
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.036552
Article

Modified Metaheuristics with Transfer Learning Based Insect Pest
Classification for Agricultural Crops

Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana murthy3, Ravuri Daniel4, E. Laxmi Lydia5,
Mohamad Khairi Ishak6, Hend Khalid Alkahtani7,*, Ayman Aljarbouh8 and Samih M. Mostafa9

1Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah,
Saudi Arabia

2King Abdul Aziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
3Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India

4Department of Computer Science and Engineering, Prasad V. Potluri Siddhartha Institute of Technology,
Vijayawada, India

5Department of Computer Science and Engineering, GMR Institute of Technology, Andhra Pradesh, Rajam, India
6School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia (USM),

Nibong Tebal, Penang, Malaysia
7Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint

Abdulrahman University, Saudi Arabia
8Department of Computer Science, University of Central Asia, Naryn, Kyrgyzstan

9Faculty of Computers and Information, South Valley University, Qena, Egypt
*Corresponding Author: Hend Khalid Alkahtani. Email: Hkalqahtani@pnu.edu.sa

Received: 04 October 2022; Accepted: 13 January 2023

Abstract: Crop insect detection becomes a tedious process for agronomists
because a substantial part of the crops is damaged, and due to the pest
attacks, the quality is degraded. They are the major reason behind crop quality
degradation and diminished crop productivity. Hence, accurate pest detection
is essential to guarantee safety and crop quality. Conventional identification of
insects necessitates highly trained taxonomists to detect insects precisely based
on morphological features. Lately, some progress has been made in agricul-
ture by employing machine learning (ML) to classify and detect pests. This
study introduces a Modified Metaheuristics with Transfer Learning based
Insect Pest Classification for Agricultural Crops (MMTL-IPCAC) technique.
The presented MMTL-IPCAC technique applies contrast limited adaptive
histogram equalization (CLAHE) approach for image enhancement. The
neural architectural search network (NASNet) model is applied for feature
extraction, and a modified grey wolf optimization (MGWO) algorithm is
employed for the hyperparameter tuning process, showing the novelty of the
work. At last, the extreme gradient boosting (XGBoost) model is utilized to
carry out the insect classification procedure. The simulation analysis stated
the enhanced performance of the MMTL-IPCAC technique in the insect
classification process with maximum accuracy of 98.73%.
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1 Introduction

Insects are a significant factor in the world’s agricultural economy. Hence it is especially important
to control and prevent agricultural insects by applying programs like insect population management
and dynamic surveys with real-time monitoring systems [1]. But various species of insects in farmlands
need considerable time for automatic classification by experts. It is widely known that different species
of insects may contain related phenotypes, and insects frequently undertake complex phenotypes
because of distinct growth periods [2]. Meanwhile, people without entomology could not differentiate
the growth period of insects and insect classes; it is essential to develop effective and more rapid
methodologies to overcome these problems [3].

In agriculture, pests are among the major reason for losses. Particularly, insects could be damaging
since they could nourish from leaves, which affects photosynthesis, and also vectors for many severe
diseases [4]. There exist numerous biological and chemical techniques for controlling pests. Also,
monitoring the whole property was generally suggested to reach maximal efficiency. In several
instances, monitoring can be passively done by workers as they perform their day-to-day activities.
The problem with these techniques is that once the infestation can be identified, a great deal of damage
might have been done previously. Earlier detection of pests needs a systematic method, particularly
on huge farms. Traps are broadly accepted mechanisms for systematically monitoring pests [5]. These
devices could effectively sample insect populations, if implemented appropriately, over the area of
interest [6]. Therefore, it is essential to assess the status of pests accurately, autonomously, and quickly
regardless of the adoption of traps or not.

Machine vision is used in plant disease recognition, insect pest detection, fruit grading, and
monitoring of crops and soil. Currently, considerable progress has been achieved in the agriculture
field, with the help of machine learning (ML) to classify and detect insects in stored grain conditions
[7]. Vegetables and Fruits quality assessment is done using computer vision-based quality inspection
encompassing classification, acquisition, segmentation, and feature extraction. The moment invariant
technique was used to extract shape features, and a neural network was established to categorize
twenty kinds of insect images [8]. Pest detection in a complicated background through deep residual
learning has been proposed to increase the detection accuracy for ten crop insects. A multi-level
classification framework and unsupervised feature learning method have been introduced for the
automated classification of crop pests [9]. A current study [10] reported that image processing had
been effectively used for detecting insects because of fast detection, lesser computational cost, and
easier to differentiate insects.

