constructed in the MapReduce structure, allowing the potential big data management.
Liyew et al. [15] study was to find the related atmospheric features which might cause rainfall and
forecast the intensity of daily rainfall utilizing ML approaches. The Pearson correlation method has
been utilized for selecting related environmental parameters employed as input for the ML approach.
The dataset has been gathered for measuring the performances of 3 ML methods (Extreme Gradient
Boost (XGBoost), Multivariate Linear Regression, and Random Forest (RF)).

This paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction
using Slime Mould Optimization with Deep Learning (SDMIRP-SMODL) model. In the presented
SDMIRP-SMODL model, the feature subset selection process is performed by the SMO algorithm,
which in turn minimizes the computation complexity. For rainfall prediction. Convolution neural
network with long short-term memory (CNN-LSTM) approach is exploited. At last, this study
involves the pelican optimization algorithm (POA) as a hyperparameter optimizer. A wide-ranging
simulation analysis was executed to highlight the betterment of the SDMIRP-SMODL model. The
comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing
techniques.

2 The Proposed Rainfall Prediction Model

This study established a new SDMIRP-SMODL system for rainfall prediction systems. The
SDMIRP-SMODL technique comprises SMO based on feature subset selection, CNN-LSTM predic-
tion, and POA hyperparameter tuning. Fig. 1 illustrates the overall process of the SDMIRP-SMODL
approach.

2.1 SMO-Based Feature Selection
In the presented SDMIRP-SMODL method, the feature subset selection process was performed

by the SMO algorithm. The projected SMO encompasses many distinctive characteristics involving
mathematical modelling, which employs adaptive weight to mimic the procedure of generating positive
and negative feedback in slime mold propagative waves [16]. The feature depends on a bio-oscillator,
creating the optimal pathway to interconnect food with highly exploring capability and exploitation
tendency. A summary of the SMO algorithm is shown as follows:

Approach Food: The following rules are provided to characterize the behaviour of SM as an
arithmetical formula for replicating the contraction method:

−−−−−→
X (t + 1) =

⎧⎨
⎩

−−−→
Xb (t) + −→

vb .
(−→

W · −−−→
XA (t) − −−−→

XB (t)
)

, r < p
−→
vc · −−→

X (t), r ≥ p
(1)
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Figure 1: Overall process of the PODTL-BIR approach

In Eq. (1),
−→
W indicates the weight of SM,

−−−→
and vb denotes a variable within [−a, a] ,

−→
vc linearly

reduces from [0, 1]. t characterizes the current iteration,
−→
Xb characterizes the different positions with the

maximum odor smell, X embodies the SM position,
−→
XA and

−→
XB characterize two individuals arbitrarily

chosen from the swarm, and
−→
W denotes the SM weight. The formulation of p is shown below:

p = tanh |S (i) − DF | (2)

where i ∈ 1, 2, . . . , n, S (i) signifies fitness of
−→
X . The optimal fitness attained in every iteration is

represented as the DF . And it is given in the following:
−→
vb = [−a, a] , (3)

a = arctanh
(

−
(

t
max− t

)
+ 1

)
, (4)

The equation of
−→
W is represented in the following:

−−−−−−−−−−−−−→
W (SmellIndex (i)) =

⎧⎪⎪⎨
⎪⎪⎩

1 + r · log
(

bF − S (i)
bF − wF

+ 1
)

, condition

1 − r · log
(

bF − S (i)
bF − wF

+ 1
)

, others
(5)

Smell Index = sort (S) (6)
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Now, the condition signifies that S (i) ranks the initial half of the population, r symbolizes the
arbitrary integer within [0, 1], and bF and wF signify the optimum and worst fitness attained in the
existing iteration method, correspondingly. The smell Index characterizes the series of fitness values
arranged.

Wrap Food: The subsequent defines the updating location of SM:

X
→∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rand . (UB − LB) + LB, rand < z

−−−→
Xb (t) +

−→
vb ·

(
W · −−−→

XA (t) − −−−→
XB (t)

)
, r < p

−→
vc · −−→

X (t), r ≥ p

(7)

Here LB and UB characterize the lower and upper limits, and rand and r represent the arbitrary
number in [0, 1] .

Grabble Food: As the iteration count rises, the value of
→
vb oscillates arbitrarily within [−a, a] and

eventually tends to zero. The value of
→
vc oscillates amongst [1, 1] and progressively approaches zero.

