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Abstract: Nowadays, smart healthcare and biomedical research have marked
a substantial growth rate in terms of their presence in the literature, compu-
tational approaches, and discoveries, owing to which a massive quantity of
experimental datasets was published and generated (Big Data) for describing
and validating such novelties. Drug-drug interaction (DDI) significantly con-
tributed to drug administration and development. It continues as the main
obstacle in offering inexpensive and safe healthcare. It normally happens for
patients with extensive medication, leading them to take many drugs simul-
taneously. DDI may cause side effects, either mild or severe health problems.
This reduced victims’ quality of life and increased hospital healthcare expenses
by increasing their recovery time. Several efforts were made to formulate
new methods for DDI prediction to overcome this issue. In this aspect,
this study designs a new Spotted Hyena Optimizer Driven Deep Learning
based Drug-Drug Interaction Prediction (SHODL-DDIP) model in a big
data environment. In the presented SHODL-DDIP technique, the relativity
and characteristics of the drugs can be identified from different sources for
prediction. The input data is preprocessed at the primary level to improve its
quality. Next, the salp swarm optimization algorithm (SSO) is used to select
features. In this study, the deep belief network (DBN) model is exploited to
predict the DDI accurately. The SHO algorithm is involved in improvising
the DBN model’s predictive outcomes, showing the novelty of the work. The
experimental result analysis of the SHODL-DDIP technique is tested using
drug databases, and the results signified the improvements of the SHODL-
DDIP technique over other recent models in terms of different performance
measures.
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1 Introduction

Drug repositioning is a potential technique for identifying new utility for existing drugs [1]. There
exist many drug repositioning techniques; forecasting drug-drug interactions (DDIs) are a helpful
method for exploring the pharmacologic function of drugs, which can be used to identify effective
drugs for new treatment [2,3]. DDI refers to drug mixtures’ clinical and pharmacological responses,
dissimilar to the familiar effect of utilizing one drug separately [4]. In certain circumstances, DDIs may
lead to adverse drug reactions (ADR), a serious health risk that affects the patient’s health condition
and may cause death [5,6]. Thus, DDI recognition is becoming crucial before the medical use of drugs
compiling many drugs to cure severe illnesses such as tumours, AIDS, and so on. Tuns out to be a
common and promising method in the modern era [7]. This is because utilizing many drugs to cure a
disease increases treatment efficiency, and various drugs can manage a diverse part of the treatment
process [8,9]. Thus, the significance of forecasting DDIs in human health was huge. Organizations
and Researchers worldwide have used ample money and time to find DDI pairs utilizing several In
Vitro and In Vivo experimental approaches [10]. The experimental technique to determine DDI can be
extremely slow, demanding more money and time. Such techniques generally lead to low throughput,
resulting in certain communications going unnoticed [1 1]. Since this process was extremely expensive
and slow, it was impossible to find large compounds of drugs.

Conventional experimental techniques, like identifying transporter-based communications, were
time-consuming and costly [12]. Also, just a few DDIs can be found during drug development, whereas
many DDIs were reported after drug approval and discovered in post-marketing surveillance. In the
meantime, computing methods render a promising alternative for finding effective DDIs on a large
scale for further screening and grabbed much more interest from both industry and academia [13].
DDIs are determined as an attributed graph, in which nodes signify drugs and edges denote reported
communications. There were attributes linked with nodes and edges. Node attributes were from drug
profiles, like targets, chemical structures, pathways, enzymes, and side effects, whereas edge attributes
will describe DDI types [14]. Individuals often adopted feature-based machine learning (ML) and
pattern-related approaches in the initial days. Still, techniques related to patterns need the annotator
to have some field knowledge, and the main disadvantage of this technique is that it can be both
inefficient and time-consuming [15]. Deep learning (DL) is the most commonly implemented and
effective technique to solve this issue.