This study introduces a Modified Metaheuristics with Transfer Learning based Insect Pest Classi-
fication for Agricultural Crops (MMTL-IPCAC) technique. The presented MMTL-IPCAC technique
applies contrast limited adaptive histogram equalization (CLAHE) algorithm for image improvement.
The neural architectural search network (NASNet) model is applied for feature extraction, and a
modified grey wolf optimization (MGWO) algorithm is employed for the hyperparameter tuning
process. At last, the extreme gradient boosting (XGBoost) model is utilized to carry out the insect
classification procedure. The simulation analysis of the MMTL-IPCAC algorithm is tested on a
benchmark dataset, and the outcomes are inspected in distinct prospects.

The rest of the paper is organized as follows. Section 2 offers the related works, and Section 3
introduces the proposed model. Later, Section 4 provides experimental validation, and Section 5
concludes.
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2 Literature Review

Ramalingam et al. [11] formulated a remote insect trap monitoring and detection technique
with DL and IoT architectures. The presented architecture is created through IoT and Fast RCNN,
and ResNet50 unified object detection architecture. The Fast RCNN-ResNet 50 object detection
technique is well-trained by built environment insect and farm field insect images and positioned
in IoT. Kasinathan et al. [12] focused on the classifier of crop insects by using knowledge-based
and machine vision methods with image processing through distinct feature descriptors involving
color, texture, shape, and global image descriptor (GIST), and histogram of oriented gradients
(HOG). Incorporation of the feature was utilized in the insect classification. In the study, various
ML techniques involving ensemble and base classifiers were employed for three distinct insect data
sets, and the performance of classifier outcomes was estimated using majority voting.

Li et al. [13] developed an automated pest detection technique based on Vision Transformer
(ViT). To prevent over-fitting, the plant disease and insect pest datasets are optimized using techniques
like Laplacian, Gamma Transformation, Histogram Equalization, Retinex-SSR, Retinex-MSR, and
CLAHE. Later, utilize the improved dataset for training the created ViT NN for realizing the
automated classifier of insect pests and plant diseases. Shi et al. [14] propose an enhanced DNN-based
RFCN to resolve the classification and detection problems of eight common stored grain insects. In
the study, the researcher uses the multi-scale training model using an FCN for extracting additional
features of the insects and offering the position of possibly stored grain insects via RPN from the
feature maps. Kuzuhara et al. [15] developed two-phase detection and identification techniques for
smaller insect pests, according to CNN. Further, the researcher presented an RPN for insect pest
recognition using YOLOv3 and developed a re-detection technique with the Xception module. For
training those modules, the researchers presented a data augmentation technique with the help of
image processing.

Huynh et al. [16] developed the CDNN technique for insect classification related to NN and
DL. Firstly, insect images are gathered and extracted according to the Dense Scale-Invariant Feature
Transform. Next, Bag of Features was utilized for image representation as a feature vector. Finally,
the feature vector is trained and categorized using the CDNN module based on DNN. Xia et al. [17]
introduced a CNN mechanism for resolving the challenge of multiclass crop insects. The technique
uses NN to extract multifaceted insect features widely. In the regional proposal phase, the RPN was
accepted instead of a conventional selective search approach for generating a small number of design
windows that are particularly significant for accelerating computations and enlightening prediction
accuracy.

3 The Proposed Model

This study has formulated a new MMTL-IPCAC approach for insect pest classification to improve
agricultural pest control and crop productivity. Initially, the MMTL-IPCAC technique employed the
CLAHE technique for image enhancement. The NASNet model is applied for feature extraction, and
the MGWO algorithm is employed for the hyperparameter tuning process. At last, the XGBoost model
is utilized to carry out the insect classification procedure. Fig. 1 illustrates the block diagram of the
MMTL-IPCAC system.
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Figure 1: Block diagram of MMTL-IPCAC system

3.1 Contrast Enhancement Process
AHE (Adaptive Histogram Equalization) denotes a digital image processing method that

improves the contrast of input imageries. It differs from normal HE by calculating many histograms
that correlate to a certain region and using them to recreate brightness values. CLAHE is an innovative
version of AHE. This prevents the over-amplification of noise that leads to the AHE model. CLAHE
uses a contrast amplification limiting process that can be employed for every adjacent pixel later to
form a transformation function for reducing the noise problem [18].