The fitness function (FF) employed from the SMO system is to contain a balance amongst
the count of particular features from every solution (min) and classifier accuracy (max) attained by
employing these chosen features, Eq. (8) signifies the FF for measuring solutions.

Fitness = αγR (D) + β
|R|
|C| (8)

where γR (D) denotes the classifier error rate of the presented classification. |R| stands for the
cardinality of chosen subset, and |C| signifies the entire amount of features from the dataset α and
β are 2 parameters equivalent to the significance of classifier quality and subset length. ∈ [1, 0] and
β = 1 − α.

2.2 CNN-LSTM-Based Rainfall Prediction
In this work, the CNN-LSTM model is exploited to predict rainfall. Long short-term memory is

the development of recurrent neural networks (RNN) [17]. LSTM presents a memory block instead
of a traditional RNN unit to overcome gradient exploding and vanishing problems. Then, a cell state
is added to store the long-term state, that is, its major dissimilarity from RNN. An LSTM connects
and remembers preceding data to the dataset attained in the present. LSTM is coupled with 3 gates.
Namely, input, forget, and output gates, whereby χt represent the existing inputs; Ct and Ct−1 denote
the previous and new cell states, correspondingly; and ht and ht−1 indicate the current and preceding
outputs, correspondingly. The standard of input gates of LSTM is presented in the succeeding formula.

it = σ
(
Wi · [ht−1)xt] + bi

)
(9)

C̃ = tanh (Wi · [ht−1, xt] + bi) (10)

Ct = ftCt−1 + it̃ct (11)

For passing ht−1 and χt via a sigmoid layer for deciding where part of the dataset needs to be
appended using Eq. (9). Consequently, to achieve novel data afterwards, ht−1 and χt are passed by the
tanh layer using (10). The present moment dataset, C̃ and long-term memory dataset Ct−1 into Ct are
integrated with (11), Wi represents a sigmoid output, and C̃t denotes a tanh output. Now, Wi represents
the weight matrix, and bi epitomizes the input gate bias of LSTM. Next, the LSTM forget gate enables
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data extraction using a dot product and a sigmoid layer. Eq. (12) is used to decide whether forgetting a
relevant dataset from a primary cell with a specific probability is implemented. Wf denotes the weight
matrix, bf represents the offset, and σ characterizes the sigmoid operation.

ft = σ
(
Wf · [ht−1)xt] + bf

)
(12)

The LSTM output gate determines the state essential for continuance by ht−1 and χt inputs. The
concluding output is attained and multiplied with the state decision vector that passes novel Ct data
via the tanh layer.

Ot = σ (Wo · [ht−1, xt] + bo) (13)

ht = Ottanh (Ct) (14)

From the expression, bo and Wo correspondingly, the LSTM bias and output gate weighted
matrices. Fig. 2 demonstrates the structure of CNN-LSTM.

Figure 2: Structure of CNN-LSTM

An integrated approach has been intended for automatic rainfall detection and combining LSTM
and CNN networks from which the CNN is applied to extract complicated features from an image.
LSTM is also employed as a classification. The network has twenty layers: 1 LSTM layer, 1 FC layer,
5 pooling layers, twelve convolution layers, and 1 output layer using the softmax operation. Every
convolutional block is integrated into 1 pooling layer and multiple 2D-CNNs. Subsequently, a dropout
layer is considered a twenty-five percent dropout rate. A size of 3× 3 convolution kernel layers is
exploited to extract features activated through the ReLU operation. The max− pooling function with
a size of 2 × 2 convolution layers is applied to reduce the dimension of the input image. In the final
portion, the mapping function is transported to the LSTM for extracting time data. Afterwards, the
convolution blocks, the output form, are considered as (none, 7, 7, and 512).

2.3 POA-Based Hyperparameter Tuning
At the final stage, the POA as a hyperparameter optimizer of the CNN-LSTM model helps

enhance classification output. POA is a population-based methodology whereby the pelican is a
member of the population [18]. In this work, every population member implies a solution candidate.
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All the population members propose a value for the optimization variable along with the location of
the problem. Initially, the population member is initialized randomly, as stated by the lower and upper
bounds of the searching domain,

xi,j = lj + rand · (
uj − lj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , m, (15)

In Eq. (15), xi,j indicates the value of the j-th parameter specified by the i-th solution candidate, N
indicates population member count, m illustrates the parameter number, rand indicates an arbitrary
integer within [0, 1], lj and uj show the j-th lower, and j-th upper bounds in the search space. The
population member of pelicans in the projected POA is recognized by a matrix named population
matrix in Eq. (16). The matrix column signifies the suggested value in the search space. In contrast,
every row of the matrix characterizes a solution candidate.