Zhang et al. [16] present the implementation and construction of the knowledge graph based
on the DL method. The relationship extraction and entity recognition are performed on the text of
the social networking dataset. Next, the graph database is utilized to construct the knowledge graph
(KG) and store medical knowledge. A DDI predictive model can be developed by integrating KG
and bidirectional long short-term memory (Bi-LSTM) with attention. The multiple DDI resources
are incorporated with the help of KG, and later they are converted into vectors by the knowledge
representation module HolE. Lastly, the implicit feature of DDI is extracted through BiLSTM,
and DDI is recognized by Softmax classification. Hung et al. [17] developed a machine learning
(ML) method for predicting the outcome of interaction amongst drugs utilized for Paget’s treatment
and osteoporosis that assist in mitigating the cost and time for enforcing the better integration of
medication in medical practice. The presented method gathered DDI data from the DrugBank dataset
about Paget diseases and osteoporosis. Next, chemical features are extracted from the simplified
molecular-input line-entry system (SMILES) of determining drug pairs communicating with one
another. Lastly, an ML algorithm was executed to learn the extracted feature.
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Noor [18] designs a data-driven model to conduct knowledge-driven data analysis, which inte-
grates the enrichment analysis and semantic inference system for identifying possible ADE mecha-
nisms. The architecture has been exploited for ranking mechanisms based on the relevance for DDI
and also to classify ADE depending on the number of DDI mechanisms association recognized
through enrichment analysis. Chen et al. [19] derived two signed graph filtering-oriented neural
networks (SGFNN) that incorporate signed graph structure and drug node attribute. Furthermore, we
utilized the end-to-end architecture for learning DDI, whereby a discriminator and the SGFNN are
collectively trained under a problem-specific loss function. The experiment outcome on two predictive
issues shows that the architecture could improve considerably compared to the baseline. Su et al. [20]
developed a novel architecture named KG2ECapsule which explicitly modelled the multi-relational
DDI dataset relying on a biomedical knowledge graph in an end-to-end manner. Firstly, it produces
a higher-quality negative sample according to an average number of head and tail entities for all
the relations to reduce the false-negative sample to a certain range. Then, KG2ECapsule refines
the representation of an entity by recursively broadcasting the embedding from the attention-related
receptive field of the entities. Feature selection methods can be used to improve the performance of
the ML classification model [21-25].

This study designs a new Spotted Hyena Optimizer Driven Deep Learning based Drug-Drug
Interaction Prediction (SHODL-DDIP) model in a big data environment. In the presented SHODL-
DDIP technique, the relativity and characteristics of the drugs can be identified from different sources
for prediction. The input data is preprocessed at the primary level to improve its quality. Next, the
salp swarm optimization algorithm (SSO) is used to select features. In this study, the deep belief
network (DBN) model is exploited to predict the DDI accurately. The SHO algorithm is involved in
improvising the DBN model’s predictive outcomes. The experimental result analysis of the SHODL-
DDIP technique is tested using drug databases.

2 The Proposed DDI Prediction Model

In this study, an automated SHODL-DDIP model has been developed to predict DDI in a big-data
environment. In the presented SHODL-DDIP technique, the relativity and characteristics of the drugs
can be identified from different sources for prediction. Fig. | depicts the workflow of the SHODL-
DDIP approach.

2.1 Data Pre-Processing

Standard text cleaning and preprocessing processes were executed on sentences involving but
unrestricted to lemmatization. All drugs are discussed in a sentence labelled to communicate with
others. The number of drug pairs (DP) in a sentence can be evaluated below:

Drug Pairs (DP) = max (0, Z; (i— 1)) (N

where 7 specifies the number of drugs in a sentence, drug blinding has been employed, in which every
drug name can be allotted to the label. Afterwards, the processed sentence was given to the method
for detecting and classifying DDI. At Word Embedding, all words can be transformed into real value
vectors. This word mapping into a matrix is done through Word2Vec and embedding the dataset
utilizing the extract of PubMed comprising the drugs.
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Input: Training Dataset Data Preprocessing

