
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.037615
Article

Network Intrusion Detection in Internet of Blended Environment Using
Ensemble of Heterogeneous Autoencoders (E-HAE)

Lelisa Adeba Jilcha1, Deuk-Hun Kim2, Julian Jang-Jaccard3 and Jin Kwak4,*

1ISAA Lab., Department of AI Convergence Network, Ajou University, Suwon, 16499, Korea
2ISAA Lab., Institute for Information and Communication, Ajou University, Suwon, 16499, Korea

3Department of Computer Science and Information Technology, Massey University, Auckland, 0745, New Zealand
4Department of Cyber Security, Ajou University, Suwon, 16499, Korea

*Corresponding Author: Jin Kwak. Email: security@ajou.ac.kr
Received: 10 November 2022; Accepted: 09 February 2023

Abstract: Contemporary attackers, mainly motivated by financial gain, consis-
tently devise sophisticated penetration techniques to access important infor-
mation or data. The growing use of Internet of Things (IoT) technology in
the contemporary convergence environment to connect to corporate networks
and cloud-based applications only worsens this situation, as it facilitates
multiple new attack vectors to emerge effortlessly. As such, existing intrusion
detection systems suffer from performance degradation mainly because of
insufficient considerations and poorly modeled detection systems. To address
this problem, we designed a blended threat detection approach, considering
the possible impact and dimensionality of new attack surfaces due to the
aforementioned convergence. We collectively refer to the convergence of differ-
ent technology sectors as the internet of blended environment. The proposed
approach encompasses an ensemble of heterogeneous probabilistic autoen-
coders that leverage the corresponding advantages of a convolutional varia-
tional autoencoder and long short-term memory variational autoencoder. An
extensive experimental analysis conducted on the TON_IoT dataset demon-
strated 96.02% detection accuracy. Furthermore, performance of the proposed
approach was compared with various single model (autoencoder)-based net-
work intrusion detection approaches: autoencoder, variational autoencoder,
convolutional variational autoencoder, and long short-term memory varia-
tional autoencoder. The proposed model outperformed all compared models,
demonstrating F1-score improvements of 4.99%, 2.25%, 1.92%, and 3.69%,
respectively.

Keywords: Network intrusion detection; anomaly detection; TON_IoT
dataset; smart grid; smart city; smart factory; digital healthcare;
autoencoder; variational autoencoder; LSTM; convolutional variational
autoencoder; ensemble learning

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.037615
https://www.techscience.com/doi/10.32604/csse.2023.037615
mailto:security@ajou.ac.kr

3262 CSSE, 2023, vol.46, no.3

1 Introduction

Technology sectors have rapidly converged to provide versatile, high-quality services. For example,
to achieve splendid treatment from health care centers, services from a smart grid, smart buildings,
and smart healthcare can be aggregated. The smart grid ensures a consistently adequate energy supply
through its decentralized energy generation and intelligent self-healing capabilities [1]. Smart buildings,
on the other hand, facilitate high-quality services for health professionals and clients, such as providing
safe and secure spaces or pleasant and controlled environments [2]. Furthermore, smart healthcare
enables smart health monitoring and personalized healthcare services [3]. Consequently, the operations
of each sector are becoming highly interdependent and indivisible. For example, the performance
of a smart grid is substantially dependent on the effective functioning of smart buildings and vice
versa [4,5]. As a result, there is a highly sophisticated interconnection between people, materials, and
institutions. This environment in which the Internet of Things (IoT), big data, and AI converge can
be collectively referred to as the internet of blended environment (IoBE) to emphasize the mixed and
indivisible characteristics of the environment [6].

The convergence of these technologies brings challenging problems, particularly from the cyberse-
curity perspective, as it introduces a new form of blended threats that exploit the vulnerabilities of weak
links as a steppingstone to the most sensitive sectors, such as finance, healthcare, and grid systems.
Some of the most common blended threats during the early ages of smart technologies included Code
Red, Bugbear, and Nimda [7–9]. For example, attackers were able to steal sensitive information, such
as social security numbers and medical records, from Anthem Inc. using a blended threat named
Code Red [7]. The number of attack surfaces is increasing exponentially as it is becoming easier for
new attack vectors to emerge, following the growing use of IoT technology to connect to corporate
networks and cloud-based applications. Such attacks are perilous because of their potential ability to
exploit zero-day vulnerabilities. Although the term “blended threat” is often used to refer to an attack
that combines multiple techniques and methods, we use it to refer to an attack that exploits multiple
vulnerabilities in the IoBE to evade its target. Section 2.3 provides a further explanation of the nature
of blended threats.

Having a threat detection and identification system developed by considering such an environment
is the primary step that must be taken to mitigate blended threats. Owing to the dynamic and complex
nature of the environment, cyberattacks in IoBE have a higher probability of demonstrating solid
relationships and mutual effects on each other. Therefore, it is essential to accurately model the
subtle temporal and spatial connections between the network traffics generated in IoBE to effectively
characterize malicious or anomalous flows in the environment. Machine learning, such as autoencoder
and its variants, has shown remarkable achievements, particularly in network intrusion detection
[10–13]. Zhang et al. [10] and Yan et al. [11] proposed unsupervised network intrusion detection
system (NIDS) by using the stacked autoencoder (SAE) for effective dimensionality reduction.
The authors add and leverages the sparsity constraint on the hidden layer of SAE to enhance the
generalizability of the proposed approach, particularly for the large-scale intrusion detection systems
with massive and high dimensional network traffic. Similarly, Al-Qatf et al. [12] proposed unsupervised
NIDS combining the dimensionality reduction power of SAE with the classification potential of
Support vector machine. The author achieved a competitive classification result compared to the
baseline approaches after applying the proposed NIDS on the NSL-KDD dataset. Similarly, recurrent
neural networks and convolutional neural network-based models have shown better performance
in accurately modeling both temporal and spatial characteristics [14–16]. Therefore, it has become
common to apply a combination of these models and approaches to achieve better performance.

CSSE, 2023, vol.46, no.3 3263

Most of these approaches operate by first training on normal or benign network traffic and
then characterizing any deviation as an intrusion or attack. In other words, an anomaly threshold
is computed to define a classification boundary between benign and anomalous traffic based on
the typical loss exhibited by the model when reconstructing normal network traffic. If insufficiently
designed, the models will suffer significantly from a high rate of false alarms, which eventually degrade
their performance. Furthermore, the convergence of various heterogeneous environments in the IoBE
makes things worse, as it is most likely that the underlying NIDS will experience numerous unmodeled
behaviors. To address this problem, we propose a blended threat detection approach considering the
possible impact and dimensionality of the new attack surfaces due to the convergence of different
technology sectors in the IoBE. The proposed approach encompasses an ensemble of heterogeneous
probabilistic autoencoders combining the corresponding advantages of the convolutional variational
autoencoder (Conv-VAE) and long short-term memory variational autoencoder (LSTM-VAE). The
aggregation of these models intends to effectively characterize the dynamic properties of network
traffic and the subtle relationship between the intrinsic nature of blended threats. Furthermore, to
address the possible false alarm rate due to heterogeneity in the IoBE data, we propose an ensemble
anomaly threshold computing approach based on the individual loss results of both probabilistic
models. The optimum anomaly threshold is computed during the training phase, and the most
representative probabilistic reconstruction error per traffic is determined during the testing phase. An
extensive experiment was conducted on ToN-IoT network intrusion detection datasets, and the results
indicated that the proposed solution achieved 96.02% detection accuracy. Furthermore, we conducted
a performance comparison against various single model (autoencoder)-based network intrusion
detection approaches: autoencoder, variational autoencoder, convolutional variational autoencoder,
and long short-term memory variational autoencoder. The results indicated that the proposed model
outperformed all other models by demonstrating F1-score improvements of 4.99%, 2.25%, 1.92%, and
3.69%, respectively.