X =

⎡
⎢⎢⎢⎢⎢⎣

X1

...
Xi

...
XN

⎤
⎥⎥⎥⎥⎥⎦

N×m

=

⎡
⎢⎢⎢⎢⎢⎢⎣

χ1′ 1 . . . χ1′ j . . . χ1′ m

...
. . .

...
...

χi′ 1 . . . χi′ j . . . χi′ m

...
...

. . .
...

xN′ 1 · · · xN,j . . . xN,m

⎤
⎥⎥⎥⎥⎥⎥⎦

N×m

(16)

In Eq. (16), X indicates the population matrix of pelicans, and Xi shows the i-th pelican.

In this work, all the population members are a pelican whose solution candidate is given to the
problem. As a result, an objective function is measured according to the solution candidate. The value
attained for the objective function is defined by the vector named objective function vector, as given
below.

F =

⎡
⎢⎢⎢⎢⎢⎣

F1

...
Fi

...
FN

⎤
⎥⎥⎥⎥⎥⎦

N×1

=

⎡
⎢⎢⎢⎢⎢⎣

F (X1)
...

F (Xi)
...

F (XN)

⎤
⎥⎥⎥⎥⎥⎦

N×1

(17)

In Eq. (17), F indicates the objective function vector, and Fi represents the objective function value
of the i-th solution candidate [19,20].

The projected approach simulates the strategy and behavior of pelicans while hunting and
attacking targets to upgrade the solution candidate, and it can be given in the following steps:

i. Moving to the target (exploration stage).
ii. Flying on the water surface (exploitation stage).

Afterwards, each population member has been upgraded according to the first and second stages
according to the original status of the population and values of an objective function, and the optimal
candidate solution would be upgraded. Lastly, the optimal solution candidate is characterized by a
quasi-optimum solution in the search space.

3 Results and Discussion

The SDMIRP-SMODL approach is simulated utilizing Python 3.6.5 on PC i5-8600k, 1TB HDD,
GeForce 1050Ti 4 GB, 250 GB SSD, and 16 GB RAM. The following are the parameter settings:
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learning rate: 0.01, dropout: 0.5, batch size: 5, activation: ReLU and epoch count: 50. The experimental
evaluation of the SDMIRP-SMODL approach is tested utilizing a dataset comprising 23682 instances
in the negative class and 1865 instances in the positive class, as depicted in Table 1. The dataset holds
18 features, and the proposed model has chosen a set of 12 features. The dataset is split into 70:30 and
80:20 training (TR) and testing (TS) data for experimental validation.

Table 1: Dataset details

Class No. of instances

Negative 23682
Positive 1865

Total number of samples 25547

The confusion matrix produced by the SDMIRP-SMODL system under varying training set
(TRS) and testing set (TSS) data is given in Fig. 3. On 80% of the TRS, the SDMIRP-SMODL
technique has identified 18619 instances into negative class and 1082 instances into positive class.
Meanwhile, on 20% of TSS, the SDMIRP-SMODL approach identified 4645 instances as negative
and 294 as positive classes. Eventually, on 70% of TRS, the SDMIRP-SMODL approach identified
16369 instances as negative and 926 as positive classes. At last, on 30% of the TSS, the SDMIRP-
SMODL methodology has identified 7046 instances as a negative class and 399 as a positive class.

Figure 3: (Continued)
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Figure 3: Confusion matrix of SDMIRP-SMODL methodology (a) 80% of TRS, (b) 20% of TSS,
(c) 70% of TRS, and (d) 30% of TSS

Table 2 provides an overall classification outcome of the SDMIRP-SMODL approach with 80:20
of TRS/TSS.

