
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.036371
Article

Early Detection of Alzheimer’s Disease Based on Laplacian Re-Decomposition
and XGBoosting

Hala Ahmed1, Hassan Soliman1, Shaker El-Sappagh2,3,4, Tamer Abuhmed4,* and Mohammed Elmogy1

1Information Technology Department, Faculty of Computers and Information,
Mansoura University, Mansoura, 35511, Egypt

2Faculty of Computer Science and Engineering, Galala University, Suez, 435611, Egypt
3Faculty of Computers and Artificial Intelligence, Benha University, Banha, 13518, Egypt

4College of Computing and Informatics, Sungkyunkwan University, Suwon, Korea
*Corresponding Author: Tamer Abuhmed. Email: tamer@skku.edu

Received: 28 September 2022; Accepted: 14 December 2022

Abstract: The precise diagnosis of Alzheimer’s disease is critical for patient
treatment, especially at the early stage, because awareness of the severity and
progression risks lets patients take preventative actions before irreversible
brain damage occurs. It is possible to gain a holistic view of Alzheimer’s
disease staging by combining multiple data modalities, known as image
fusion. In this paper, the study proposes the early detection of Alzheimer’s
disease using different modalities of Alzheimer’s disease brain images. First,
the preprocessing was performed on the data. Then, the data augmentation
techniques are used to handle overfitting. Also, the skull is removed to lead
to good classification. In the second phase, two fusion stages are used: pixel
level (early fusion) and feature level (late fusion). We fused magnetic resonance
imaging and positron emission tomography images using early fusion (Lapla-
cian Re-Decomposition) and late fusion (Canonical Correlation Analysis).
The proposed system used magnetic resonance imaging and positron emission
tomography to take advantage of each. Magnetic resonance imaging system’s
primary benefits are providing images with excellent spatial resolution and
structural information for specific organs. Positron emission tomography
images can provide functional information and the metabolisms of particular
tissues. This characteristic helps clinicians detect diseases and tumor progres-
sion at an early stage. Third, the feature extraction of fused images is extracted
using a convolutional neural network. In the case of late fusion, the features
are extracted first and then fused. Finally, the proposed system performs XGB
to classify Alzheimer’s disease. The system’s performance was evaluated using
accuracy, specificity, and sensitivity. All medical data were retrieved in the
2D format of 256 × 256 pixels. The classifiers were optimized to achieve
the final results: for the decision tree, the maximum depth of a tree was 2.
The best number of trees for the random forest was 60; for the support vector
machine, the maximum depth was 4, and the kernel gamma was 0.01. The
system achieved an accuracy of 98.06%, specificity of 94.32%, and sensitivity
of 97.02% in the case of early fusion. Also, if the system achieved late fusion,
accuracy was 99.22%, specificity was 96.54%, and sensitivity was 99.54%.
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1 Introduction

The aging population worldwide is increasing the number of dementia patients. Alzheimer’s dis-
ease (AD) is the most prevalent neurodegenerative illness in the elderly, causing the patient’s cognitive
functions, including memory, problem-solving, and language, to decline gradually. Cognitive changes
in AD often begin slowly and accelerate with time. According to recent studies, 55 million people
have AD worldwide, and which number by 2030 is expected to increase to 78 million [1]. In research
on AD, subjects are frequently classified into four categories of normal control (NC), early mild
cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD. The cognitive abilities
of individuals with mild cognitive impairment (MCI) and dementia have deteriorated. However, EMCI
has a lesser everyday impact, and patients with dementia frequently exhibit other symptoms, such as
difficulties in thinking or impaired judgment [2,3]. MCI is a neurological disorder characterized by
cognitive impairment that affects the patient’s ability to perform some daily tasks. MCI implies the
onset and development of cognitive impairments beyond normal expectations of an individual’s age
and education but is not severe enough to hinder their daily activities. It may happen as a transitional
stage between normal aging and the preclinical stage of dementia.