Prediction Process
using
Deep Belief Network Model

Feature Selection Process
using
Salp Swarm Optimization Algorithm

Hyperparameter Tuning Process
using
Spotted Hyena Optimizer Algorithm

Performance Measures:
AUC AUPR

Figure 1: Workflow of SHODL-DDIP approach

2.2 SSO-Based Feature Selection

Here, the SSO algorithm is used for the optimal selection of features. The SSO is a newly presented
technique simulated by the forging and swarming performance of salps (aquatic organisms) [26]. The
salps procedure chain for foraging and navigating in seas and oceans. As with other SI techniques,
the SSO technique depended upon the arbitrary initialization of populations with an existing count of
individuals (solutions). To assist the search, the salps separate themselves into 2 types followers and
leaders. The leader was a primary salp from the chain (optimum solution) that pilots follower drive.
All the swarms X contain » salps and are determined in 2D-matrix as:
1

1 1

xl X2 xd
2 2 2
X[ X ...0X
1 2 d
X, = : 0
D G A o

The swarms’ purpose is to define the food source (optimum solution) from the whole searching
space. Next mathematical process of salps chain with upgrade principle of leader position:
oo Bt ((ub; — b)) ¢, + Ib)) ¢; = 0.5

/ F—c ((ubj — lbj) ¢+ lbj) ¢ < 0.5

whereas the leader position was represented by x;, the position of food sources can be represented by
F; from the j” dimensional. The parameter ¢, is provided as:

(€)

o =20 (¥’ 4)

T signifies the present iteration, and 7 implies the maximal count of iterations. With enhancement
under the iterations, the ¢, reduces, ensuring the appropriate exploitation of searching space. The ub;
and /b; signify the upper and lower bounds of the j” dimensional. The parameters ¢, and ¢; are the
arbitrary numbers drawn in the interval of zero and one. The position of follower’s salps can upgrade
as:

x, =05(X +Xx) (5)
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The position of the i* follower from the j” dimensional was demonstrated by x! with i > 1.

The fitness function (FF) employed in the presented method was modelled to maintain a balance
among the number of selected features in all solutions (min) and classifier accuracy (max) acquired
through such selected features. Eq. (6) signifies the FF for evaluating solutions.

R
Fitness = ayg (D) + ,3% (6)

Here |R| is the cardinality of the selected subset, y, (D) signifies the classification error rate of a
given classier (the K-nearest neighbor (KNN) classifier), and |C| designates the total features in the
dataset, B, and « are 2 parameters matching the significance of classifier quality and subset length. €
[1,0land B =1 — «.

2.3 Optimal DBN-Based DDI Prediction Process

The DBN model is used at this stage to predict the DDI proficiently. The DBN approach contains
four layers of pre-training RBM and resultant layers (Softmax Regression) [27]. The parameter can be
projected by a trained approach previously employing DBN for classifying and representing assaults.
The DBN trained is categorized as pre-train for presenting and fine-tuning for classifiers. At the same
time, the resulting DBN is transmitted to inputted Softmax Regression and comprised in DBN, which
includes stacked RBM. Primarily, DBN was training to reconfigure untagged training databases and
therefore executed unsupervised. Edata [.] and Emodel [.] can be expectations of possibilities.

d log P(x)
ag—VV,, - Edaza[hjxi] - Emodel[hjxi] (7)
d log P (x
g—() = L [xl] - Emodel [xl] (8)
da;
d log P (x
g—b() = Edum [h/] - E’""d"[ [hf] (9)
J

During this case, three techniques (Eqs. (7)—(9)) primarily comprised in classical DBN network,
the second term can only be indirectly obtained. At the same time, it can be possible in distribution
which is studied utilizing the DBN. Gibb’s sampling was utilized to calculate this probability. But, this
approach is time-consuming and is utilized in real-time. The contrastive divergence (CD) system was
utilized to determine optimum solutions, a fast-learning technique. A trained sample can be employed
to finish the Markov chain’s beginning. Afterwards, instances are obtained, and then the k steps of
Gibb’s selection. This approach is termed CD-k. Noticeably the efficiency of CD is suitable if k = 1.
Fig. 2 exhibits the framework of DBN.

During this work, for training, stacked RBM layer-wise to generate DBN, b, and W parameters
can be upgraded dependent upon CD-1.

X

h h
+1 __ Lt _ _ _
I +(p() p())

In this formula, € represents the learning rate, and ¢ signifies the time step. The visible variable is
represented as 4 = {h} and the hidden variable as x = {x,,}. At this point, M and N nodes and hidden

W — W +e(P ()%) [x«))]r _ P(i)[x(')]r) at'=d +¢ (x<0> _ x(l)) (10)
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layers are visible. The weighted feature vector was introduced arbitrarily in the network by selection
from the CD system.