Table 2: Rainfall classification outcomes of SDMIRP-SMODL technique on 80:20 of TRS/TSS

Labels Accuy Precn Recal specy ER

Training set (80%)

Negative 96.40 97.94 98.19 73.41 03.60
Positive 96.40 75.88 73.41 98.19 03.60

Average 96.40 86.91 85.80 85.80 03.60

Testing set (20%)

Negative 96.65 97.95 98.43 75.19 03.35
Positive 96.65 79.89 75.19 98.43 03.35

Average 96.65 88.92 86.81 86.81 03.35

Fig. 4 reports the rainfall classification outcome of the SDMIRP-SMODL model on 80% of the
TRS. The SDMIRP-SMODL method has recognized negative samples with accuy, precn, recal, specy,
and ER of 96.40%, 97.97%, 98.19%, 73.41%, and 3.60%, respectively. Also, the SDMIRP-SMODL
model has categorized positive samples with accuy, precn, recal, specy, and ER of 96.40%, 75.88%,
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73.41%, 98.19%, and 3.60%, respectively. Besides, the SDMIRP-SMODL model has obtained average
accuy, precn, recal, specy, and ER of 96.40%, 86.91%, 85.80%, 85.80%, and 3.60%, respectively.

Figure 4: Result analysis of SDMIRP-SMODL method on 80% of TR data

Fig. 5 demonstrates a detailed classification outcome of the SDMIRP-SMODL model on 20%
of TSS. The SDMIRP-SMODL algorithm has recognized negative samples with accuy, precn, recal,
specy, and ER of 96.65%, 97.95%, 98.43%, 75.19%, and 3.35% correspondingly. Also, the SDMIRP-
SMODL system has categorized positive samples with accuy, precn, recal, specy, and ER of 96.65%,
79.89%, 75.19%, 98.43%, and 3.35%, respectively. Moreover, the SDMIRP-SMODL methodology
has achieved average accuy, precn, recal, specy, and ER of 96.65%, 88.92%, 86.81%, 86.81%, and 3.35%,
correspondingly.

Figure 5: Rainfall classification results of SDMIRP-SMODL approach under 20% of the TSS

Table 3 offers an overall classification outcome of the SDMIRP-SMODL technique with a 70:30
TRS/TSS.

Fig. 6 depict a brief classification outcome of the SDMIRP-SMODL method on 70% of the
TRS. The SDMIRP-SMODL methodology has recognized negative samples with accuy, precn, recal,
specy, and ER of 96.72%, 97.61%, 98.88%, 69.78%, and 3.28%, respectively. The SDMIRP-SMODL
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approach has categorized positive samples with accuy, precn, recal, specy, and ER of 96.72%, 83.27%,
69.78%, 98.88%, and 3.28% correspondingly. In addition, the SDMIRP-SMODL technique has
obtained average accuy, precn, recal, specy, and ER of 96.72%, 90.44%, 84.33%, 84.33%, and 3.28%
correspondingly.

Table 3: Overall rainfall classification results of SDMIRP-SMODL algorithm on 70:30 of TRS/TSS

Labels Accuy Precn Recal specy ER

Training set (70%)

Negative 96.72 97.61 98.88 69.78 03.28
Positive 96.72 83.27 69.78 98.88 03.28

Average 96.72 90.44 84.33 84.33 03.28

Testing set (30%)

Negative 97.13 98.07 98.86 74.16 02.87
Positive 97.13 83.13 74.16 98.86 02.87

Average 97.13 90.60 86.51 86.51 02.87

Figure 6: Rainfall classification results of SDMIRP-SMODL system on 70% of TR data

Fig. 7 showcases a detailed classification outcome of the SDMIRP-SMODL approach on 30% of
TSS. The SDMIRP-SMODL model has recognized negative samples with accuy, precn, recal, specy, and
ER of 97.13%, 98.07%, 98.86%, 74.16%, and 2.87% correspondingly. Simultaneously, the SDMIRP-
SMODL technique has categorized positive samples with accuy, precn, recal, specy, and ER of 97.13%,
83.13%, 74.16%, 98.86%, and 2.87%, respectively. Moreover, the SDMIRP-SMODL algorithm has
gained average accuy, precn, recal, specy, and ER of 97.13%, 90.60%, 86.51%, 86.51%, and 2.87%,
correspondingly.

The training accuracy (TRAY) and validation accuracy (VLAY) achieved by the SDMIRP-
SMODL technique on the TSS is illustrated in Fig. 8. The results revealed that the SDMIRP-SMODL
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approach had achieved superior values of TRAY and VLAY. Mostly the VLAY appeared greater
than TRAY.