As AD develops, the structure and metabolism of the brain change. As a result of this change, a
phenotype, which consists of cortex and hippocampus shrinkages, expanded ventricles, and alteration
of regional glucose, can be measured by medical imaging techniques, such as magnetic resonance
imaging (MRI) and positron emission tomography (PET). Diagnosis and prediction of AD can be
achieved by calculating and analyzing these medical images [4]. For example, a T1-weighted MRI
provides high-resolution structural information for the brain, enabling the measurement of structural
measures, such as thickness, size, and shape. On the other hand, PET imaging assesses brain tissue’s
metabolic activity. PET images can reflect organ tissues and bloodstreams [5]. The information in
the multimodal medical images should be used to provide better human visualization to support
pathologists in making decisions. Image fusion is a common strategy for accomplishing this aim
since the combined output preserves MRI image location information and the molecular activity
information from PET. So, this research focuses primarily on the challenge of merging MRI-PET
multimodal medical images [6].

In this study, the proposed system exploits MRI and PET image fusion to enhance AD prediction
in its early stage and differentiate between different AD stages. Image fusion techniques include
integrating images and image-related information from multi-source images [7,8]. The fusion of
various sources of medical images is a well-established approach in the medical field [9,10]. It has
been proven to significantly increase performance using a single imaging source [11].

After the fusion phase is performed, feature extraction is transitioned to the most important phase.
Deep neural networks (DNNs), which are a part of the machine learning (ML) field, are theoretically
capable of imitating any complex function and successfully addressing image feature extraction and
classification problems [12]. Recent advancements in neural network-based on deep learning (DL)
techniques have led to breakthroughs and advancements in several disciplines, which include object
identification [2,3], image classification [4,13], and facial recognition [14,15]. Since feature extraction
is the most crucial phase in the image classification system and directly impacts performance, the
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conventional classification methods employ various time-consuming feature engineering approaches
[16,17]. However, CNN-based models have recently demonstrated an exceptional ability to extract
high-quality features from raw images without user intervention [12,18].

In this study, the early detection of AD and classification system is created and concentrated
on DL approaches and ensemble XGB. Because both VGG16 and XGB perform well in image
classification challenges, this work investigates how these two components are combined. A new
image classification method depends on the VGG16-XGBoost model to enhance the performance
of the image classification issue. Also, to increase accuracy, the proposed framework VGG16-
XGBoost model combines VGG16 work as a trainable extractor of deep features and XGB as a
classifier. This two-stage approach ensures high feature extraction and classification accuracy. The
main contributions of our work in this paper are in summary:

1. The proposed system is based on simple CNN architectures that deal with two differ-
ent modalities: MRI and PET images. To take advantage of two modalities, the fusion is
performed. MRI’s primary benefits are providing images with excellent spatial resolution and
structural information for specific organs. PET images can provide functional information and
the metabolisms of particular tissues.

2. Also, the main challenges for medical images are the small number of the dataset. So, data
augmentation techniques are applied to maximize the dataset’s size and prevent the overfitting
problem.

3. Resampling methods are used, such as “oversampling, downsampling”, to overcome collected
imbalanced dataset classes.

4. The proposed system uses transfer learning to take advantage of the pre-trained models, such
as the VGG16 model, because it is explored high deep features.

5. Ensemble methods have higher predictive accuracy compared to individual models. As a result,
XGB is used for classification.

6. According to performance measures, the experimental results achieved high performance.

The remainder of the paper is structured as follows: Section 2 introduces the literature review
on medical image classification and its challenges, then Section 3 provides the proposed framework
in more detail. Section 4 reports the experimental analysis results of the proposed framework, while
Section 5 describes the discussion in more detail. Finally, Section 6 concludes the work and postulates
future work. Table 2 lists all used abbreviations and their meanings.

2 Literature Review

There have been a variety of research efforts conducted on the diagnosis of AD utilizing a variety
of ML algorithms and DL techniques to detect dementia at an earlier stage. However, it is crucial to
design and develop new methods based on the most recent and cutting-edge DL approaches to uncover
relevant characteristics that may be employed for early AD diagnosis.