The following points summarize the main contributions of this paper:

• We provide a network intrusion detection system to detect blended threats in the internet of
blended environment (IoBE), considering the possible impact and dimensionality of new attack
surfaces resulting from the convergence of different technology sectors.

• We analyze the dimensionality and impact of blended threats in the IoBE.
• We provide an optimal anomaly threshold computation approach using an ensemble of

heterogeneous autoencoders, in which an optimal anomaly score is computed during the
training phase based on the respective loss distribution of each autoencoders, and the most
representative probabilistic reconstruction error per traffic is determined adaptively during the
test phase.

• Our approach demonstrated 3.99%, 1.95%, 1.92%, and 2.69% F1-score improvements com-
pared to the single autoencoder-based network intrusion detection systems: autoencoder,
variational autoencoder, convolutional variational autoencoder, and long-short term memory
autoencoder, respectively.

The remainder of this paper is structured as follows: in Section 2, we review some background
information needed to adequately understand the proposed solution; in Section 3, we analyze the
dimensionality and impact of blended threats in the IoBE; in Section 4, we discuss the proposed
method in detail, including the problem formulation and model construction; in Section 5, we
discuss the implementation of the proposed approach, elaborating on the experimental setting and

3264 CSSE, 2023, vol.46, no.3

data preprocessing; in Section 6, we evaluate and discuss the overall performance of our proposed
technique; and finally, we provide concluding remarks in Section 7.

2 Background

This section provides important background information to help better understand the different
topics covered in the manuscript. Furthermore, Table 1 provides descriptions of the notations used in
the manuscript to denote mathematical expressions.

Table 1: Description of notations used

Notation Description

Ns Number of data points in the network traffic
si ith feature of each data point
x Input dataset
x(i) ith data point from the input dataset
ẋ(i) ith element from the reconstructed dataset
z(i) ith element from the latent vector
μ, δ, and ξ Mean, standard deviation, and constant
p (A) Probability distribution of A
pθ (A) Probability distribution of A parametrized by parameter θ

qφ (A|B) Posterior probability distribution of A given B and
parametrized by φ

DKL Kullback–Leibler divergence loss
L Reconstruction loss
W , b Weight and bias matrix
Subscript t − 1, t, and t + 1 To denote the past, current, and future time step
h, f , c, i, and o To denote the internal state, forget-gate, store-gate, input-gate,

and output-gate of an LSTM cell
Wf , Wc Wi, Wo, bf , bc, bi, bo Respective weight and bias matric of each LSTM gates
Tx Anomaly threshold computed by model x
Topt Optimal threshold value (computed for each input data point

during the training phase)
Lbest Best representative final loss (computed for each input data

point during the test phase)
Ldis−x Loss distribution of model x
Lfin−x Final loss computed by model x combining the probabilistic

reconstruction and KL-divergence loss
Mi Training model

2.1 Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)
An RNN is a type of deep learning neural network that was primarily developed to model

sequences in data when patterns in data change with time [17,18]. In a standard neural network, the

CSSE, 2023, vol.46, no.3 3265

information flows only in one direction—from input to output—which prevents the network from
maintaining information about previous events when there is a sequence of events in time. In contrast,
the simple structure of an RNN has a built-in feedback loop that enables the network to analyze
current and future information by allowing the information to persist over time. Similarly, the RNN
allows information to flow through time by applying a recurrence relation at every timestep to process
a sequence [18]. At some timestep t, unlike the standard neural network, which only computes the
output vector yt from the input vector xt, the RNN computes an internal state update ht and passes
this information from timestep t to the subsequent timestep t + 1. At each timestep t, the internal
state ht is updated by applying a function fw that is parametrized by a set of weights w and takes the
old state ht−1 and an input vector xt as arguments, as shown in Eq. (1). Most importantly, the same
function with its set of weight parameters is used throughout the entire timestep. The network learns
this set of parameters during training, as shown in Fig. 1. Note that learning in a neural network
is an iterative process of adjusting the difference between the model output and expected output by
computing the model loss, backpropagating, and adjusting the weight parameters to minimize the loss.

ht = fw (ht−1, xt) (1)

Figure 1: RNN structure

However, in an RNN, unlike a standard neural network, the gradient of the total loss is
backpropagated in time to the beginning of the data sequence [18,19]. This results in an exploding
gradient problem when the gradients are larger than one, and a vanishing gradient problem when
they are less than one. In the latter case, the network is less likely to capture long-term dependencies
because of difficulties in propagating the loss further into the distant past. Long short-term memory
(LSTM), on the other hand, is a variant of RNN that was explicitly designed to avoid such long-term
dependency problems, using the inherent behavior of remembering important information for long
periods [19,20]. This is achieved by carefully regulating the information flow and storage using a key
structure called a gate, which enables the LSTM to selectively add or remove information to its cell
state, as illustrated in Fig. 2.

In general, information passing through a single layer of LSTM involves four major steps:
forgetting irrelevant history, storing the relevant part of the new information, selectively updating the
internal state based on what to forget and what to store, and finally generating an output, as shown in
Fig. 2. In the first step, the LSTM decides on part of the information to be forgotten using the function
ft composed of the prior internal state ht−1 and the current input xt, as shown in Eq. (5). The second
step is to determine the relevancy of the new information candidate Ct, by adding stored portion of
the previous cell state (ft ∗ Ct−1) and portion of the current cell state to be used (it ∗ ′Ct), as shown in
Eq. (2). The cell state is then selectively updated in the third step, taking the relevant part of both the
prior and current information, as shown in Eq. (4). Finally, the output gate provides an output to the
next timestep, deciding on part of the information encoded in the cell state using the sigmoid layer,

3266 CSSE, 2023, vol.46, no.3

as shown in Eq. (3). A combination of these steps helps each LSTM layer to create and maintain an
internal independent cell state, which allows the uninterrupted flow of the gradient through time.

Ct = ft ∗ Ct−1 + it ∗ ′Ct (2)

Ot = δ (w0. [ht − 1, xt] + b0) (3)

ht = Ot ∗ tanh (Ct) (4)

ft = δ
(
Wf .(ht−1, xt) + bf

) =
{

0, forget everything
1, remeber everything

(5)

where xt is the input to the current timestep, Wf is the weight matrix, bf is the bias, and ht−1 is the
hidden state of the previous timestep.

Figure 2: LSTM structure

2.2 Autoencoder and Variational Autoencoder
Autoencoders are simple generative models designed to automatically learn low-dimensional

feature representations of data by understanding the underlying hidden structure [21,22,11]. They
are composed of a concatenated encoder and decoder block, as shown in Fig. 3a, where the encoder
block maps the input space x into a low-dimensional representation vector (latent space) z, and the
decoder block reconstructs the original input space x by mapping the latent space vector z back to
the dimensionality of the input space x. The network is trained to learn the latent vector z using
an unsupervised approach by minimizing the reconstruction loss, that is, the difference between the
original input space and the reconstructed input space and generating an output that resembles the
input space as accurately as possible.