3.2 Feature Extraction Process
In this stage, the NASNet method is employed for feature extraction purposes. One of the most

prominent DL techniques is CNN, which uses a convolutional layer rather than matrix multiplication.
It is more commonly applied to categorize objects based on image datasets [19]. A CNN is made up
of three layers. The input layer generates an artificial input neuron that prepares the initial dataset
for the following processing. The hidden layer serves as a connection between the output and input
layers, with the output layer generating results for the input layers. A CNN layer serves as this model’s
key component [20]. Once a filter is employed for the input, the outcome is activation, which is the
underlying convolution process. A feature map is constructed after many iterations of the same filter to
the same input that shows the location and intensity of the detected patterns in the input, along with an
image of the pattern. Yet, the pooling layer is another component of the CNN method. The pooling
layer assists in minimizing the proportion of the feature set. Consequently, the amount of network
processing and the number of learning parameters are decreased. The pooling layer adds features to
the feature map via a convolutional layer in a certain region [20].

The CNN comprises eighteen layers: 3 max-pooling layers with 2 × 2 pool size, three 2D convolu-
tion layers (2DConv), two dropout layers with a 0.5 dropout rate, two dense layers, four activation
layers with ReLU function, and three batch normalization layers. The CNN models’ initial layer
comprises a 2DConv layer with 3 × 3 kernels and 256 filters. The activation layer, including the ReLU
activation function, accompanies this 2DConv layer. Subsequently, a max-pooling layer having a pool
size of 2 × 2. After the max-pooling layer, the batch normalization layer is deployed with axis 1. There
is again a 2DConv layer with sixty-four filters, and the final 2DConv layer comprises 16 filters. Then,
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the Adam optimizer and binary cross entropy loss function was applied to compile the CNN method.
Eventually, the module fitted with twenty-five epochs.

NASNet is a neural structure, and CNN is trained on around billion images from ImageNet and
categorized into 1000 object types, namely pencil, keyboard, and mouse. Consequently, the network
learned a rich feature representation for different images and image input of the 331 × 331 sizes. The
next model performs a feature extraction extractor by eliminating the FC layers of the original pre-
trained network. Like CNN, NASNet was uncompressed with the BatchNormalization layer as stem-
bn1, Conv2D layer as stem-conv1, fully connected layers, and AveragePooling2D as a normal-right40
layer. Still, NASNet depends on cells or blocks that the researchers do not predetermine by the RL
technique. Therefore, it comprises reduction and normal cells.

Then, we exploited the NASNet model as a feature extractor that considers 3 variables; the initial
one is the weight variable which sets Imagenet as the value. The next variable parameter was include-
top, whereby we involve the FC layer at the topmost network and set it at False since the feature
should be extracted. At last, the variable was the input shape of the input image; for loading Imagenet
weight, the input shape should be 331 × 331 × 3, which implies the 3 inputs channels, correct width,
and height. So, resize each image to 331 × 331 sizes in image preprocessing. Afterwards deriving the
feature, the image dimension becomes 11 × 11 × 4032, and this is because of the reduction cell since
the initial layer of NASNet comprises a stride of 2 and kernel of 3 × 3. This was a feedforward method
whereby the activation from the pooling layer, the final convolution layer, can be utilized on the whole
images for obtaining feature representation of the cobalt or copper raw mineral images. Therefore, a
convolutional feature vector can be obtained using dimensionality.

3.3 Hyperparameter Tuning Process
For optimal hyperparameter adjustment process, the MGWO model is exploited. Mirjalili et al. [21]

established a new SI-optimized technique called GWO. Indeed, it is an original method that accelerates
GW’s hunting and social hierarchy by default. For proposing the social performance of GW, it is
classified into 4 states, namely α, β, δ, and ω. α considering the optimal solution implemented by β

and δ, and the remaining solution derived in ω. The primary 3 fittest wolves, termed α, β, and δ, are
neighbouring the prey supports ω to identify the food from the critical area. In the surrounding step,
the wolf rises the location of β, or δ, as demonstrated below:
→
D =

∣∣∣→
C · →

X p(t) − →
X (t)

∣∣∣ (1)

→
X (t + 1) = →

X p(t) − →
A · →

D (2)

From the expression, t indicates the existing iteration,
→
X p(t) epitomizes the current location of prey,

and
→
X (t) shows the present location of wolves.