2.1 Machine Learning
Recent studies have emphasized identifying novel features that contribute to the early diagnosis of

dementia. In addition, these studies should increase the efficiency of early identification of Alzheimer’s
disease by eliminating unnecessary and redundant features previously employed. Khan et al. [19]
reviewed recent research on early AD detection by ML techniques. Researchers conclude in their review
that several methods achieved promising prediction accuracy; however, a fair comparison was made
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difficult by evaluating different pathologically unproven data sets from different imaging modalities.
Furthermore, many additional factors, such as preprocessing, the number of key feature-selection
attributes, and imbalance classes, substantially impact the evaluation of prediction accuracy of AD
prediction.

Using particular CSF biomarkers from an Alzheimer’s clinical dataset, Hassan et al. [20] proposed
a classification model to predict earlier stages of AD. Several models were constructed and validated
using various biomarkers to accurately predict the MCI status of a patient. Their findings indicate that
the classification model based on J48 can accurately predict with 98.82% accuracy. Lodha et al. [21]
presented a medical ML-based model. Advances in medical technology have made better data available
to identify symptoms of different diseases in the early stages. Their paper uses ML algorithms to
process this data obtained through neuroimaging technologies in its primitive stage for AD detection.
Neural networks and random forests perform much better than other methods. This method is
implemented so that results are instant and accurate. SVM and gradient boosting are also powerful
algorithms for the problem of classification.

Rallabandi et al. [22] developed a technique for distinguishing between early and late MCI, as
well as AD. For best results, researchers employ a nonlinear SVM classifier. While this approach
may not be effective for clinical diagnosis, it represents a significant advancement in classifying MCI
and AD. Hassan et al. [23] introduced a method for optimizing feature extraction using a transfer
learning concept and a ResNet50 DL model. Extensive tests were carried out on the challenging
standard benchmark ImageCLEF-2012 dataset containing 31 classes. The created approach achieved
an increased classification accuracy of 87.91%, which was up to 10% higher than state-of-the-art
approaches on the same dataset.

2.2 Deep Learning
Islam et al. [14] presented an effective method for diagnosing AD by analyzing brain MRI data.

Even though most current research is based on binary classification, their models considerably enhance
multiclass classification as CN, EMCI, LMCI, and AD. Accomplishing a 93% degree of accuracy,
their work can be useful for the early identification of AD. Although the provided approach was only
evaluated on the AD dataset, it might be successfully applied to other medical diagnosis problems.
Additionally, the method has great potential in other domains with limited datasets. But their accuracy,
at only 93%, needs to be improved. Wang et al. [24] studied a CNN structure with eight layers. Six
layers were employed for the feature extraction procedure, and two completely connected layers were
used for the classification step. According to the results, max-pooling and Leaky Rectified Linear unit
(LReLU) obtained a high degree of performance with 97.65% accuracy.

Alam et al. [25] introduced ensemble learning methods for identifying pneumoconiosis disease
in chest X-ray radiographs (CXRs) by combining various deep-learning models. Three ensemble
learning approaches (simple averaging, multi-weighted averaging, and majority voting (MVOT)) were
developed to examine performance utilizing randomized cross-folds and leave-one-out cross-
validations datasets. The statistical combination on a reliable model, CheXNet, was slightly improved
in the second investigation’s multi-weighted averaging ensemble. The identical model, however,
increased accuracy in the third investigation from 87.80% to 90.2%. The results of the investigation
allowed there to pinpoint a DL model and ensemble architecture that performed better than the
competition and had an accuracy of 91.50% in the automated detection of pneumoconiosis.