Class Labels
/_A_‘\

Top Layer

Classifier

> DBN

RBM
Layers

Input Vectors

Figure 2: Architecture of DBN

The stages of executing greedy layer-wise trained processes to every layer of DBN can be provided.
A primary RBM trained, the data appropriate to the W, parameter was assumed that input x. W,

) . h h )
is frozen and executed to train RBM /4, as Q (—' =P (—2, W, ) to train RBM and the subsequent
)%

h,
binary feature layer. W, that defines 2-layered features can be frozen, and the database vital to train
. . . h h .
binary features at 3 layers can be obtained in 4, as (h—2 =P h_z’ Wz). This process constantly
1 1

repeats across all the layers. LR was employed in traditional binary classifiers. Conversely, the study
chose Softmax as it is several classifiers from the DBN.

While the trained set {(z!,, y)), (21, ¥e))s (2> Vim) }, m stands for the count of instances from the
trained set and (z{, , z! ) illustrates hidden vector of top RBM. The Softmax function ¢ in a resultant
layer, j = 0,...,k for every class, the conditional probability of P(y = j|z®) was estimated by the
following formula.

o
—Zkezy) (11)
‘J

In Eq. (11), z,,e R™" depicts the topmost confidential vector, and it can be provided in subsequent:

P (y :j|z(i)) = d)saftmax (Z(i)) =

m
T
Z=WoXg +WX; + ...+ WX, = E WX =W X (12)

The SHO algorithm is involved in hyperparameter tuning to improve the predictive outcomes of
the DBN model. The presented SHO method comprises four major stages stimulated by the natural
behavior of spotted hyenas [28]. They are attacking, searching, encircling, and hunting for prey that is
mathematically formulated below.
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The better solution was regarded as the target prey to encircle the prey, and the other spotted
hyenas or searching agents upgraded the location based on the optimum solution as follows:

Dy =|BxP,() = P(y) (13)
Py+1)=P, () —ExD, (14)

whereas D,, represents the distance vector amongst spotted hyena and prey, y represents the current
iteration, P, indicates the location vector of prey, P, symbolizes the position vector of spotted hyena,

B and E indicate the coefficient vector:

73 =2 X rc?l (15)

E:Zxﬁaxr;b—ﬁa (16)

m=>5 Iteration x > (17)
o MaXIleralion

where, Iteration = 0, 1,2, ..., MaX;uion

The hunting phase makes a cluster of the optimum solution against the better searching agent and
upgrades the position of other searching agents:

D, = \ x P, - (18)
P.=P,—E x Bm (19)
C, = E + Pey oo+ Py (20)

whereas P,, describes the location of the initial optimal spotted hyena, P, represent the location of
other spotted hyenas, and N indicates the number of spotted hyenas:

N = count, (;)ma ;)erla ;)m+25 cee (;)m + ]_(4)) (21)

In Eq. (21), M represent a random parameter within [0.5, 1], ns indicates the number of solutions,
and C,, denotes the group of N amount of optimum solutions. It is essential to decrease the value of

vector m. But the variation in E has reduced because of the changes in the value in m that could reduce
from 5 to 0, and it is mathematically expressed as follows:

C,
N

whereas P (¥ + 1) stores the better solution and upgrades the location of other searching agents. The
search model defines the exploration ability. The presented technique thus guarantees the ability to

Py+1)= (22)

use £ with the random value greater or lesser than 1. Also, vector B is accountable to demonstrate the
randomized behaviors of SHO and prevent local optima.
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3 Results and Discussion

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 105011 4 GB,
16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given as follows: learning
rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU. In this section, the DDI
prediction results of the SHODL-DDIP model are investigated on four datasets. The class distribution
of the datasets is given in Table | and Fig. 3.