However, the standard autoencoder follows a deterministic encoding approach that enforces
the input space into a deterministic latent vector, presenting the latent space as a bottleneck in
the network. This implies that the quality of the autoencoders mostly depends on determining the
appropriate dimensionality of the latent space. The higher the dimensionality, the poorer the encoding
functionality, and the lower the dimensionality, the poorer the quality of the reconstructed output
[22]. In contrast, the variational autoencoder (VAE) is a variant of a generative model designed to
avoid the bottleneck problem in the standard autoencoder by replacing the deterministic latent-space
learning operation with a probabilistic sampling operation [21,23]. In other words, instead of learning

CSSE, 2023, vol.46, no.3 3267

the latent variable directly from the encoder operation, the VAE learns the mean (μ) and variance (δ)

that parametrize a probability distribution for latent variables in the latent vector. The probabilistic
representation of the latent space is then sampled from the means and variances of the described
distribution. Both the encoder and decoder in the VAE have a probabilistic nature, in which the encoder
computes pφ(z|x), the probability distribution of the latent vector z given the input space x, and the
decoder computes the reverse operation qθ (ẋ|z), the probability distribution of the reconstructed input
space ẋ given the latent vector z. In addition to the reconstruction loss in the standard autoencoders,
to minimize the overfitting problem, the loss function L of the VAE, as shown in Eq. (6), contains a
regularization term that imposes a constraint on learning the latent distribution by placing a prior p(z),
the initial hypothesis of the latent distribution, on the latent space z and enforcing each latent variable
in the latent space to follow p (z) . The divergence between p (z) and the inferred distribution pφ(z|x) is
measured using a distance function called the Kullback–Leibler (KL) divergence, DKL(pφ (z|x) ||pθ (z)).
If the mean squared error is used to measure the reconstruction loss, the loss function of the VAE will
have the form shown in Eq. (6).

L (φ, θ , x) = ||x − ẋ||2
2 + DKL

(
pφ (z|x) ||pφ (z)

)
(6)

Figure 3: Structure of (a) autoencoder and (b) variational autoencoder

Furthermore, the VAE overcomes the problem of backpropagating a gradient through the
probabilistic sampling layer by introducing the concept of a reparameterization trick. Instead of
drawing the latent vector directly from the distribution parametrized by μ and δ, the trick is performed
by considering the sampled latent vector as a sum of a constant vector μ and scaled δ (scaling δ is
done by multiplying with random constant ξ drawn from the prior distribution), as shown in Eq. (7).
All the operations of the fully connected multilayer perceptron-based VAE, including encoding,
parametrization, reparameterization, and decoding operations, are illustrated in Fig. 3b.

z = μ + δ � ξ (7)

3268 CSSE, 2023, vol.46, no.3

3 Blended Threats in Internet of Blended Environment (IoBE)

The convergence of various technology sectors in the IoBE brings challenging multidimensional
problems, particularly from a cybersecurity perspective [24,25]. Such convergence is occurring at
an alarming rate. However, the corresponding cybersecurity defense strategies have not been given
sufficient attention [24]. Consequently, there are several weak links in such environments, which in
turn exponentially increase the number of attack surfaces. This allows attackers to devise simple
but devastating cyber threats that exploit the vulnerabilities of weak links in the environment. For
example, attackers can easily infiltrate highly sensitive sectors using weak links, such as the IoT in
smart buildings, as a steppingstone [24]. Therefore, we define blended threats as cyber threats that
hackers mostly use to trigger multiple attacks to evade their target by exploiting various attack surfaces
in IoBE. After successfully passing through the target’s security solutions, blended threats typically
attempt to expand their attacks by exploiting other available software and/or hardware vulnerabilities
[7–9]. This allows attackers to launch devastating cyberattacks that can rapidly propagate and infect
multiple endpoints.

A comprehensive analysis of possible vulnerabilities in smart factories, smart grids, digital
healthcare, smart buildings, and intelligent transport systems was provided in [6], assessing potential
attack surfaces and security threats. Advanced metering infrastructure, energy storage systems, energy
management systems, and electric vehicle charging systems are potential attack surfaces in a smart
grid [26–33]. Similarly, electronic medical equipment, medical information systems, and overall
healthcare networking systems are potential attack surfaces in smart healthcare [34–37]. Furthermore,
closed-circuit television systems, alarm systems, access control systems, heating, ventilation, and air
conditioning, and integrated building management systems are possible attack surfaces in smart
buildings and smart factories [38–44]. Furthermore, these attack surfaces are exposed to potential
security threats, such as data breaches, data tampering, malfunction and interruption, malicious
code infection, and sometimes physical damage to equipment. Table 2 summarize some potential
vulnerabilities in the IoBE with their respective attack surfaces and security threats, focusing on smart
grids, smart buildings, and smart healthcare.

Following the complex interconnection between heterogeneous environments, the data generated
by an active player in the IoBE are mostly consumed by the other participants. Such complex data
propagation and consumption facilitate sophisticated cyber threats that leverage weak links in an
environment where security solution is weak or absent. Moreover, owing to the novelty of these
threats, it will be difficult for security technologies to detect and identify them, as the convergence is
occurring before such security scenarios are sufficiently considered [24]. Therefore, devising a robust
threat detection technology, with the aforementioned scenarios in mind, is the primary step toward
mitigating blended threats in the IoBE. Once blended threats are successfully detected, the next step is
characterizing them and tracing their origins by identifying the subtle relationship between the intrinsic
nature of those threats.

Furthermore, machine learning models benefitted greatly from the ever-growing amount of
massive data collected from various sources [45]. Consequently, when sufficiently designed and fine-
tuned, these models have shown remarkable success in easily fitting to any given problem space [46,47].
Similarly, deep learning approaches, as discussed in Section 1, play an invaluable role in designing
effective network intrusion detection systems. Therefore, we designed a robust approach for blended
threat detection in the IoBE using an ensemble of heterogeneous probabilistic autoencoders. In doing
so, we leveraged the corresponding advantages of Conv-VAE and LSTM-VAE to effectively model the

CSSE, 2023, vol.46, no.3 3269

dynamic characteristics of network traffic and determine the subtle relationship between the intrinsic
nature of blended threats.

Table 2: Examples of data breach, malfunction, and interruption attacks on different sectors in IoBE

Target technology sector Attack type Technique

Smart grid Distribution substation controller
and Energy Storage System data
breach

Using man in the middle attack

Advanced Metering Infrastructure
data leakage

Using packet sniffing techniques

Large-scale power outage Using DDoS attack on smart
meters

Smart buildings Interrupt the overall operation of
the Intelligent building management
systems (IBMS)

Through IBMS credential theft

Fire alarm systems operation
interruption

Using unauthorized remote
access

Heating, Ventilation, and
Air-Conditioning data breach

By exploiting vulnerabilities in
various HVAC suppliers

Smart healthcare services Freezing medical devices Using packet spoofing
Encryption key breach By exploiting less-secure medical

devices
Medical record breach Performing packet analysis on

DICOM protocol

4 Proposed Solution

The proposed approach encompasses an ensemble of heterogeneous autoencoder-based models,
Conv-VAE and LSTM-VAE, to model the spatial and temporal characteristics, respectively, of network
traffic. Similarly, we used a probabilistic autoencoding approach to address the expected variability
in the distribution of IoBE data. In standard autoencoders, the reconstruction error, which is an
essential parameter for characterizing the network traffic, is computed based only on the difference
between the reconstruction and the original input. This deterministic nature makes it difficult to
calculate the representative reconstruction error if the underlying input variables are heterogeneous
(as in IoBE data). However, probabilistic autoencoders address this problem by calculating the
probabilistic reconstruction error based on both the reconstruction error and the variance parameter
of the respective distribution of each unit of heterogeneous input data. Furthermore, to address the
possible large false alarm rate due to heterogeneity in the IoBE data, we devised an optimal threshold
computation module that determines the best representative threshold value based on the results of
both models. A further explanation of this module is provided in Section 4.3. Fig. 4 illustrates the
overall design of the proposed solution.

