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Abstract: To solve the problem of slow convergence and easy to get into
the local optimum of the spider monkey optimization algorithm, this paper
presents a new algorithm based on multi-strategy (ISMO). First, the initial
population is generated by a refracted opposition-based learning strategy to
enhance diversity and ergodicity. Second, this paper introduces a non-linear
adaptive dynamic weight factor to improve convergence efficiency. Then,
using the crisscross strategy, using the horizontal crossover to enhance the
global search and vertical crossover to keep the diversity of the population to
avoid being trapped in the local optimum. At last, we adopt a Gauss-Cauchy
mutation strategy to improve the stability of the algorithm by mutation of
the optimal individuals. Therefore, the application of ISMO is validated by
ten benchmark functions and feature selection. It is proved that the proposed
method can resolve the problem of feature selection.
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1 Introduction

Due to the increasing complexity of the object of the optimization problem, traditional algorithms
are difficult to meet the requirements. Therefore, the design of new algorithms is a good way to solve
them. Recently, there have been a lot of scholars who prefer metaheuristics due to their simplicity
and high efficiency in solving problems. Many metaheuristics are of great importance in several areas
[1–3]. According to Fister et al. [4], metaheuristics can be classified into four types: swarm intelligence,
evolutionary, physics-based, and other. Swarm intelligence, such as the whale optimization algorithm
(WOA) [5], grey wolf optimizer (GWO) [6], slime mould algorithm (SMA) [7], sparrow search
algorithm (SSA) [8], chimp optimization algorithm (ChOA) [9], and spider monkey optimization
(SMO) [10]. Evolutionary, such as genetic algorithms (GA) [11] and differential evolution (DE) [12].
Physics-based, such as simulated annealing (SA) [13] and central force optimization (CFO) [14]. Other,
such as gaining-sharing knowledge based algorithm (GSK) [15] and moth-flame optimization (MFO)
[16]. SMO is a new kind of swarm intelligence algorithm, which is based on the social structure of
fission-fusion. Compared with other methods, SMO is characterized by a small number of parameters,
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robust and globally convergent. But, just like other methods, there are some problems, such as slow
convergence and local optimization in SMO.

Feature selection, as a kind of data pre-processing technique in machine learning, can get rid of
unnecessary noise and redundancy features from the data set and extract essential components at the
same time so that it can decrease the dimension of data and accelerate the performance of machine
learning algorithms. Feature selection is one of the most critical problems in classification tasks. The
search space can generate 2n results for data with n properties. There are two main approaches to
the choice of characteristic: the exhaustive approach and the metaheuristic approach. The exhaustive
approach usually has to list all the solutions in the search space to obtain a better set of characteristics,
but it is not very easy to choose them because of the large memory requirements. The metaheuristic
approach for feature selection is efficient, but they can only get a subset of the best local features.
Agrawal et al. [17] proposed an optimal method to apply feature selection. Hussain et al. [18] presented
a novel approach that can achieve a maximum of 87% reduction in the performance of low and high-
dimensional tasks. Hu et al. [19] applied three strategies to solve feature selection.

A lot of researchers have used a variety of approaches to enhance the SMO’s performance. First,
in optimization of the control parameters, Sharma et al. [20] split spider monkeys into three types
of monkeys by their age. They implemented an age-stratification strategy for the local leadership
phase and suggested an age-stratification spider monkey optimization (ASMO), which has a more
practical biological significance. Kalpana et al. [21] optimized control parameters in combination with
exponentially weighted moving averages. Secondly, in optimizing the local and global leader position
update, Menon et al. [22] applied prediction theory to the local and global lead stages of population
position update. Gupta et al. [23] introduced a quadratic approximation operator to improve the
local search ability. Mumtaz et al. [24] used a genetic operator perturbation mutation to enhance the
performance of the algorithm from local space. Despite the improvement in their capacity to escape
from local exploitation, unbalanced exploitation and exploration remain to be further improved.

This paper presents a new algorithm based on multi-strategy (ISMO) by introducing four different
strategies: refracted opposition-based learning strategy, non-linear adaptive dynamic weight factor
strategy, and crisscross and Gauss-Cauchy mutation strategy. The application of ISMO is validated
by ten benchmark functions and feature selection. The results indicate that ISMO is superior to other
competitors.