→
D denotes the distance between wolf and prey, and co-

efficient vectors
→
A and

→
C result from mathematical models.

→
A = 2

→
a

→
r1 − →

a (3)

→
C = 2

→
r2 (4)

Now,
→
rl and

→
r2 indicate the 2 random vectors generated within [0, 1], and the component of

→
a has

linearly reduced from two to zero for each iteration. Now, α, β, and δ describe the position nearby
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the prey location. For hunting, the topmost 3 are optimal solutions, and the remaining wolves ω

are applicable for replacing the first 3 optimal wolves. The wolf location was upgraded based on the
following equation:
→
Dα =

∣∣∣→
C1 · →

X − →
X

∣∣∣ (5)

→
Dβ =

∣∣∣→
C2 · →

X − →
X

∣∣∣ (6)

→
Dδ =

∣∣∣→
C3 · →

X − →
X

∣∣∣ (7)

→
X1 = →

X a −
→
A2 ·

(→
Dα

)
(8)

→
X 2 = →

X β − →
A2 ·

(→
Dβ

)
(9)

→
X 3 = →

X − →
A ·

(→
Dδ

)
(10)

→
X (t + 1) =

→
X1 + →

X + →
X3

3
(11)

Now,
→
X α denotes the location of α,

→
Xβ describes the location of β,

→
Xδ refers to the location of δ,

→
X

shows the position of present solutions, and
→
C1,

→
C2 and

→
C3 indicate the random vector.

→
A1,

→
A2 and

→
A3

show random vectors, and t represents the iteration count. The step size of ω wolf implemented after
α, β, and δ are demonstrated in Eqs. (18)–(20). Then, the resulting locations of ω wolf have estimated.

The integration of the Levy flight concept designs the MGWO algorithm. Levy flight denotes a
type of chaotic system where the magnitude of the leap can be defined using the probability function
[22]. Once a higher fly finds a prey area, Aquila defines land and later strikes, and it can be called
contour flight with fast glide invasion. In such cases, Aquila optimization carefully explores the prey
area while preparing for the assault, and such behaviours are formulated in the following.

xnew = xprey × Levy (D) + XR (t) + (y − x) ∗ rand (12)

In Eq. (12), xnew indicates the novel location generated using the search method (x) . The dimen-
sionality space is represented as D, and the Levy flight distribution can be indicated as Levy (D) viz.,
derived by Eq. (8). In the i-th cycle, X (t) refers to the random number selected from the range [1 N].

Levy (D) = s × u × σ

|r| 1
p

(13)

In Eq. (13), s indicates a constant set to 0.01, u shows randomized values amongst [0, 1], and r
indicates a randomized value lies within [0, 1], and it is given in the following equation.

σ =
(

� (1 + β) × sine
(

πβ

2

)
�

(
1 + β

2

) × β × 2(β− 1
2)

)
(14)

In Eq. (14), β indicates a constant number fixed to 1.5. y and x indicates the circular form in the
seek in Eq. (7), expressed as follows.

y = r × cos (θ) (15)
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x = r × sin (θ) (16)

r = r1 + U × D1 (17)

θ = −w × D1 + θ1 (18)

θ1 = 3 × π

2
(19)

For a provided number of search iterations, r1 shows the value from 1 to 20, and U indicates a
tiny value fixed to 0.00565. D1 indicates an integer which ranges from 1 to Dim, and w embodies a tiny
value fixed to 0.005.

The MGWO methodology derives a FF to reach maximum classifier accuracy. It describes a
positive value representing the candidate solution’s optimal efficacy. In the presented method, the
reduction classification error rate can be taken as FF. An optimal solution has the lowest error rate,
and the worst one has the highest error rate.

fitness (xi) = number of misclassified instances
total number of instances

∗ 100 (20)

Algorithm 1: Pseudo code of GWO algorithm
Initialize population: Grey wolf Xi (i = 1, 2, .., n)

Initialize parameters: a, A, and C
Define the fitness value of every search agent
Xα = optimum search agents
Xβ = second optimal search agents
Xδ = third optimum search agents
while (t < Max_number_iterations)

for all the search agents
Upgrade the location of existing search agents

End for
Upgrade a, A, and C
Define the fitness value of every search agent
Upgrade Xα, Xβ , and Xδ

Increment t
End while
Return Xα

3.4 Insect Classification Process
To classify the insects, the XGBoost approach is utilized in this study. It is a machine learning

(ML) technique which accomplishes a strong learning effect by incorporating many weak learners
[23]. The XGBoost algorithm has several benefits, scalability and strong flexibility. In general, boosting
tree model has trouble executing distributed training because while training nth trees, affected by the
residuals of initial n-l trees and uses first-order derivative data. The XGBoost algorithm is different.
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It implements a second-order Taylor expansion of the loss function and applies different techniques
for preventing overfitting. Fig. 2 demonstrates the framework of XGBoost.