3270 CSSE, 2023, vol.46, no.3

Figure 4: Overall design of the proposed solution

4.1 Convolution Variational Autoencoder (Conv-VAE) Modeling
For a sequence S = {s1, s1 s2 s3 . . . sn} of network traffic, where si is a feature of the traffic and Ns is

the total number of data points in the dataset, the dimensionality of the dataset is x ∈ Rsi×Ns . Given an
input dataset x characterized by an unknown probability distribution p(x), the objective of training
the Conv-VAE is to model or approximate the true distribution p of the data using a parametrized
distribution pθ , as shown in Eq. (8). However, because of the computational complexity of calculating
pθ (x), the VAE uses an extra function qφ(z|x) to approximate the posterior distribution by calculating
a distribution z given input x. As a result, qθ (z|x) ≈ pθ (z|x), where φ, is a set of real values that
parametrizes q.

pφ (x) =
∫

pθ (ẋ|z) pθ (z) dz (8)

where p (x) is the probability of the input data x, pθ (x) is a parametrized probability of input data
x, pθ (z) is a parametrized probability of latent space z, pθ (ẋ|z) is a parametrized probability of
reconstructed data ẋ given latent space z, and qφ(z|x) is an approximated posterior of latent space
z given input data x.

Therefore, training the Conv-VAE entails finding a good probabilistic autoencoder by crafting the
encoder part to calculate the conditional likelihood distribution qφ (z|x) , and designing the decoder

CSSE, 2023, vol.46, no.3 3271

part to approximate the posterior distribution pθ (ẋ|z), as shown in Fig. 5. This way, the parameters
θ and φ will be co-optimized to reduce the probabilistic reconstruction error between the input and
generated data, and qφ (z|x) will be as close as possible to pθ (z|x) . The mean squared error is used to
compute the reconstruction loss, whereas the KL divergence, DKL(pθ (ẋ|z) ||pθ (z)), is used to compute
the difference between the probability distributions of q and p over the same variable x by squeezing
qφ (z|x) under pθ (z|x). (Algorithm 1) is used to implement the aforementioned training process of the
Conv-VAE network.

Figure 5: Implemented Conv-VAE model structure

We used one-dimensional, two stages of convolution and max pooling from the encoder side and
the reciprocal structure—unpooling and deconvolution layers—in the decoder part, when modeling
the Conv-VAE, as shown in Fig. 5. A kernel size of 4 with a feature space depth ranging from 8 to
32 channels for the encoder and the reverse was used for the decoder part. The stride and padding
sizes were determined through trial and error to conform to the dimensionality requirements of the
intermediate layers without compromising performance. We also added dropout with a probability of
0.3 per hidden layer to address the overfitting problem and trained the network for 100 epochs using
the Adam optimizer with a learning rate of 1e−4.

Algorithm 1: Training the Conv-VAE model
1. Input : input data (xk), number of epochs (N) , loss function (L);
2. Output : encoder qφ (z|x) , decoder pθ (ẋ|z) , threshold;
3. Parameters : Wi, bi (weight and bias matrix)
4. Dataset (Batchloading): D
5. Initialize all weights;
6. For iteration 1 to N do :
7. For all xi ∈ D do :
8. z(i) ← qφ (z|x) (Eq. (7))
9. ẋ(i) ← pθ(ẋ|z)
10. Lrec ← L

(
ẋ(i), x(i)

)
(Eq. (6))

(Continued)

3272 CSSE, 2023, vol.46, no.3

Algorithm 1: Continued

11. KLD ← DKL(pθ (ẋ|z) | ∣∣pθ (z)
)

(Eqs. (6), (8))
12. total_loss ← Lrec + KLD
13. backpropagate the total loss and update weights;
14. end for
15. end for

4.2 LSTM Variational Autoencoder (LSTM-VAE) Modeling
The LSTM-VAE is modeled in the same way and with the same objective as the Conv-VAE,

reducing the probabilistic reconstruction error between the input and generated data and bringing the
distribution of qφ (z|x) as close as possible to pθ (z|x), using the mean squared error and KL divergence
loss, respectively, as shown in Fig. 6. (Algorithm 2) is used to train two LSTM cells in each encoder and
decoder part. The training process is same as of the algorithm 1 with slight difference in the trainable
parameters (line 3 and 7–10). Similarly, we added dropout with a probability of 0.3 after each hidden
layer to address the overfitting problem. Finally, we trained the network for 100 epochs using the
Adam optimizer with a learning rate of 1e−5.

Figure 6: Implemented LSTM-VAE model structure

Algorithm 2: Algorithm for training the LSTM-VAE model
1. Input : input data (xk), number of epochs (N) , loss function (L);
2. Output : encoder qφ (z|x) , decoder pθ (x|z) , threshold;
3. Parameters : Wf , Wc Wi, Wo, bf , bc, bi, bo (Eqs. (2)–(5))
4. Dataset (Batchloading): D
5. Initialize all weights;
6. LSTM cell input output :
7. Initialize ho and co = 0;

(Continued)

CSSE, 2023, vol.46, no.3 3273

Algorithm 2: Continued
8. Calculate f t, ct, it

9. Update cell state ct (Eq. (2))
10. Calculate output ot and ht (Eqs. (4), (5))
11. For iteration 1 to N do :
12. For all xi ∈ D do :
13. z(i) ← qφ (z|x) (Eq. (7))
14. ẋ(i) ← pθ (x|z)
15. Lrec ← L

(
ẋ(i), x(i)

)
(Eq. (6))

16. KLD ← DKL(pθ (x|z) | ∣∣pθ (z)
)

(Eqs. (6), (8))
17. total_loss ← Lrec + KLD
18. backpropagate the total loss and update weights;
19. end for
20. end for

4.3 Computing Anomaly Threshold
In a classical approach, anomaly detection is performed by finding the best representative

corresponding conditional likelihood distribution qφ (z|x) for the normal data points and categorizing
any input that does not follow the distribution as anomalous. The probabilistic reconstruction loss
of any unseen data point will be larger than that of a benign data point. Therefore, the model can
easily recognize anomalous data points as outliers by setting a threshold for the reconstruction loss.
However, such an approach will suffer from a high rate of false alarms and performance degradation
if insufficiently modeled. Furthermore, the convergence of various heterogeneous environments in the
IoBE makes things worse, as it is likely that the underlying detection models will experience numerous
unmodeled behaviors. To address this problem, we devised an optimal threshold computation module
that generalizes and computes the anomaly threshold to effectively discriminate between anomalous
and benign traffic. This was performed using an ensemble of total probabilistic losses from both Conv-
VAE and LSTM-VAE, as shown in Fig. 7.