The rest of this study is organized as follows. Part “Spider Monkey Optimization (SMO)”
describes the mathematical model of the SMO. Part “Improved Spider Monkey Optimization (ISMO)”
contains the proposed ISMO. Part “Experiment Results and Discussion” presents the ISMO’s per-
formance evaluation and statistical analysis. In part “Feature Selection Optimization Comparison
Experiment,” the applicability of ISMO in feature selection is evaluated. Finally, part “Conclusions
and Future Research” summarizes the conclusions and future work.

2 Spider Monkey Optimization (SMO)

The SMO comprises seven phases, which are addressed in the following subsection.

(1) Initialization phase: the SMO generates a uniformly distributed initial population of N spider
monkeys, where each monkey SMi (i = 1, 2, . . . , N) is a D-dimensional vector. D is the number of
variables. Each SMi is initialized as follows:

SMij = SMminj + U (0, 1) × (
SMmaxj − SMminj

)
(1)
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where SMminj and SMmaxj are the upper and lower of SMi in the j dimension, U (0, 1) is the range
[0, 1].

(2) Local leader phase (LLP): each spider monkey adjusts its current location based on the
experience of local group members. The location update formula is calculated as follows:

SMnewij = SMij + U (0, 1) × (
LLkj − SMij

) + U (−1, 1) × (
SMrj − SMij

)
(2)

where LLkj represents the j dimension of the k group of the local leader. SMrj is the j dimension of the
r spider monkey chosen randomly within the k group, so r �= i, U (−1, 1) is a random number between
−1 and 1.

(3) Global leader phase (GLP): all the spider monkeys update their locations using the experience
of global leaders. The location update equation is calculated as follows:

SMnewij = SMij + U (0, 1) × (
GLj − SMij

) + U (−1, 1) × (
SMrj − SMij

)
(3)

where GLj represents the j dimension of the global leadership location and j ∈ {1, 2, · · · , D} is the
randomly chosen index.

The locations of spider monkeys are updated based on a probability pi calculated using their
fitness. The pi is calculated as follows:

pi = x × Ft

Fmax

+ y (4)

where Ft is the fitness of the spider monkey, x + y = 1, usually x = 0.9 and y = 0.1.

(4) Global leader learning phase (GLL): the location of the global leader is updated by using the
greedy selection in the population. In addition, check that the location of the global leader is being
updated, and if not, add 1 to the Global Limit Count.

(5) Local leader learning phase (LLL): the location of the local leader is updated by using the
greedy selection in the population. In addition, check that the location of the local leader is being
updated, and if not, add 1 to the Local Limit Count.

(6) Local leader decision phase (LLD): if the location of any local leader is not updated up to a
predetermined threshold, known as the Local Leader Limit, then all the members of the group will
update their locations either through random initialization or using a combination of information
from the global and local leader by Eq. (5) based on the perturbation rate (pr).

SMnewij = SMij + U (0, 1) × (
GLj − SMij

) + U (0, 1) × (
SMrj − LLkj

)
(5)

(7) Global leader decision phase (GLD): the location of the global leader is monitored, and if it
is not updated up to a predetermined number of iterations called Global Leader Limit, then global
leaders will divide the population into smaller groups.

The complete pseudo-code of the SMO is given in reference [10].

3 Improved Spider Monkey Optimization (ISMO)

Based on the above analysis, the improvement of SMO is made in four aspects. First, the initial
population is generated by a refracted opposition-based learning strategy to enhance diversity and
ergodicity. Second, this paper introduces a non-linear adaptive dynamic weight factor to improve
convergence efficiency. Then, using the crisscross strategy, using the horizontal crossover to enhance
the global search and vertical crossover to keep the diversity of the population to avoid being trapped
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in the local optimum. At last, we adopt a Gauss-Cauchy mutation strategy to improve the stability of
the algorithm by mutation of the optimal individuals. Therefore, the collaboration of the four search
strategies can enhance diversification, exploration, and exploitation.