Devnath et al. [26] presented a unique DL-based skin cancer detector using an unbalanced dataset.
The data imbalance was resolved using data augmentation to balance different skin and cancer
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groups. The diagnosis of diseases using photographs frequently uses DL models. The classification
of skin cancer was carried out using DL-based models (AlexNet, InceptionV3, and RegNetY-320).
InceptionV3 and AlexNet fared worse than RegNetY-320, according to the results, on the balanced
and unbalanced F1-score and ROC curve datasets. A framework’s effectiveness as the presented value
was 91%, 88.1%, and 0.95%, all much higher than the values produced using the state-of-the-art
approach, which were 85%, 69.3%, and 0.90%, respectively. The detection of diseases could benefit
from their efforts. It might decrease the need for pointless biopsies, save lives, and lower patient medical
expenses.

The proposed model for the effective diagnosis of the onset of AD has been proposed to overcome
the limitations of earlier studies. The medical images undergo a preprocessing phase to eliminate the
class imbalance issue. Avoiding the curse of dimensionality by utilizing ensemble learning algorithms
to choose important attributes is feasible. Most past studies employed pre-trained networks, which
were trained on enormous image datasets containing non-medical imagery. This may demand more
time and resources to adjust the network to classify medical images.

Moreover, this study investigates the most recent progress of the XGB in developing an AD
diagnosis system. The previous limitations are as follows: they depend only on a single ML model
compared to an ensemble classifier. Also, previous work, as shown in Table 1, is summarized.
Also, previous work concentrates on traditional feature extraction that does not work well with the
classifier to explore more features. Finally, the classification accuracy needs to enhance. To overcome
these limitations of previous work, a model for effective diagnosis of the onset of AD has been
proposed. First, a preprocessing step is performed on the pathologically proven data set to remove the
class imbalance issue by using oversampling and under-sampling. Second, augmented images were
generated from the original by flipping images horizontally and vertically to overcome the possible
over-fitting problem in training. Third, the VGG16 is used as a feature extraction because traditional
feature extraction cannot work well with the classifier to explore more features to learn the classifier.
Fourth, the XGB depends on more than one model to give the final result of the classification rather
than a single model. Finally, there is no overfitting to check the data’s stability. The K-fold is presented.

Table 1: An overview of AD diseases using different ML methods

Authors Method Results Problem with method

Khan et al. [19] ML Several methods achieved
promising prediction
accuracies. However, they
were evaluated on different
pathologically unproven data
sets from different imaging
modalities, making it difficult
to make a fair comparison
between them

Their system needs to
distinguish MCI from healthy
controls rather than AD, as
MCI is the early stage of AD.

(Continued)
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Table 1: Continued
Authors Method Results Problem with method

Hassan et al. [20] ML
algorithms

The J48-based classification
model can be effectively
employed for classifying
cognitively impaired
Alzheimer patients from
normal healthy individuals
with an accuracy of 98.82%

They should divide the data
set by using K-fold to handle
overfitting rather than
dividing the sample size (60%
training and 40% independent
test data

Lodha et al. [21] ML Neural networks and random
forests have much better
performance in accuracy.
SVM and gradient boosting
are also powerful algorithms
for classification problems

—

Rallabandi et al. [22] Nonlinear
SVM
classifier

Nonlinear SVM classifier
using a radial basis function
kernel with an overall
accuracy of 75% for 10-fold
cross-validation

The performance of this
model may not be helpful for
clinical diagnosis, but it
represents a decisive step
toward the classification of
MCI and AD.

Hassan et al. [23] Transfer
learning
concepts
with
pre-trained
ResNet50
Deep
learning
model

The average classification
accuracy of 87.91%, which is
higher up to 10% compared to
the state-of-the-art
approaches on the same
dataset

Their system still needs
improvement to increase
accuracy.

Islam et al. [14] CNN Their approach has strong
potential to be used for
applying CNN in other areas
with a limited dataset

They should plan to evaluate
the proposed model for
different AD datasets and
other brain disease diagnosis

Wang et al. [24] CNN Max-pooling and Leaky
Rectified Linear unit
(LReLU) obtained a high
degree of performance with
97.65% accuracy

–

3 The Proposed Framework

There is growing interest in using ensemble learning techniques for neurodegenerative diseases.
Our suggested framework system, depicted in Fig. 1, includes a mechanism that assists in the early
detection of disease. This framework system comprises five steps, beginning with reading multiple
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modalities of brain images from a standard database for AD patients. The preprocessing phase includes
data standardization, skull stripping using BET, and data augmentation. The BET removes the skull
from an image, leaving just the brain tissue-occupied region. This separates the brain tissue by utilizing
the CSF-occupied dark matter between the skull and the brain.