Figure 7: Proposed optimal threshold computation model

(Algorithm 3) is used to compute the anomaly threshold in the training phase and to determine
the representative probabilistic total loss for each data point in the testing phase. In the training phase,
the anomaly threshold for each model (T1, T2) is computed based on their respective loss distributions
Ldis−1, Ldis−2, (Algorithm 3, line 3). We used the Z-score with two-sigma (95%) to set a threshold (T1, T2),

3274 CSSE, 2023, vol.46, no.3

and the maximum of these values, max (T1, T2), is set to be the optimum threshold T (Algorithm 3,
line 14–16). In the testing phase, a minimum of the corresponding probabilistic final loss from each
model, min (L1, L2), is computed and compared with the optimum threshold, T , to identify anomalies
(Algorithm 3, line 18–20). L1 and L2 are the corresponding final losses computed by both probabilistic
autoencoders, that is, Lfin−1 and Lfin−2, respectively. The best representative loss for each data point is
compared with the optimum threshold for the anomaly decision in the training phase (Algorithm 3,
line 23).

Algorithm 3: Algorithm for optimal anomaly threshold
1. Input: input data (xk), trained model (Mi) , loss function (L) , N ;
2. Output : Losses, optimum threshold

(
Topt

)
,representative loss (Lbest);

3. Dataset (Batchloading): D
4. Model = Evaluation mode;
5. #Comput the optimum threshold (training phase):
6. Gradient propagation = False;
7. For iteration 1 to N do :
8. For all xi ∈ D do :
9. totalloss ← Mi(xi)

10. end for
11. end for
12. For all i ∈ Mi do:
13. Ldis−i ← loss distribution (total_lossi)

14. Ti ← 95%(Ldis−i)

15. end for
16. Topt ← max(Ti)

17. #Finding the best representative loss (testing phase):
18. For all i ∈ Mi do:
19. For all xi ∈ D do :
20. Lfin−i ← Mi

(
xi

)

21. end for
22. end for
23. Lbest ← min

(
Lfin−i

)

5 Implementation

5.1 Experimental Setting
The model was implemented in the Python programming language using the PyTorch framework

and Jupyter Notebook. Table 3 shows our development environment. The implementation environ-
ment and experimental setup explained in this section also works for other network intrusion detection
datasets such as NSL-KDD.

The model was trained using the Adam optimizer along with other fine-tuned hyperparameters
such as training epochs, batch size, learning rate, and loss. The mean square error (MSE) was used
to measure the probabilistic reconstruction error, as the latent space vector of our models follows a
Gaussian distribution. A binary cross entropy (BCE) loss would have performed better in a latent
space vector with a multinomial distribution (such as classification tasks). We used a mini-batch
training approach in which the optimizer updated the weight matrix for each input data, but the

CSSE, 2023, vol.46, no.3 3275

gradient was reset for each mini-batch computation. We used the probabilistic reconstruction error
and KL divergence loss to evaluate the model using the validation data for each epoch during the
training phase. Fig. 8 illustrates the overall training process of the proposed solution (excluding the
optimum anomaly threshold computation process). Furthermore, the dataset was split into training,
validation, and test groups for evaluation. We first split the dataset into 80% training and 20% testing
sets, and then separated only the normal traffic from the training set for model training. Finally, the
model’s performance was evaluated by measuring the accuracy, precision, recall, and F1-score from the
results of a single run on the test dataset. Further elaboration on the evaluation matrices is provided in
Section 4.3.

Table 3: Development environment

Components Specification

Operating system Windows 10 Pro
CPU Intel(R) Core (TM) i7-4790K CPU @

4.00GHz x64-based processor
GPU NVIDIA GeForce GTX 1060 6 GB
RAM (random access memory) 32 GB DDR4 RAM
Machine learning framework PyTorch
Programming environment Jupyter Notebook with Python 3

Figure 8: Overall training process of the proposed solution (excluding the optimal threshold compu-
tation process)

3276 CSSE, 2023, vol.46, no.3

5.2 Dataset
As explained in Section 2.3, the IoBE is a blended environment in which various technology

sectors converge to form an indivisible whole. To prepare a proof-of-concept for our proposed work,
we needed a dataset that was created considering such a converged environment. However, obtaining
a comprehensive dataset was challenging. Therefore, we chose to use the ToN_IoT dataset, which
is closer to our requirements, as it was collected under conditions that partially resemble those of
the IoBE. The dataset was collected from heterogeneous data sources including IoT and Industrial
IoT (IIoT) sensors telemetry data, network traffic, and operating system logs, (Windows 7, Windows
10, Ubuntu 14 TLS and 18 TLS) [48,49]. A new testbed including IoT and IIoT networks was
created to resemble the realistic heterogeneity of medium scale Industry 4.0, based on the interaction
between network elements and IoT/IIoT systems with the three layers of Edge, Fog, and Cloud
[50]. Furthermore, the dataset encompasses numerous normal and cyber-attack events against web
applications, IoT gateways, and computer systems collected from network traffic, Windows audit
traces, Linux audit traces, and telemetry data of IoT services. The Train_Test_Network dataset was
used to train and evaluate the proposed model [51]. The distribution and other statistical information
of the dataset are discussed in Section 5.3 along with discussing the preprocessing operation.

5.3 Preprocessing
Preprocessing encompasses numericalization, encoding, and normalization. The numericalization

and encoding steps are used to convert all non-numerical (categorical) features into numbers and
later to binary features using a one-hot encoding technique. Similarly, the normalization step is
used to mitigate the impact of scale variation across different features in the dataset; thus, features
with large values do not influence the outcome. This step is performed using a standard scaler. The
Train_Test_Network_dataset contains 461,043 records, of which 300,000 are labeled as “normal” and
161,043 are labeled as “anomalous” Table 4. Furthermore, the anomalous category includes attacks
such as backdoors, DDoS, DoS, injection, ransomware, and scanning, including numerical and cate-
gorical features. Fig. 9 illustrates the distribution of attack types in the Train_Test_Network_dataset.

Table 4: Attack distribution in the Train_Test_Network_dataset

Network dataset Total Normal Anomalous

All network data 22,339,021 796,380 21,542,641
Train and test data 461,043 300,000 161,043

The one-hot encoding process takes a matrix of integers, denoting the values taken by categorical
features, and converts them into n-dimensional vectors of binary code, where the value of “n” is
determined by the total number of attributes in the categorical feature. It is assumed that the input
features take values within the range (0, n). Therefore, we first encode the features into labels and then
transform every category into a number. For example, the single feature “http_version” is encoded
into two features using one-hot encoding. As shown in Table 5, there are 24 categorical features in
the dataset; the maximum number of distinct attributes per feature is 74, and the minimum is 2.
Therefore, after applying one-hot encoding, the total number of features becomes 252, of which 233
are categorical features and the rest are numeric features.