3.1 Refracted Opposition-Based Learning Strategy
Opposition-based learning is a widely used approach for the estimation of population initial-

ization [25]. The idea is to extend the search by calculating the opposite solution to the current
solution and finding a better solution to a given problem [26]. Reference [27–29] is a combination
of metaheuristic and opposition-based learning, and it has been demonstrated that opposition-based
learning can increase the precision of the algorithm. However, there are some disadvantages to
opposition-based learning. Therefore, the opposition-based learning strategy is combined with the
principle of refraction [30] to decrease the possibility of premature convergence in the later period.
The details are illustrated in Fig. 1.

Figure 1: Refracted opposition-based learning

Where the x-axis search interval is known as [LB, UB], the origin O is the midpoint on [LB, UB],
α and β are represented by the incidence angle and the refraction angle, respectively. m and m∗ are
the lengths of the incident and the refracted rays, respectively. The above formula can be obtained as
follows.

n = sin α

cos β
=

LB + UB
2

− x

x∗ − LB + UB
2

× m∗

m
(6)

Let σ = m
m∗ and n = 1. Substituted into Eq. (6) and expanded to the high-dimensional space of

the spider monkey optimization yields the refracted direction solution x∗
i,j, as follows.

x∗
i,j = LBj + UBj

2
+ LBj + UBj

2σ
− xi,j

σ
(7)

where xi,j denotes the position of the spider monkey in the population in j dimensions (i =
1, 2, · · · , N; j = 1, 2, · · · , D), x∗

i,j denotes the refracted opposition solution of xi,j, LBj, and UBj

are the lower and upper bounds of the dynamic boundary, respectively.
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3.2 Nonlinear Adaptive Dynamic Weight Factor Strategy
Shi et al. [31] are the first to apply the weight factor ω to particle swarm optimization (PSO). Eq. (2)

indicates that the current location is updated according to the local leader’s experience, the spider
monkey’s experience within the group, and its own experience. It is easy to lack local search ability in
the late iteration. From Eq. (5), it is found that the original location information is ultimately inherited
by the new location, and the local search capability of the algorithm is also decreased. Therefore, the
introduction of adaptive dynamic weight factor ω is considered in Eqs. (2) and (5).

SMnewij = ω (t) × SMij + U (0, 1) × (
LLkj − SMij

) + U (−1, 1) × (
SMrj − SMij

)
(8)

SMnewij = ω (t) × SMij + U (0, 1) × (
GLj − SMij

) + U (0, 1) × (
SMrj − LLkj

)
(9)

ω (t) = ωi +
(
ωf − ωi

)
Ps (t) exp

(− (αt/Tmax)
2
)

(10)

In Eq. (10), ωi is the initial weight factor, ωf is the final weight factor in the late iteration, α is the
non-linear parameter, t is the current number of iterations, Tmax is the maximum number of iterations,
Ps (t) is the population success rate, and the calculation steps are as follows.

Taking the minimization problem as an example, the success value S (i, t) is defined as follows:

S (i, t) =
{

1 fit (pbi (t)) < fit (pbi (t − 1))

0 fit (pbi (t)) = fit (pbi (t − 1))
(11)

In Eq. (11), pbi (t) denotes the optimal historical position, fit (·) is the fitness function, and the
success rate Ps (t) of the whole population based on the success value S (i, t) is formulated as follows.

Ps (t) = 1
N

∑N

i=1
S (i, t) (12)

In Eq. (12), N is the population size, Ps (t) ∈ [0, 1].

3.3 Crisscross Strategy
The crisscross strategy [32] is introduced to increase the precision of convergence, but it does not

influence the convergence rate.

3.3.1 Horizontal Crossover Operation

The horizontal crossover strategy is to perform crossover operations in the same dimension of
different populations. The formula is as follows:

xt
ij = r1 × xt

ij + (1 − r1) × xt
kj + c1 × (

xt
ij − xt

kj

)
(13)

xt
kj = r2 × xt

kj + (1 − r2) × xt
ij + c2 × (

xt
kj − xt

ij

)
(14)

where xt
ij and xt

kj denote the j dimensional generated by the two spider monkeys after later crossover.
r1 and r2 are random numbers of [0, 1], and c1 and c2 are random numbers of [−1, 1].