Figure 2: Structure of XGBoost

Also, XGBoost could automatically utilize the CPU multi-threaded parallel computing to accel-
erate the running speed. This feature signifies an enormous benefit of XGBoost over other approaches.
XGBoost has considerably enhanced performance and effect. The XGBoost model can be expressed
in the following:

ŷi =
∑M

m=1
fm (xi) , fm ∈ F (21)

In Eq. (21), M indicates the number of trees, and F shows the elementary model of trees. The
objective function can be described in Eq. (22):

L =
∑

i
l
(
ŷi, yi

) +
∑

m

 (fm) (22)

The error between the true and predicted values can be denoted as the loss function l, and the
regularized function Ω for preventing over-fitting is determined in the following:

Ω (f ) = γ T + 1
2
λ‖w‖2 (23)

In Eq. (23), all the trees’ weight and the number of leaves are indicated as w and T, correspondingly.
Afterwards implementing the quadratic Taylor expansion on the objective function, the data gain
produced afterwards every split of the objective function is formulated in the following:

Gain = 1
2

⎡
⎢⎣

(∑
i∈IL

gi

)2

∑
i∈IL

hi + λ
+

(∑
i∈IR

gi

)2

∑
i∈IR

hi + λ
+

(∑
i∈I gi

)2∑
i∈I hi + λ

⎤
⎥⎦ − γ (24)

Note that the split threshold γ is added to Eq. (24) to prevent overfitting and inhibit the
overgrowth of trees. Only if the data gain is better than γ is the leaf node allowable to split. Also,
XGBoost has the following two features:

• Splitting ends when the threshold is better than the weight of each sample on the leaf nodes to
prevent the model from learning a special training sample.

• The feature is sampled at random while building all the trees.
• This feature could prevent the XGBoost module from over-fitting during the experiment.
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4 Result Analysis

In this section, the insect classification results of the MMTL-IPCAC model are investigated on a
dataset comprising 900 samples, as shown in Table 1. A few sample images are shown in Fig. 3.

Table 1: Dataset details

Label Class No of insects

C-1 Locusta migratoria 100
C-2 Parasa lepida 100
C-3 Gypsy moth larva 100
C-4 Empoasca flavescens 100
C-5 Spodoptera exigua 100
C-6 Chrysocus chinensis 100
C-7 Laspeyresia pomonella larva 100
C-8 Atractomorpha sinensis 100
C-9 Laspeyresia pomonella 100

Total number of insects 900

Figure 3: Sample images

The confusion matrices produced by the MMTL-IPCAC model on the applied dataset are given
in Fig. 4. The figure implied that the MMTL-IPCAC model had enhanced performance on all the
class labels.
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Figure 4: Confusion matrices of MMTL-IPCAC approach (a) 80% of TR data, (b) 20% of TS data,
(c) 70% of TR data, and (d) 30% of TS data
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Table 2 and Fig. 5 report the overall insect classification outcomes of the MMTL-IPCAC method
on 80% of TR data and 20% of TS data. The simulation values reported the MMTL-IPCAC method
had reported improved results under both classes. For example, with 80% of TR data and C1 class,
the MMTL-IPCAC method gained average accuy, precn, recal, Fscore, and AUCscore of 98.75%, 96.10%,
92.50%, 94.27%, and 96.02% respectively. Similarly, and C2 class, the MMTL-IPCAC approach has
attained average accuy, precn, recal, Fscore, and AUCscore of 98.47%, 95.89%, 89.74%, 92.72%, and 94.64%,
correspondingly.