Table 1: Details of datasets

Database Drug Target Interactions
Enzyme-dataset 445 664 2926
Ton channel-dataset 210 204 1467
GPCR-dataset 223 95 635
Nuclear receptor-dataset 54 26 90
3000
mmm Drug Interactions
| Target
2500
2000
w
Q
= 1500 4
3
1000 -
500 - ]
O-J . . .. . L —
Enzyme lon channel GPCR Nuclear Receptor
Database

Figure 3: Dataset details

In Table 2 and Fig. 4, the performance of the SSODL-DDIP approach under unlabelled and
labelled samples on top k% values is given. The outcomes exhibited that the SSODL-DDIP method
has effectively labelled the samples. For instance, on the enzyme dataset with the top 10% samples, the
SHODL-DDIP model has properly identified 384 samples from 28969 unlabeled samples.

Table 2: Result analysis of the SSODL-DDIP approach under unlabelled and labelled samples

Enzyme dataset GPCR dataset
Top k (%) Unlabelled Labelled Top k (%) Unlabelled Labelled
10 28969 384 10 1860 367
20 58109 542 20 3860 502

(Continued)
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Table 2: Continued

Enzyme dataset GPCR dataset
Top k (%) Unlabelled Labelled Top k (%) Unlabelled Labelled
30 87359 582 30 5908 555
40 116682 561 40 7956 605
50 145909 611 50 9994 656
60 175154 640 60 12024 713
70 204402 679 70 14035 762
80 233673 690 80 16102 760
90 262904 745 90 18152 765
100 292138 794 100 20228 783
ION channel dataset Nuclear receptor dataset

Top k (%) Unlabelled Labelled Top k (%) Unlabelled Labelled
10 3969 452 10 68 76
20 7983 805 20 178 99
30 12171 850 30 305 105
40 16368 853 40 444 97
50 20317 1131 50 581 90
60 24402 1240 60 720 81
70 28547 1281 70 822 109
80 32659 1331 80 959 102
90 36757 1412 90 1069 122
100 40871 1462 100 1215 106

350000 Enzyme Dataset _ 25000 GPCR Dataset

I Unlabelled  Labelled @ mm Unlabelled i Labelled o
300000 2 8 o B
s & 20000 | g
250000 - § % o %
g 200000 - : % 2 g 15000 q g g
£ 150000 ] _ % 3 s 10000 1 s 2
100000 s 8 . g i
s g so00{ _ £
50000 - E §
0.

Figure 4: (Continued)
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ION Channel Dataset Nuclear Receptor Dataset
50000 1400 -
= Unlabelled m=m Labelled o = Unlabelled = Labelled w
g 1200 o
40000 1
1000
30000 ]
3 g 800
E E
g 20000 - S 6001
400 -
10000 -
200 -
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10 20 30 40 50 60 70 80 90 100
Top k (%) Top k (%)
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Figure 4: Result analysis of SHODL-DDIP system (a) Enzyme, (b) GPCR, (¢) ION, and (d) Nuclear
receptor

In addition, on the GPCR dataset with the top 10% samples, the SHODL-DDIP model has
properly identified 367 samples from 1860 unlabeled samples. Also, on the ION dataset with the top
10% samples, the SHODL-DDIP method has properly identified 452 samples from 3969 unlabeled
samples. Furthermore, on the nuclear receptor dataset with the top 10% samples, the SHODL-DDIP
technique has properly identified 76 samples from 68 unlabeled samples. At last, on the nuclear
receptor dataset with the top 100% samples, the SHODL-DDIP method has properly identified 106
samples from 1215 unlabeled samples.

Table 3 and Fig. 5 report the AUC and AUPR analysis of the SHODL-DDIP model. The results
show the SHODL-DDIP method has enhanced values of AUC and AUPR under different CV_Seed
values. For instance, on the enzyme dataset with 3201 CV_SEED, the SHODL-DDIP model has
obtained AUC and AUPR of 94.55% and 61.92%, respectively. Moreover, on the GPCR dataset
with 3201 CV_SEED, the SHODL-DDIP method has acquired AUC and AUPR of 88.67% and
64.08%, correspondingly. Concurrently, on the ION dataset with 3201 CV_SEED, the SHODL-DDIP
approach has acquired AUC and AUPR of 85.11% and 62.50%, correspondingly. Additionally, on
the nuclear receptor dataset with 3201 CV_SEED, the SHODL-DDIP method has gained AUC and
AUPR of 93.27% and 76.49%, respectively.