3.3.2 Vertical Crossover Operation

The vertical crossover operation is performed in all dimensions of the newborn individual, and
the crossover operation occurs with less probability than the horizontal crossover. The formula is as
follows:

xt
ij = r × xt

ij1
+ (1 − r) × xt

ij2
(15)
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In Eq. (15), xt
ij is a child individual generated by the j1 and j2 dimensions of individual xt

ij by
longitudinal crossover, r ∈ [0, 1].

3.4 Gauss-Cauchy Mutation Strategy
In the late iteration of the SMO, the rapid assimilation of the spider monkeys is prone to local

optimal stagnation. The Gauss-Cauchy mutation strategy [33] is used to mutate the global leader,
compare the locations before and after the mutation, and select the better location to substitute into
the next iteration, as follows:

X t
best = X t

best ×
[
1 + λ1Cauchy

(
0, σ 2

) + λ2Gauss
(
0, σ 2

)]
(16)

Cauchy
(
0, σ 2

) = 1
π (1 + x2)

(17)

Gauss
(
0, σ 2

) = 1√
2π

e
(

− x2
2

)
(18)

In Eq. (17), X t
best denotes the location of the optimal individual after mutation, σ 2 is the standard

deviation of the Gauss-Cauchy mutation, λ1 = 1 − t2/T 2
max and λ2 = t2/T 2

max are dynamic parameters
that adjust adaptively with the number of iterations.

The steps of ISMO are illustrated in Algorithm 1.

Algorithm 1: ISMO Algorithm
1: Input: refracted opposition-based learning strategy to initializing population, local leader limit,
global leader limit, pr
2: Calculate fitness
3: Select global leader and local leaders by using the greedy selection
4: While (Termination criteria are not satisfied) do

4.1 Location update for all the spider monkeys based on LLP with Eq. (8).
4.2 Choosing an optimal location between a new and an existing one based on fitness and using

a greedy selection process.
4.3 Calculate the probability pi for all the group members using Eq. (4).
4.4 Use the Crisscross strategy.
4.5 Apply Gauss-Cauchy mutation strategy.
4.6 Location update for all the group members selected by pi based on GLP using Eq. (9).
4.7 Update local and global leadership locations by applying a greedy selection process to all

members of the group.
4.8 If any of the local leaders still need to update their location for a predefined number of

iterations, then use the LLD to redirect all members of the group.
4.9 The group is divided if the global leader needs to update the location for the predefined number

of iterations. If the number of groups present is less than the maximum number (MG), all the subgroups
combine to form one single group.
5: Return the best result found so far.

The main steps of the proposed ISMO are illustrated in Fig. 2.
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Figure 2: The main structure of the proposed ISMO

4 Experiment Results and Discussion

To prove the validity and robustness of ISMO, we choose ten classical unimodal and multimodal
functions, in which F1–F6 aims to check the convergence speed and precision, and F7–F10 aims to
measure the ability to overcome local optimum, as illustrated in Table 1.
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Table 1: Details of ten classical benchmark functions

Class Function Dimension Range fmin

F1 (x) =
D∑

i=1
x2

i 30 [−100, 100] 0

F2 (x) =
D∑

i=1
|xi| +

D∏
i=1

|xi| 30 [−10, 10] 0

Unimodal functions F3 (x) =
D∑

i=1

(
i∑

j=1
xj

)2

30 [−100, 100] 0

F4 (x) = maxi {|xi| , 1 ≤ i ≤ D} 30 [−100, 100] 0

F5 (x) =
D∑

i=1
ix2

i 30 [−5.12, 5.12] 0

F6 (x) =
D∑

i=1
(xi + 0.5)

2 30 [−100, 100] 0

F7 (x) =
n∑

i=1

[
x2

i − 10 cos (2πxi) + 10
]

30 [−5.12, 5.12] 0

Multimodal
functions

F8 (x) = π

D

{
10 sin (πy1) +

D−1∑
i=1

(yi − 1)
2[

1 + 10 sin2
(πyi+1)

]
+ (yD − 1)