CSSE, 2023, vol.46, no.3 3277

Figure 9: Histogram of attack data points in TON_IoT dataset

Table 5: Categorical feature distribution in the TON_IoT dataset

Categorical feature Number of categories Categorical feature Number of categories

proto 3 ssl_issuer 5
service 10 http_trans_depth 11
conn_state 13 http_method 4
dns_AA 3 http_uri 74
dns_RD 3 http_version 2
dns_RA 3 http_user_agent 36
dns_rejected 3 http_orig_mime_types 3
ssl_version 4 http_resp_mime_types 10
ssl_cipher 6 weird_name 12
ssl_resumed 3 weird_addl 4
ssl_established 3 weird_notice 2
ssl_subject 6 ssl_issuer 5

The normalization step is performed using a standard scaler, which scales the data to unit
variance by making the mean equal to zero following the standard normal distribution. This type
of normalization technique is useful for features that follow a normal distribution. Each point x of the
input data was converted to the equivalent point in a standard normal distribution z, using Eqs. (9)
and (10).

z = x − μ

δ
(9)

δ =
√∑

(xi − μ)2

N
(10)

3278 CSSE, 2023, vol.46, no.3

where δ, N, xi, and μ denote the standard deviation, feature size, data point, and mean of the intended
features, respectively.

5.4 Evaluation Matrix
An experiment was conducted to investigate the performance of the proposed work in two ways:

(1) by conducting an experiment on a dataset collected from an environment that closely resembles the
IoBE (the ToN_IoT dataset), and (2) by evaluating its performance against a single autoencoder-based
network intrusion detection methods. Performance metrics including accuracy, precision, recall, and
F1-score were used to evaluate the overall performance of the proposed approach. The formulae used
to calculate each performance matrix are given in Eqs. (11)–(14), respectively.

Accuracy = TP + TN
TP + FP + FN + TN

(11)

Precision = TP
TP + FP

(12)

Recall = TP
TP + FN

(13)

F1 Score = 2 ∗ (Recall ∗ Precision)

Recall + Precision
(14)

In this context, true positive (TP) is the number of correctly labeled anomalous traffic samples,
true negative (TN) is the number of correctly labeled normal traffic samples, false positive (FP) is the
number of incorrectly labeled anomalous traffic samples, and false negative (FN) is the number of
incorrectly labeled normal traffic samples.

6 Results and Discussion

6.1 Model Training Performance
In the training phase, inefficient model parameter definitions such as hyperparameter tuning,

including learning rate, dropout probability, number of layers, and optimizer type, significantly affect
the model performance. Over tuning results in overfitting to the training set, whereas under tuning
results in poor performance. The training phase can be formulated as a multi-objective optimization
problem where the objectives are to determine the optimal solution for the aforementioned model
parameters. However, because this problem has no distinct solution, most researchers use an iterative
searching approach, such as grid searching, to select the best candidates among a predefined set of
values. The dropout probability randomly sets the portion of disconnecting neurons whenever applied,
whereas the learning rate defines the optimal rate at which the model should minimize the difference
between the ground truth and the expected outcome. The Adam optimizer is a popular and almost
parameter-free optimization function that allows the learning rate to adapt over time. However, the
initial learning rate must be set to avoid divergence.

After conducting rigorous experiments, we found two different sets of the best model parameters
for both Conv-VAE and LSTM-VAE. The differences between the sets are probably due to the
underlying variabilities in the model structure. The optimal dropout probability, number of layers,
and learning rate for the Conv-VAE model were found to be 0.5, 3 per encoder-decoder, and 1e−4,
respectively. The corresponding values for the LSTM-VAE were found to be 0.3, 3 per encoder-
decoder, and 1e−5, respectively. Consequently, both models appeared to follow a satisfying trajectory
in both the training and validation phases, as illustrated in Fig. 10. In both cases, the validation

CSSE, 2023, vol.46, no.3 3279

loss almost followed the trajectory of the training loss curve, which implies high precision of the
hyperparameter tuning process, as shown in Figs. 10b and 10c.

Initially, we set an equal learning rate for both models, and the process continued to perform well
until we re-evaluated the models by increasing the number of training epochs (from 100 to 300). In
this case, the LSTM-VAE model frequently experienced a sudden divergence after a long convergence
duration, whereas the Conv-VAE model continued to perform well. The problem was resolved by
setting the dropout probability to 0.5 and minimizing the learning rate by a factor of 10 for the LSTM-
VAE. Despite the longer training duration, the small learning rate helped the LSTM-VAE model to
learn a better set of weights for the given input data space, as shown in Fig. 10c. However, the Conv-
VAE smoothly converged, starting from a significantly larger loss, as shown in Figs. 10a and 10b.

Figure 10: Loss vs. number of epochs: (a) training loss of Conv-VAE vs. number of epochs; (b) training
and validation loss of Conv-VAE vs. number of epochs; (c) training and validation loss of LSTM_VAE
vs. number of epochs

6.2 Optimal Threshold Computation
Despite the underlying heterogeneity, both models converged to approximately similar loss values

from different starting points. Similarly, both models exhibited interesting characteristics for modeling
the distribution of the input data space. These two points motivated us to use an ensemble of both
heterogeneous models to address the dynamic behavior of the IoBE. The corresponding histogram
of model loss on benign test data points indicates that both models follow a normal distribution, as
shown in Figs. 11a and 12a. Therefore, we set the anomaly threshold value for both models by using
the Z-score rule with two-sigma (95%). Fig. 11a illustrates the test loss distribution of normal data
points for Conv-VAE, whereas Fig. 12a illustrates the corresponding results for LSTM-VAE.

In contrast, the corresponding histogram of the model loss for the test data containing only attack
data points shows that both models follow different distributions, as shown in Figs. 11b and 12b. The
Conv-VAE model appears to follow a multimodal log-normal distribution, whereas the LSTM-VAE
appears to follow a flipped multimodal log-normal distribution. As illustrated in Figs. 11 and 12, both
models performed well in separating the corresponding distribution of benign (test) and attack (test)
data points with minimal overlapping. The greater the overlap, the poorer the model performance.
The exhibited multimodality indicates that both networks perform well in modeling different attack
types. However, the most important point is that both models exhibited almost the exact mirror of
the distribution, log-normal, and flipped log-normal. This is an interesting point, as it indicates that
both networks are clearly specialized in the process of modeling different attacks. Identifying the exact
sets of attacks for which the models are more specialized requires further experimental analysis with

3280 CSSE, 2023, vol.46, no.3

sufficient model explanation, particularly using explainable artificial intelligence (XAI) frameworks.
However, from a general point of view, we observe that combining both networks will help detect
various types of attacks, which is the fundamental requirement for effective blended threat detection
in the IoBE.

Figure 11: Loss distribution of Conv-VAE: (a) benign test dataset; (b) anomalous test dataset

Figure 12: Loss distribution of LSTM-VAE: (a) benign test dataset; (b) anomalous test dataset

We tested the classification performance of the proposed solution by changing the problem space
to a supervised problem. This was performed by making the model predict a correct label for the
underlying test dataset. The proposed ensemble threshold computation module calculated the optimal
threshold for the anomaly decision and the corresponding best representative total loss for each test
data point. The anomaly classification was then performed by comparing these two values. In this
way, we evaluated the model performance based on the classification recall, F1-score, accuracy, and
precision results, as shown in Table 6. Furthermore, we evaluated the model performance based on
the receiver operating characteristic (ROC) curve. The proposed solution demonstrated remarkable
performance by producing a larger area under the curve (AUC), as shown in Fig. 13. The ROC-AUC
curve was generated using the true label of the test set and the corresponding best representative
loss for each data point. A larger AUC indicates better model performance in minimizing the false
positive rate. Moreover, we conducted a performance comparison with various single autoencoder-
based network intrusion detection approaches: autoencoder, variational autoencoder, convolutional
variational autoencoder, and long short-term memory autoencoder. The results indicated that the

CSSE, 2023, vol.46, no.3 3281

proposed model outperformed all the models, demonstrating F1-scores 3.99%, 1.95%, 1.92%, and
2.69% greater than those of the respective models, as shown in Table 6.