Figure 7: Rainfall classification results of SDMIRP-SMODL system on 30% of the TS database

Figure 8: TRAY and VLAY study of SDMIRP-SMODL methodology

The training loss (TRLS) and validation loss (VLLS) executed by the SDMIRP-SMODL
approach on the TSS are shown in Fig. 9. The experimental result stated that the SDMIRP-SMODL
technique had realized lower values of TRLS and VLLS. The VLLS is lesser than TRLS.
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Figure 9: TRLS and VLLS study of SDMIRP-SMODL methodology

A clear precn−recal study of the SDMIRP-SMODL methodology on the TSS is revealed in Fig. 10.
The obtained result exposed that the SDMIRP-SMODL technique has improved precn − recal values
under every class.

Figure 10: Precn − recal study of SDMIRP-SMODL approach
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A brief ROC analysis of the SDMIRP-SMODL system on the TSS is illustrated in Fig. 11. The
outcome revealed the SDMIRP-SMODL approach had presented its ability to categorize several
classes on TSS.

Figure 11: ROC study of SDMIRP-SMODL approach

Table 4 provides a detailed accuracy and miss rate analysis of the SDMIRP-SMODL system
with recent models. Fig. 12 provides an accurate comparative rate (ACR) analysis of the SDMIRP-
SMODL system with contemporary techniques. The results implied that the DTSLIQ, NV, and
PRNN-10 Neuron models had poor performance with lower ACR values of 72.21%, 78.55%, and
82.3%, respectively. Next, the INBC and Bayesian approaches have shown slightly enhanced ACR
values of 90.17% and 90.93%, correspondingly. Likewise, the DT and SVM methods have reported
reasonable ACR values of 91% and 92%, respectively. Though the fused ML model has accomplished
a considerable ACR value of 94.22%, the SDMIRP-SMODL system has outperformed higher
performance with a maximal ACR of 97.13%.

Fig. 13 offers a comparative miss rate (MSR) inspection of the SDMIRP-SMODL approach with
recent algorithms. The outcomes revealed that the DTSLIQ, NV, and PRNN-10 Neuron techniques
had worse performance with higher MSR values of 27.79%, 21.45%, and 17.7%, respectively. Next, the
INBC and Bayesian methods have exhibited somewhat enhanced MSR values of 9.83% and 9.07%,
respectively. Similarly, the DT and SVM techniques have correspondingly obtained reasonable MSR
values of 9% and 8%. But, the fused ML system has accomplished a considerable MSR value of 5.78%,
and the SDMIRP-SMODL approach has demonstrated higher performance with a lesser MSR of
2.87%.
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Table 4: Comparison study of SDMIRP-SMODL method and other approaches

Method ACR Miss rate

SDMIRP-SMODL 97.13 2.87
SVM model 92.00 8.00
Naïve bayes 78.55 21.45
DT model 91.00 9.00
PRNN-10 neuron 82.30 17.70
Bayesian model 90.93 9.07
INBC technique 90.17 9.83
DTSLIQ model 72.21 27.79
Fused-ML 94.22 5.78

Figure 12: ACR analysis of SDMIRP-SMODL approach with existing methodologies

Figure 13: MSR analysis of SDMIRP-SMODL approach with existing methodologies
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From these discussions, it can be assured that the SDMIRP-SMODL technique has shown
improved performance over other models.

4 Conclusion

This study established a new SDMIRP-SMODL system for rainfall prediction systems. The
SDMIRP-SMODL technique comprises SMO based on feature subset selection, CNN-LSTM pre-
diction, and POA hyperparameter tuning. In the presented SDMIRP-SMODL algorithm, the feature
subset selection process is performed by the SMO algorithm, which minimizes the computation
complexity. At the same time, the POA, as a hyperparameter optimizer of the CNN-LSTM model,
helps accomplish enhanced classification output. A wide-ranging simulation analysis was applied to
highlight the betterment of the SDMIRP-SMODL approach, and the comparative outcomes reported
the supremacy of the SDMIRP-SMODL model compared to existing techniques with maximum
accuracy of 97.13%. In the future, the presented model will be extended to the design of ensemble
learning-based classification models with optimal clustering techniques.
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