Table 2: Result analysis of MMTL-IPCAC approach with distinct measures under 80:20 of TR/TS of
data

Labels Accuracy Precision Recall F-score AUC score

Training set (80%)

C-1 98.75 96.10 92.50 94.27 96.02
C-2 98.47 95.89 89.74 92.72 94.64
C-3 98.61 93.02 95.24 94.12 97.15
C-4 99.31 96.34 97.53 96.93 98.53
C-5 98.19 92.68 91.57 92.12 95.31
C-6 98.61 92.41 94.81 93.59 96.94
C-7 99.44 98.63 96.00 97.30 97.92
C-8 98.75 91.01 98.78 94.74 98.76
C-9 98.47 93.67 92.50 93.08 95.86

Average 98.73 94.42 94.30 94.32 96.79

Testing set (20%)

C-1 98.89 95.00 95.00 95.00 97.19
C-2 99.44 100.00 95.45 97.67 97.73
C-3 97.78 83.33 93.75 88.24 95.96
C-4 98.33 90.00 94.74 92.31 96.75
C-5 97.78 84.21 94.12 88.89 96.14
C-6 98.33 88.46 100.00 93.88 99.04
C-7 98.33 100.00 88.00 93.62 94.00
C-8 98.89 100.00 88.89 94.12 94.44
C-9 98.89 100.00 90.00 94.74 95.00

Average 98.52 93.45 93.33 93.16 96.25

Moreover, and C3 class, the MMTL-IPCAC approach has attained average accuy, precn, recal,
Fscore, and AUCscore of 98.61%, 93.02%, 95.24%, 94.12%, and 97.15%, correspondingly. Furthermore,
and the C4 class, the MMTL-IPCAC approach has attained average accuy, precn, recal, Fscore, and
AUCscore of 99.31%, 96.34%, 97.53%, 96.93%, and 98.53% correspondingly. Also, and C5 class, the
MMTL-IPCAC methodology has obtained average accuy, precn, recal, Fscore, and AUCscore of 98.19%,
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92.68%, 91.57%, 92.12%, and 95.31%, correspondingly. Next, with 20% of TS data and C1 class, the
MMTL-IPCAC method has acquired average accuy, precn, recal, Fscore, and AUCscore of 98.89%, 95%,
95%, 95%, and 97.19% correspondingly. Similarly, and the C2 class, the MMTL-IPCAC method has
reached average accuy, precn, recal, Fscore, and AUCscore of 99.44%, 100%, 95.45%, 97.67%, and 97.73%,
correspondingly. Besides, and C3 class, the MMTL-IPCAC methodology has attained average accuy,
precn, recal, Fscore, and AUCscore of 97.78%, 83.33%, 93.75%, 88.24%, and 95.96%, correspondingly.

Figure 5: Average analysis of MMTL-IPCAC approach under 80:20 of TR/TS of data

Table 3 and Fig. 6 report the overall insect classification outcomes of the MMTL-IPCAC method
on 70% of TR data and 30% of TS data. The simulation values reported the MMTL-IPCAC approach
had reported improved results under both classes. For example, with 70% of TR data and C1 class, the
MMTL-IPCAC method has gained average accuy, precn, recal, Fscore, and AUCscore of 96.67%, 84.72%,
85.92%, 85.31%, and 91.97% correspondingly. Moreover, and C2 class, the MMTL-IPCAC approach
has achieved average accuy, precn, recal, Fscore, and AUCscore of 96.51%, 88.89%, 78.87%, 83.58%, and
88.81%, correspondingly. Also, and C3 class, the MMTL-IPCAC technique has attained average accuy,
precn, recal, Fscore, and AUCscore of 98.10%, 90.77%, 90.77%, 90.77%, and 94.85%, correspondingly.
Furthermore, and the C4 class, the MMTL-IPCAC algorithm has attained average accuy, precn, recal,
Fscore, and AUCscore of 96.35%, 81.48%, 89.19%, 85.16%, and 93.25%, correspondingly. Additionally, and
the C5 class, the MMTL-IPCAC method has reached average accuy, precn, recal, Fscore, and AUCscore of
97.62%, 87.65%, 93.42%, 90.45%, and 95.81%, correspondingly.