2
}

+
D∑

i=1
u (xi, 10, 100, 4)

yi = 1 + xi − 1
4

u (xi, a, k, m) =

⎧⎪⎨
⎪⎩

k (xi − a)m xi > a
0 − a < xi < a
k (−xi − a)m xi < −a

30 [−50, 50] 0

F9 (x) = −20 exp

(
−0.2

√
1
D

D∑
i=1

x2
i

)
−

exp
(

1
D

D∑
i=1

cos (2πxi)

)
+ 20 + e

30 [−32, 32] 0

F10 (x) = 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

4.1 Comparison Against Other Methods
This study selected the performance of the SMO, ISMO, whale optimization algorithm (WOA),

grey wolf optimizer (GWO), sine cosine algorithm (SCA), slime mould algorithm (SMA), sparrow
search algorithm (SSA), chimp optimization algorithm (ChOA), and gaining-sharing knowledge based
algorithm (GSK) for comparison, the parameters of algorithms are described in Table 2.
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As shown in Table 3, ISMO is superior to the other eight algorithms for ten benchmark functions.
The average (Ave) and the standard deviation (SD) of ISMO are superior to other methods, which
indicates that ISMO has better stability and robustness and ISMO can search not only the exploration
space but also guarantee global search capability. Detailed results are presented in Table 3, and Fig. 3
illustrates the convergence values of all compared methods on the benchmark functions.

Table 2: The parameters of the methods

Algorithm Specifications

SMO N = 50, MG = N/10, LLL = D × N, GLL = N, pr = 0.1
ISMO N = 50, MG = N/10, LLL = D × N, GLL = N, pr = 0.1
WOA α from 2 linearly decreasing to 0, b = 1
GWO α from 2 linearly decreasing to 0, γ1, γ2 ∈ [0, 1]
SCA α (t) from 2 linearly decreasing to 0
SMA z = 0.03
SSA pNum = 0.2 NP, sNum = 0.2 NP, R2 = 0.8
ChOA m = chaos(3, 1, 1)
GSK P = 0.1, kf = 0.5, kr = 0.9, K = 10

Table 3: Experimental test results of different methods

Function Evaluation SMO WOA GWO SCA SMA SSA ChOA GSK ISMO
F1 Ave 5.87E−17 2.98E−58 1.08E−27 4.35E−18 8.62E−268 9.17E−09 1.00E−48 1.01E−03 0

SD 1.02E−17 1.52E−57 1.34E−27 1.78E−17 0 1.80E−08 3.29E−48 2.98E−03 0
F2 Ave 2.52E−16 4.94E−26 8.74E−17 1.90E−11 8.89E−157 1.76E−05 1.38E−28 2.19E−03 0

SD 1.19E−17 2.66E−25 2.96E−17 8.13E−11 1.78E−156 1.45E−05 2.24E−28 2.78E−03 0
F3 Ave 9.72E−03 4.82E−10 2.69E−06 2.65E−10 1.40E−266 4.48E−07 1.40E−17 7.14E+01 0

SD 0 1.37E−09 3.31E−06 1.23E−09 0 8.82E−07 1.55E−17 1.66E+02 0
F4 Ave 2.60E−18 1.07E−14 1.65E−202 1.69E−52 2.16E−271 1.27E−11 7.87E−240 6.70E−72 0

SD 2.61E−18 5.02E−14 0 7.17E−52 0 2.53E−11 0 1.68E−71 0
F5 Ave 5.77E−17 1.64E−71 2.70E−29 1.00E−18 3.59E−259 8.10E−07 4.28E−50 8.09E−06 0

SD 8.50E−18 8.68E−71 3.88E−29 5.06E−18 0 1.57E−06 9.09E−50 1.61E−05 0
F6 Ave 0 0 0 0 0 0 0 1.27E+01 0

SD 0 0 0 0 0 0 0 1.61E+01 0
F7 Ave 4.84E−18 2.97E−84 3.78E+00 6.24E−21 0 8.40E−05 2.91E−44 1.21E+02 0

SD 8.70E−19 1.60E−83 3.83E+00 2.52E−20 0 3.24E−04 1.53E−43 5.68E+01 0
F8 Ave 3.59E−01 8.31E−02 4.36E−02 9.14E−01 3.84E−02 2.88E−04 6.37E−02 1.23E−01 1.92E−07