Table 6: Performance comparision with NIDS based on single model (autoencoder)

Category Precision Recall F1-score Accuracy

AE 0.98 0.89 0.93 0.91
VAE 0.95 0.95 0.95 0.93
CVAE 0.98 0.93 0.95 0.94
LSTM_VAE 0.98 0.91 0.94 0.92
Proposed E-HAE model 0.99 0.94 0.97 0.96

Figure 13: ROC curve of the proposed approach

7 Conclusions

As previously described, blended threats can explore various attack surfaces in the IoBE, in which
many technology sectors converge, exploiting the respective security vulnerabilities in the environment.
Furthermore, such attacks exhibit strong intrinsic mutual effects with each other. A threat detection
and identification system developed by considering such an environment is the primary step that must
be taken to mitigate blended threats. Therefore, in this paper, we presented an intrusion detection
system for the IoBE, using an ensemble of heterogeneous autoencoders to mitigate the possible impact
and dimensionality of the new attack surfaces resulting from the convergence of different technology
sectors. An extensive experiment was conducted on ToN-IoT network intrusion detection datasets, in
which the proposed solution achieved 96.02% detection accuracy. Furthermore, we conducted a per-
formance comparison against various single model (autoencoder)-based network intrusion detection

3282 CSSE, 2023, vol.46, no.3

approaches: autoencoder, variational autoencoder, convolutional variational autoencoder, and long
short-term memory variational autoencoder. The proposed model outperformed all compared models,
demonstrating F1-score improvements of 4.99%, 2.25%, 1.92%, and 3.69%, respectively. In the future,
we plan to further enhance the proposed solution by exploiting the model decision space using XAI
frameworks. Furthermore, we plan to extend the proposed solution to blended threat identification
and response.

Funding Statement: This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (No. 2021R1A2C2011391) and was supported by the
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2021-0-01806, Development of security by design and security
management technology in smart factory).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] X. Fang, S. Misra, G. Xue and D. Yang, “Smart grid—the new and improved power grid: A survey,” IEEE

Communications Surveys & Tutorials, vol. 14, no. 4, pp. 944–980, 2011.
[2] R. Apanaviciene, A. Vanagas and P. A. Fokaides, “Smart building integration into a smart city (SBISC):

Development of a new evaluation framework,” Energies, vol. 13, no. 9, pp. 2190, 2020.
[3] R. Agrawal and S. Prabakaran, “Big data in digital healthcare: Lessons learnt and recommendations for

general practice,” Heredity, vol. 124, no. 4, pp. 525–534, 2020.
[4] M. Farmanbar, K. Parham, Ø. Arild and C. Rong, “A widespread review of smart grids towards smart

cities,” Energies, vol. 12, no. 23, pp. 4484, 2019.
[5] B. Morvaj, L. Lugaric and S. Krajcar, “Demonstrating smart buildings and smart grid features in a smart

energy city,” in Proc. 3rd Int. Youth Conf. on Energetics (IYCE), Leiria, Portugal, pp. 1–8, 2011.
[6] M. Lee, J. Jang-Jaccard and J. Kwak, “Novel architecture of security orchestration, automation and

response in internet of blended environment,” Computers, Materials & Continua, vol. 73, no. 1, pp. 199–
223, 2022.

[7] J. Cowie, A. Ogielski, B. J. Premore and Y. Yuan, “Global routing instabilities triggered by Code Red II
and Nimda worm attacks,” Renesys Corporation, vol. 77, no. 1, pp. 1–11, 2001.

[8] A. Machie, J. Roculan, R. Russell and M. V. Velzen, Nimda worm analysis. San Mateo, CA, USA:
SecurityFocus, 2001. [Online]. Available at: http://www.di-srv.unisa.it/professori/ads/corso-security/www/
CORSO-0102/NIMDA/link_locali/010921-Analysis-Nimda-v2.pdf

[9] T. M. Chen and J. M. Robert, “The evolution of viruses and worms,” in Statistical Methods in Computer
Security. Boca Raton, Florida, USA: Chemical Rubber Company (CRC) Press, pp. 289–310, 2004.

[10] B. Zhang, Y. Yu and J. Li, “Network intrusion detection based on stacked sparse autoencoder and binary
tree ensemble method,” in Proc. IEEE Int. Conf. on Communications (ICC) Workshops, Kansas City, MO,
USA, pp. 1–6, 2018.

[11] B. Yan and G. Han, “Effective feature extraction via stacked sparse autoencoder to improve intrusion
detection system,” IEEE Access, vol. 6, pp. 41238–41248, 2018.

[12] M. Al-Qatf, Y. Lasheng, M. Al-Habib and K. Al-Sabahi, “Deep learning approach combining sparse
autoencoder with SVM for network intrusion detection,” IEEE Access, vol. 6, pp. 52843–52856, 2018.

[13] H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion detection systems: A
survey,” Applied Sciences, vol. 9, no. 20, pp. 4396, 2019.

http://www.di-srv.unisa.it/professori/ads/corso-security/www/CORSO-0102/NIMDA/link_locali/010921-Analysis-Nimda-v2.pdf
http://www.di-srv.unisa.it/professori/ads/corso-security/www/CORSO-0102/NIMDA/link_locali/010921-Analysis-Nimda-v2.pdf

CSSE, 2023, vol.46, no.3 3283

[14] Z. Wu, X. Wang, Y. G. Jiang, H. Ye and X. Xue, “Modeling spatial-temporal clues in a hybrid deep learning
framework for video classification,” in Proc. 23rd ACM Int. Conf. on Multimedia, Brisbane, Australia, pp.
461–470, 2015.

[15] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang et al., “Cnn-rnn: a unified framework for multi-label image
classification,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, pp. 2285–2294, 2016.

[16] C. Chen, K. Li, S. G. Teo, X. Zou, K. Li et al., “Citywide traffic flow prediction based on multiple gated
spatio-temporal convolutional neural networks,” ACM Transactions on Knowledge Discovery from Data,
vol. 14, no. 4, pp. 1–23, 2020.

[17] M. Sundermeyer, I. Oparin, J. L. Gauvain, B. Freiberg, R. Schlüter et al., “Comparison of feedforward
and recurrent neural network language models,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Vancouver, BC, Canada, pp. 8430–8434, 2013.

[18] Z. C. Lipton, J. Berkowitz and C. Elkan, “A critical review of recurrent neural networks for sequence
learning,” arXiv preprint arXiv:1506.00019, 2015.

[19] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM)
network,” Physica D: Nonlinear Phenomena, vol. 404, no. 8, pp. 132306, 2020.

[20] Y. Yu, X. Si, C. Hu and J. Zhang, “A review of recurrent neural networks: LSTM cells and network
architectures,” Neural Computation, vol. 31, no. 7, pp. 1235–1270, 2019.

[21] J. Zhai, S. Zhang, J. Chen and Q. He, “Autoencoder and its various variants,” in Proc. IEEE Int. Conf. on
Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, pp. 415–419, 2018.