Table 3: Result analysis of MMTL-IPCAC approach with distinct measures under 70:30 of TR/TS of
data

Labels Accuracy Precision Recall F-score AUC score

Training set (70%)

C-1 96.67 84.72 85.92 85.31 91.97
C-2 96.51 88.89 78.87 83.58 88.81

(Continued)
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Table 3: Continued
Labels Accuracy Precision Recall F-score AUC score

C-3 98.10 90.77 90.77 90.77 94.85
C-4 96.35 81.48 89.19 85.16 93.25
C-5 97.62 87.65 93.42 90.45 95.81
C-6 96.98 87.50 83.58 85.50 91.08
C-7 97.14 84.93 89.86 87.32 93.95
C-8 97.14 87.69 85.07 86.36 91.83
C-9 97.46 90.91 85.71 88.24 92.32

Average 97.11 87.17 86.93 86.97 92.65

Testing set (30%)

C-1 97.41 84.38 93.10 88.52 95.51
C-2 97.78 96.00 82.76 88.89 91.17
C-3 98.52 94.29 94.29 94.29 96.72
C-4 96.67 84.00 80.77 82.35 89.56
C-5 97.04 80.77 87.50 84.00 92.73
C-6 99.26 94.29 100.00 97.06 99.58
C-7 98.52 90.91 96.77 93.75 97.76
C-8 97.04 90.32 84.85 87.50 91.79
C-9 97.04 89.29 83.33 86.21 91.04

Average 97.70 89.36 89.26 89.17 93.99

Figure 6: Average analysis of MMTL-IPCAC approach under 70:30 of TR/TS of data

Fig. 7 illustrates the TA and VA acquired by the AOHRD-BC2HI method on the 400X dataset.
The figure emphasized that the AOHRD-BC2HI approach has reached higher values of TA and VA.
The results denoted the TA is considered to be greater than the VA.
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Figure 7: TA and VA analysis of the MMTL-IPCAC approach

Fig. 8 displays the TL and VL denoted by the AOHRD-BC2HI methodology on the 400X dataset.
The figure showcases that the AOHRD-BC2HI approach has resulted in minimal values of TL and
VL. These results ensured that the TL was lesser than the VL.

Figure 8: TL and VL analysis of the MMTL-IPCAC approach
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The precision-recall values incurred by the MMTL-IPCAC model have demonstrated in Fig. 9.
The figure represented that the MMTL-IPCAC method has properly categorized nine class labels and
accomplished maximum precision-recall values.

Figure 9: Precision-recall analysis of the MMTL-IPCAC approach

The ROC investigation of the MMTL-IPCAC method on the test data is demonstrated in Fig. 10.
The figure exhibits the MMTL-IPCAC method has attained maximum ROC values under all classes.

Figure 10: ROC curve analysis of the MMTL-IPCAC approach
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To highlight the improved outcomes of the MMTL-IPCAC method, a wide-ranging experimental
analysis is made in Table 4 and Fig. 11 [1]. These results implicit the ANN, SVM, and NB methods
have shown poor classification outcomes over other models. Followed by the CNN and KNN models
have reported moderately closer classification performance.

Table 4: Comparative analysis of MMTL-IPCAC technique with existing approaches

Methods Accuracy Precision Recall F-score

MMTL-IPCAC 98.73 94.42 94.30 94.32
ANN model 89.82 89.06 90.42 88.04
SVM model 89.31 90.58 86.53 86.40
KNN model 92.55 89.60 89.79 86.44
Naïve bayes model 89.39 89.04 86.57 88.42
CNN model 91.98 90.41 90.20 89.65

Figure 11: Comparative analysis of MMTL-IPCAC technique with existing methods

However, the experimental outcomes inferred that the MMTL-IPCAC model had shown
enhanced results over other models with a maximum accuy of 98.73%. These results ensured that
the MMTL-IPCAC model performed better on insert classification.

5 Conclusion

In this study, a new MMTL-IPCAC algorithm was developed for insect pest classification to
improve agricultural pest control and crop productivity. Initially, the MMTL-IPCAC technique
employed the CLAHE technique for image enhancement. The NASNet model is applied for feature
extraction, and the MGWO algorithm is employed for the hyperparameter tuning process. At last, the
XGBoost model is utilized to carry out the insect classification procedure. The simulation analysis of
the MMTL-IPCAC technique can be tested on a benchmark dataset, and the results are scrutinized
in distinct aspects. The comparison study stated the enhanced performance of the MMTL-IPCAC
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technique in the insect classification process. Thus, the MMTL-IPCAC technique can be employed
for automated insect pest classification. In the future, hybrid DL methods will be applied to boost the
insect classification efficacy of the presented MMTL-IPCAC method.
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