SD 3.58E−02 1.48E−01 6.59E−03 4.95E−02 2.20E−02 1.58E−04 1.39E−02 2.19E−01 1.44E−07
F9 Ave 2.57E−16 8.70E−24 8.07E−15 1.81E−10 3.00E−98 5.13E−04 1.07E−25 1.39E+00 3.00E−98

SD 2.62E−17 4.35E−23 6.15E−15 6.33E−10 6.50E−114 5.11E−04 1.53E−25 9.24E−01 6.50E−114
F10 Ave 6.38E−19 0 1.49E−02 1.80E−15 0 5.16E−09 0 6.32E−02 0

SD 1.48E−20 0 1.53E−02 9.64E−15 0 5.22E−09 0 5.33E−02 0

4.2 Impact of Introduced Strategies
In this section, we compare the performance of ISMO with four different search strategies, for

example, spider monkey optimization with refracted opposition-based learning strategy (ISMO-1),
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spider monkey optimization with non-linear adaptive dynamic weight factor (ISMO-2), spider monkey
optimization with crisscross strategy (ISMO-3), and spider monkey optimization with Gauss-Cauchy
mutation strategy (ISMO-4). From Table 4, the performance of ISMO is superior to other comparison
algorithms.

Figure 3: Convergence curves

Table 4: Experimental test results of different strategy

Function Evaluation ISMO-1 ISMO-2 ISMO-3 ISMO-4 ISMO

F1 Ave 3.90E−19 1.46E−34 2.45E−61 0 0
SD 3.88E−19 1.30E−34 1.16E−61 0 0

F2 Ave 7.44E−13 1.42E−17 7.22E−34 0 0
SD 2.61E−13 5.68E−18 4.34E−35 0 0

F3 Ave 4.81E−02 1.77E+03 1.58E+00 0 0
SD 1.18E−02 8.79E+02 6.83E−01 0 0

F4 Ave 4.29E−21 1.43E−18 2.64E−31 0 0
SD 3.53E−21 8.47E−19 2.62E−31 0 0

F5 Ave 4.03E−21 4.96E−22 1.38E−61 0 0
SD 3.99E−21 4.86E−22 1.01E−61 0 0

F6 Ave 0 0 0 0 0
SD 0 0 0 0 0

F7 Ave 6.61E−21 4.63E−09 9.54E−30 0 0
SD 8.95E−21 6.55E−09 1.35E−29 0 0

F8 Ave 6.24E−06 3.32E−01 1.40E−11 9.04E−03 1.92E−07
SD 5.09E−06 2.51E−02 7.75E−12 3.42E−03 1.44E−07

F9 Ave 5.52E−12 2.23E−17 5.88E−31 3.00E−98 3.00E−98
SD 5.25E−12 1.67E−17 1.85E−31 6.49E−114 6.50E−114

F10 Ave 7.73E−22 9.05E−23 2.47E−61 0 0
SD 4.73E−22 7.39E−23 2.41E−61 0 0
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4.3 Nonparametric Statistical Test Analysis
The Wilcoxon signed-rank test and Friedman test [34] are applied to compare the performance

of ISMO with other methods, and the significant level is assumed to be 5%. The results of the
nonparametric statistical analysis of the ISMO and different methods are presented in Tables 5 and 6,
respectively.

Table 5: Experimental results of Wilcoxon signed-rank test

Function ISMO vs.
SMO

ISMO vs.
WOA

ISMO vs.
GWO

ISMO vs.
SCA

ISMO vs.
SMA

ISMO vs.
SSA

ISMO vs.
ChOA

ISMO vs.
GSK

p R p R p R p R p R p R p R p R
F1 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
F2 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
F3 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
F4 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
F5 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
F6 1.70e−

08
+ ∗∗∗ + 1.71e−

08
+ 4.19e−

11
+ ∗∗∗ + 4.44e−

11
+ 3.48e−

08
+ ∗∗∗ +

F7 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
F8 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
F9 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
F10 ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ + ∗∗∗ +
+/=/− 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0
Notes: ∗∗∗denotes p = 2.2e−16.