[22] Y. Wang, H. Yao and S. Zhao, “Auto-encoder based dimensionality reduction,” Neurocomputing, vol. 184,
no. 4, pp. 232–242, 2016.

[23] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Foundations and Trends® in
Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.

[24] K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren et al., “Security and privacy in smart city applications: Challenges
and solutions,” IEEE Communications Magazine, vol. 55, no. 1, pp. 122–129, 2017.

[25] H. Hejazi, H. Rajab, T. Cinkler and L. Lengyel, “Survey of platforms for massive IoT,” in Proc. IEEE Int.
Conf. on Future IoT Technologies (future IoT), Eger, Hungary, pp. 1–8, 2018.

[26] D. Grochocki, J. H. Huh, R. Berthier, R. Bobba, W. H. Sanders et al., “AMI threats, intrusion detection
requirements and deployment recommendations,” in Proc. 3rd IEEE Int. Conf. on Smart Grid Communica-
tions (SmartGridComm), Tainan, Taiwan, pp. 395–400, 2012.

[27] A. Anwar, A. N. Mahmood and Z. Tari, “Identification of vulnerable node clusters against false data
injection attack in an AMI based smart grid,” Information Systems, vol. 53, no. 1, pp. 201–212, 2015.

[28] Y. Guo, C. Ten, S. Hu and W. W. Weaver, “Preventive maintenance for advanced metering infrastructure
against malware propagation,” IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1314–1328, 2015.

[29] N. Kharlamova, S. Hashemi and C. Træholt, “Data-driven approaches for cyber defense of battery energy
storage systems,” Energy and Artificial Intelligence, vol. 5, no. 4, pp. 100095–100103, 2021.

[30] J. Sun, P. Li and C. Wang, “Optimise transient control against DoS attacks on ESS by input convex neural
networks in a game, Sustainable Energy,” Grids and Networks, vol. 28, pp. 100535–100547, 2021.

[31] T. Nasr, S. Torabi, E. B. Harb, C. Fachkha and C. Assi, “Power jacking your station: in-depth security
analysis of electric vehicle charging station management system,” Computer & Security, vol. 112, no. 6, pp.
102511, 2022.

[32] A. Tang, S. Sethumadhavan and S. Stolfo, “CLKSCREW: Exposing the perils of security-oblivious energy
management,” in 26th USENIX Security Symp., Vancouver, BC, Canada, pp. 1057–1074, 2017.

[33] P. Zhao, Z. Cao, D. D. Zeng, C. Gu, Z. Wang et al., “Cyber-resilient multi-energy management for complex
systems,” IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 2144–2159, 2021.

3284 CSSE, 2023, vol.46, no.3

[34] M. Khera, “Think like a hacker: Insights on the latest attack vectors (and security controls) for medical
device applications,” Journal of Diabetes Science and Technology, vol. 11, no. 2, pp. 207–212, 2017.

[35] A. K. Pandey, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal et al., “Key issues in healthcare data
integrity: Analysis and recommendations,” IEEE Access, vol. 8, pp. 40612–40628, 2020.

[36] A. H. Seh, M. Zarour, M. Alenezi, A. K. Sarkar, A. Agrawal et al., “Healthcare data breaches: Insights
and implications,” Healthcare, vol. 8, no. 2, pp. 133–151, 2020.

[37] S. Oh, Y. Seo, E. Lee and Y. Kim, “A comprehensive survey on security and privacy for electronic health
data,” International Journal of Environmental Research and Public Health, vol. 18, no. 18, pp. 9668, 2021.

[38] S. Hong and S. Jeong, “The analysis of CCTV hacking and security countermeasure technologies: Survey,”
Journal of Convergence for Information Technology, vol. 8, no. 6, pp. 129–134, 2018.

[39] Y. Lee, N. Baik, C. Kim and C. Yang, “Study of detection method for spoofed IP against DDoS attacks,”
Personal and Ubiquitous Computing, vol. 22, no. 1, pp. 35–44, 2018.

[40] M. Shobana and S. Rathi, “IoT malware: An analysis of IoT device hijacking,” International Journal of
Scientific Research in Computer Science, Engineering and Information Technology, vol. 3, no. 5, pp. 653–
662, 2018.

[41] V. Kharchenko, Y. Ponochovnyi, A. M. Q. Abdulmunem and A. Boyarchuk, “Security and availability
models for smart building automation systems,” International Journal of Computing, vol. 16, no. 4, pp.
194–202, 2017.

[42] M. Elnour, N. Meskin, K. Khan and R. Jain, “Application of data-driven attack detection framework for
secure operation in smart buildings,” Sustainable Cities and Society, vol. 69, pp. 102816–102831, 2021.

[43] H. Shin, J. Noh, D. Kim and Y. Kim, “The system that cried wolf: Sensor security analysis of wide-area
smoke detectors for critical infrastructure,” ACM Transactions on Privacy and Security, vol. 23, no. 3, pp.
1–32, 2020.

[44] R. Chan, F. Tan, U. Teo and B. Kow, “Vulnerability assessment of building management systems,” in
Critical Infrastructure Protection XIV . Cham, Switzerland: Springer, pp. 209–220, 2020. [Online]. Available
at: https://doi.org/10.1007/978-3-030-62840-6_10

[45] L. Adeba Jilcha and J. Kwak, “Machine learning-based advertisement banner identification technique for
effective piracy website detection process,” Computers, Materials & Continua, vol. 71, no. 2, pp. 2883–2899,
2022.

[46] J. Wang, Y. Yang, T. Wang, R. Sherratt and J. Zhang, “Big data service architecture: A survey,” Journal of
Internet Technology, vol. 21, no. 2, pp. 393–405, 2020.

[47] T. Zhang and S. Bao, “A novel deep neural network model for computer network intrusion detection
considering connection efficiency of network systems,” in 4th Int. Conf. on Smart Systems and Inventive
Technology (ICSSIT), Tirunelveli, India, pp. 962–965, 2022.

[48] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood and A. Anwar, “TON_IoT telemetry dataset: a new
generation dataset of IoT and IIoT for data-driven intrusion detection systems,” IEEE Access, vol. 8, pp.
165130–165150, 2020.

[49] N. Moustafa, “New generations of internet of things datasets for cybersecurity applications based machine
learning: TON_IoT datasets,” in Proc. eResearch Australasia Conf., Brisbane, Australia, pp. 21–25, 2019.

[50] N. Moustafa, “A new distributed architecture for evaluating AI-based security systems at the edge: Network
TON_IoT datasets,” Sustainable Cities and Society, vol. 72, pp. 102994–103008, 2021.

[51] UNSW Canberra at the Australian Defence Force Academy, “The TON_IoT dataset,” 2021. [Accessed:
03-Jan-2022], 2022. [Online]. Available: https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i?path=%2
FTrain_Test_datasets%2FTrain_Test_Network_dataset

https://doi.org/10.1007/978-3-030-62840-6_10
https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i?path=%2FTrain_Test_datasets%2FTrain_Test_Network_dataset
https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i?path=%2FTrain_Test_datasets%2FTrain_Test_Network_dataset

	Network Intrusion Detection in Internet of Blended Environment Using Ensemble of Heterogeneous Autoencoders E-HAE
	1 Introduction
	2 Background
	3 Blended Threats in Internet of Blended Environment IoBE
	4 Proposed Solution
	5 Implementation
	6 Results and Discussion
	7 Conclusions
	References