Table 3: AUC and AUPR analysis of SHODL-DDIP approach under distinct datasets

Enzyme dataset GPCR dataset
CV_SEED AUC AUPR CV_SEED AUC AUPR
3201 94.55 61.92 3201 88.67 64.08
2033 98.90 69.79 2033 85.67 62.89
5179 98.10 67.68 5179 88.62 64.38
2931 89.32 55.73 2931 89.67 68.08
9117 98.60 72.94 9117 93.93 69.96

(Continued)
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Table 3: Continued
ION channel dataset Nuclear receptor dataset
CV_SEED AUC AUPR CV_SEED AUC AUPR
3201 85.11 62.50 3201 93.27 76.49
2033 89.17 68.33 2033 96.08 77.55
5179 93.34 68.35 5179 98.56 84.07
2931 85.48 64.80 2931 98.97 87.37
9117 93.04 71.46 9117 99.08 89.09
Enzyme Dataset GPCR Dataset
mm AUC = AUPR mEm AUC = AUPR
100
100 - 98.90 98.10 98.60 93.93
o135 90{ 8867 88.62 95.67
90 89.32 85.67
g g
» w 801
3 % 3
> 70 - .19 67.68 1 3 701 o0 -
i 64.08 2 89 64.38
61,92 | |
601 . I 5.73 601 |— H
e | | I T | NE | I | | |
3201 2033 5179 2931 9117 3201 2033 5179 2931 9117
Cross Validation - SEED Cross Validation - SEED
(a) (b)
ION Channel Dataset Nuclear Receptor Dataset
mm AUC = AUPR mm AUC = AUPR
100
901 89.17 100 1 98.56 98.97 %.08
85.11 85.48 96.08
£ T 95{ @27
» 80 - »
5 5 90 - 87.37 :
g ?0 - 6333 68.35 ; 35 4 o7
62.50 - 80
60 1 | | 76.49 7'5?
BN
m d - L . - ' . m d = - | - - :
3201 2033 5179 2931 3201 2033 5179 2931 9117
Cross Validation - SEED Cross Validation - SEED
(© (d)

Figure 5: AUC and AUPR analysis of SHODL-DDIP system (a) Enzyme, (b) GPCR, (c) ION, and
(d) Nuclear receptor

Table 4 and Fig. 6 show a comparative AUC study of the SHODL-DDIP model on four datasets.
The figure exhibited that the SHODL-DDIP method has reached improved values of AUC under
each dataset. For instance, on the enzyme dataset, the SHODL-DDIP model has gained an increased
AUC of 98.90%, whereas the UDTPP, Bi-gram PSSM, Nearest Neighbour, IFB Model, KBMF2K,
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DBSI, and DTIP-ORNN models have reported reduced AUC of 86.76%, 94.79%, 89.51%, 84.52%,
82.77%, 80.29%, and 96.53% respectively. Meanwhile, on the GPCR dataset, the SHODL-DDIP
methodology has attained an increased AUC of 93.93%. In contrast, the UDTPP, Bi-gram PSSM,
Nearest Neighbour, IFB Model, KBMF2K, DBSI, and DTIP-ORNN techniques have reported
reduced AUC of 87.15%, 89.47%, 88.53%, 81.48%, 85.89%, 80.19%, and 92.22% correspondingly.
Eventually, on the ION dataset, the SHODL-DDIP approach has acquired an increased AUC of
93.34%, whereas the UDTPP, Bi-gram PSSM, Nearest Neighbour, IFB Model, KBMF2K, DBSI,
and DTIP-ORNN methods have reported reduced AUC of 77.49%, 87.98%, 85.08%, 73.33%, 80.30%,
73.33%, and 80.51% correspondingly.