Table 6: Experimental results of the Friedman test

Algorithm Rank mean Rank

SMO 6.35 7
ISMO 1.60 1
WOA 4.30 4
GWO 5.65 5
SCA 6.05 6
SMA 2.30 2
SSA 6.75 8
ChOA 3.60 3
GSK 8.40 9
Chi-square 56.91
p 1.87E−09

In Table 5, “+,” “−,” and “=” indicate the number of functions where ISMO is superior, inferior,
and equivalent to other methods. The p-values of the ten functions are lower than 5%, meaning that
ISMO differs significantly from other methods. In Table 6, the average rank of ISMO is 1.60, which is
lower than other methods. As a result, the ISMO has been proven to have excellent performance.
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5 Feature Selection Optimization Comparison Experiment

5.1 Feature Selection Problem Description
This study applies ISMO to solve the feature selection. Each individual in the overall ISMO

represents a combination of features, also called a feature subset. Each dimension is determined by
the number of original features in the dataset. Each vector is made up of 0 and 1, where 0 indicates the
unselected feature property, and 1 indicates the selection of the corresponding feature property. In the
ISMO population initialization, the individual dimension is randomly [0, 1], so the individual vectors
in the population consist of 0 and 1. In this study, the values of each dimension above 0.65 are set to
1, and the rest are set to 0 to obtain the individual vectors of 0 and 1.

To balance the minimization of selection features and the maximization of classification accuracy,
the fitness function is given by:

F = α × γR (D) + β × |RF |
|Size| (19)

where γR (D) denotes the classification error rate of a given classifier (the K-nearest neighbor (KNN)
classification algorithm is used to evaluate the merit of feature subsets), |RF| denotes the number
of features contained in the current individual, |Size| denotes the original number of features in the
dataset, α and β denote the importance of the corresponding classification quality and feature subset
length, respectively, α and β∈[0, 1], and α + β = 1. In this study, α = 0.99.

To evaluate the performance of ISMO, the mean fitness (Mean), average classification accuracy
(ACavg), and average feature selection (FSavg) are chosen as evaluation indicators, and the formula for
each indicator is presented in Eqs. (20)–(22).

Mean = 1
SR

∑SR

i=1
Ft (20)

where Ft denotes the run of the optimal solution.

ACavg = 1
SR

∑SR

i=1

TP + TN
P + N

(21)

where SR denotes the number of runs, TP, TN, P, and N represent the number of predicted true
samples, the number of predicted true negative samples, the number of positive samples, and the
number of negative samples, respectively.

FSavg = 1
SR

∑SR

i=1
RF (22)

where RF denotes the number of optimal feature subsets with element one obtained from each
algorithm run.

5.2 Dataset Description
To prove the validity of the ISMO feature selection, we choose seven datasets from the University

of California, which are all common test cases for machine learning. A description of the dataset is
given in Table 7, including dataset number, name, number of characteristics, number of samples, and
number of categories. Ten-fold cross-validation is used for training and testing samples. Every dataset
is randomly divided into two groups with different ratios, 90% of the cases are training, and 10% are
used for testing. The maximum number of iterations is Tmax = 100, and the result is chosen as the mean
of 10 independent experiments. Details of the test dataset are given in Table 7.
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Table 7: Test dataset

Number Name Characteristics Samples Categories

D1 Avila 10 20867 12
D2 Fertility 10 100 2
D3 Wine 13 178 3
D4 Lymphography 18 148 4
D5 Dermatology 33 366 6
D6 Ionosphere 34 351 2
D7 Sonar 60 208 2

5.3 Experimental Results
To compare the overall performance of ISMO, it is compared with other methods, such as grey

wolf optimizer (GWO), whale optimization algorithm (WOA), sine cosine algorithm (SCA), and
K-nearest neighbor (KNN). Tables 8–10 compare WOA, GWO, SCA, and KNN performance on
seven datasets in terms of mean fitness, average classification accuracy, and average feature selections,
respectively. The population size is 50, and the maximum number of iterations is 100. Each experiment
is run ten times.

Table 8: Comparison of mean fitness with other methods

Dataset ISMO WOA GWO SCA KNN

Avila 98.3711 82.3762 83.1227 82.5407 72.4228
Fertility 98.0594 92.4700 97.4200 87.4000 79.2000
Wine 97.0192 94.3334 94.7210 95.0562 71.5000
Lymphography 90.6400 83.4237 84.2486 82.8378 72.6000
Dermatology 99.2603 97.8879 98.3962 98.4916 85.2500
Ionosphere 99.3150 90.4610 91.0776 90.9091 88.0000
Sonar 92.2088 80.6644 82.6801 81.4423 80.1429
Mean 96.4106 88.8024 90.2380 88.3825 78.4451

Table 9: Comparison of average classification accuracy with other methods

Dataset ISMO WOA GWO SCA KNN

Avila 98.6577 82.5618 83.3461 82.5407 73.1544
Fertility 98.5000 93.0000 98.0000 87.4000 80.0000
Wine 97.2222 94.7191 95.0562 95.0562 72.2222
Lymphography 91.0000 83.7838 84.5946 82.8378 73.3333
Dermatology 99.7222 98.6034 98.9385 98.4916 86.1111
Ionosphere 99.7183 90.7955 91.5341 90.9091 88.8889
Sonar 92.3810 81.3462 83.3654 81.4423 80.9524
Mean 96.7431 89.2585 90.6907 88.3825 79.2375
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Table 10: Comparison of the average number of features selected with other methods

Dataset Features Number of
samples

ISMO WOA GWO SCA KNN

Avila 9 286 3.2000 3.6000 3.9000 3.7000 10.0000
Fertility 10 20867 4.5556 6.4444 6.0000 7.0000 10.0000
Wine 10 100 3.3000 5.7000 5.0000 6.1000 13.0000
Lymphography 13 178 8.1000 9.4000 9.0000 12.1000 18.0000
Dermatology 17 101 15.1412 24.0706 18.2471 23.7794 33.0000
Ionosphere 18 148 13.7999 14.5000 18.4000 22.0000 34.0000
Sonar 33 366 14.9000 52.1000 51.1000 56.7000 60.0000
Mean 8.9995 16.5450 15.9496 18.7685 25.4286

Table 8 shows that the mean fitness of ISMO is superior to WOA, GWO, SCA, and KNN. Notably,
ISMO performs significantly better than the KNN, particularly the larger datasets. It is demonstrated
that ISMO has excellent performance. Details are given in Table 8 and Fig. 4.
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Figure 4: Mean fitness compared with other methods

Table 9 demonstrates that ISMO performs better than WOA, GWO, and SCA on average
classification accuracy. The classification accuracy of the classifier trained by the selected feature
subset is superior to that of the whole feature set. It is proven that ISMO is effective in reducing
the effects of irrelevant and redundant features and improving classification performance. Details are
given in Table 9 and Fig. 5.

From Table 10, ISMO achieves the minimum feature count based on the average features. Based
on the general average, ISMO finds the least efficient subset of features and performs better than all
the other competing algorithms. Therefore, ISMO can be used to select features efficiently, reduce the
data dimensionality and simplify the learning model. Details are illustrated in Table 10 and Fig. 6.
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Figure 5: Average classification accuracy compared with other methods
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Figure 6: Comparison of average feature selection with other methods

6 Conclusions and Future Research

Aiming at the weakness of SMO, this study presents a new algorithm based on multi-strategy
(ISMO). It can draw the following conclusions from the simulation test.

Firstly, inspired by the ideas of refracted opposition-based learning strategy, crisscross strategy,
and Gauss-Cauchy strategy, a new position update is proposed to increase the population diversity and
enhance global exploration. Moreover, according to the crisscross and Gauss-Cauchy strategies, the
target value is updated with mutation to prevent it from getting into the local optimum. Furthermore,
to verify the validity of ISMO, we simulated ten benchmark functions and compared them with
different methods. Compared with other methods, ISMO has better performance than other methods.
Finally, the Wilcoxon signed-rank test and the Friedman test prove that there is a more remarkable
difference in ISMO.

Then, the ISMO is validated by the feature selection, and it is proved that ISMO is effective in
choosing the best feature subset, reducing the feature dimensionality, and increasing the precision of
classification.
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Thus, ISMO is likely an excellent solution to numerical optimization problems. In the future, it will
be considered how to improve the performance of this algorithm, even in the case of more complicated
optimization problems.
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