Table 4: AUC analysis of the SHODL-DDIP approach with other techniques under 4 distinct datasets

AUC (%)
Methods Enzyme GPCR ION channel Nuclear receptor
UDTPP 86.76 87.15 77.49 79.70
Bi-gram PSSM 94.79 89.47 87.98 87.06
Nearest neighbour  89.51 88.53 85.08 82.19
IFB model 84.52 81.48 73.33 83.34
KBMF2K 82.77 85.89 80.30 82.59
DBSI 80.29 80.19 80.51 75.55
DTIP-ORNN 96.53 92.22 90.77 98.68
SHODL-DDIP 98.90 93.93 93.34 99.08
== UDTPP == KBMF2K
| Bi-gram PSSM DBSI
Nearest Neighbour ~ wss DTIP-ORNN
m IFB Model SHODL-DDIP
100{ ¢ 2 o - 23
2 ioql L % R
< o o H“q'n. £ 8 o
o 9] 5 % 528 8 52 5
> | B o8 P Tada
< Pk =B Rall =2lla%s
g M b gl 88 2 a
80 | A o
70 H | H|
60 -

Enzyme GPCR ION Channel Nuclear Receptor

Figure 6: AUC analysis of the SHODL-DDIP approach with other techniques

Table 5 and Fig. 7 show a comparative AUPR study of the SHODL-DDIP method on four
datasets. The outcomes show the SHODL-DDIP method has reached improved values of AUPR
under each dataset. For example, on the enzyme dataset, the SHODL-DDIP method has acquired an
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increased AUPR of 72.94%, whereas the BLM, SELF-BLM, PULBLM-3, PULBLM-5, PULBLM-
7, and DTIP-ORNN approaches have reported reduced AUPR of 56.56%, 63.04%, 67.13%, 67.34%,
66.75%, and 70.19% correspondingly.

Table 5: AUPR analysis of the SHODL-DDIP approach with other techniques under 4 distinct

datasets
AUPR (%)
Methods Enzyme GPCR ION channel Nuclear receptor
BLM 56.56 54.59 48.18 42.92
SELF-BLM 63.04 59.69 52.08 44.51
PULBLM-3 67.13 64.57 59.63 58.42
PULBLM-5 67.34 64.55 61.25 58.53
PULBLM-7 66.75 64.62 64.07 59.33
DTIP-ORNN 70.19 67.39 68.31 86.10
SHODL-DDIP 72.94 69.96 71.46 89.09
100 o BLM === PULBLM-7
wes SELF-BLM DTIP-ORNN 2
90 PULBLM-3 === SHODL-DDIP og
=== PULBLM-5 g
80 - .
g .3
g 700 oy savs T
i 3| 2 oy 33z an®
60 g 22 3 a3
50 3| A
I ¥
40‘ T I - -i

Enzg.rme

GPCR

ION Channel Nuclear Receptor

Figure 7: AUPR analysis of SHODL-DDIP approach with other techniques

In the meantime, on the GPCR dataset, the SHODL-DDIP algorithm has gained an increased
AUPR of 69.96%, whereas the BLM, SELF-BLM, PULBLM-3, PULBLM-5, PULBLM-7, and
DTIP-ORNN approaches have reported reduced AUPR of 54.59%, 59.69%, 64.57%, 64.55%, 64.62%,
and 67.39% correspondingly. Parallelly, on the ION dataset, the SHODL-DDIP technique has
attained an increased AUPR of 71.46%, whereas the BLM, SELF-BLM, PULBLM-3, PULBLM-5,
PULBLM-7, and DTIP-ORNN methods have reported reduced AUPR of 48.18%, 52.08%, 59.63%,
61.25%, 64.07%, and 68.31% correspondingly.
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4 Conclusion

In this study, an automated SHODL-DDIP model has been developed to predict DDI in big
data environments. In the presented SHODL-DDIP technique, the relativity and characteristics of
the drugs can be identified from different sources for prediction. The input data is preprocessed at
the primary level to improve its quality. Next, the SSO algorithm is used for the optimal selection of
features. To predict the DDI accurately, in this study, the DBN model is exploited. The SHO algorithm
is involved in improvising the DBN model’s predictive outcomes. The experimental result analysis of
the SHODL-DDIP technique is tested using drug databases, and the results signified the improvements
of the SHODL-DDIP technique over other recent models in terms of different performance measures.
In future, a hybrid DL model can be employed for improved predictive performance.
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