Table 2: Abbreviation and meaning

Abbreviation Meaning Abbreviation Meaning Abbreviation Meaning

AD Alzheimer’s
disease

DT Decision tree NC Normal
control

ADNI The
Alzheimer’s
disease
neuroimaging
initiative

DWT Discrete
wavelet
transform

PCA Principal
component
analysis

AUC Area under the
curve

EMCI Early mild
cognitive
impairment

PET Positron
emission
Tomography

BET Brain
extraction tool

LMCI Late mild
cognitive
impairment

RF Random
forest

CCA Canonical
correlation
analysis

LP Laplacian
pyramids

ROC Receiver
operating
characteris-
tic

CNN Convolutional
neural network

LRD Laplacian Re-
decomposition

SVM Support
vector
machine

DL Deep learning ML Machine
learning

VGG16 Visual
geometry
group 16

DNNs Deep neural
networks

MRI Magnetic
resonance
imaging

(XGB) eXtreme
Gradient
Boosting

Fig. 1 shows that the third phase is divided into two sub-phases. The proposed system applies two
fusion types, each of them separately from the other: early fusion and late fusion. The first sub-phase,
using LDR, this step involves the integration of multiple modalities of brain images. In the past decade,
medical image fusion has made significant progress forward. In contrast to previous methods, which
were always susceptible to color distortion, blurring, and noise, our system uses LRD to address these
concerns. LRD comprises two technological procedures. Complementary information, redundant
information, and low-frequency sub-band images are obtained with a Laplacian decision graph
decomposition and image enhancement. The proposed system then considered the heterogeneous
features of redundant and complementary data. Using the inverse Laplacian transform, the outcome
of the fusion is generated. After the fusion is performed, the VGG16-PCA is performed.
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Figure 1: The proposed system for detecting and diagnosing AD in the early stage

In the second sub-phase, feature fusion is performed, especially CCA, which is a multi-view
feature fusion approach that aims to exploit and extract relevant features from different views. This
step aims to fuse the previously extracted features using VGG16-PCA to produce more informative
discriminative features between the tested groups.

In the third stage, feature extraction is used by CNN, where it is utilized a VGG16 model that has
been pre-trained to extract features from a fused medical image. Only use the convolutional layer of
the pre-trained VGG16 model to extract the features.

Finally, XGB is used to classify images as NC, EMCI, MCI, or AD. Transfer learning is the ideal
strategy for employing a deep learning model as a baseline method or feature extractor. In contrast,
XGB is a scalable ML approach. To avoid overfitting, tree boosting is used. Four phases of AD are
classified into multiple classes (i.e., CN, EMCI, LMCI, and AD) in the final phase of the proposed
framework.

3.1 Preprocessing Phase
Initially, the obtained dataset has unbalanced classes; hence, two resampling strategies are

employed to overcome this issue (oversampling and under-sampling). Under-sampling refers to
removing instances from a class overrepresented, whereas oversampling refers to adding cases to an
underrepresented class. Many neuroimaging applications deal with imbalanced imaging data. For
example, in the ADNI dataset, MCI cases eligible for the study are nearly two times the AD patient’s
imaging modality and six times the control cases for the proteomics modality. Constructing an accurate
classifier from imbalanced data is a challenging task. One of the key challenges in designing good
prediction models on ADNI data lies in the class imbalance problem. A dataset is said to be imbalanced
if one class has significantly more data points and fewer occurrences of the other. For example, the
number of control cases in the ADNI dataset is half of the number of AD cases for proteomics
measurement.
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In contrast, there are 40% more control cases for image modality than AD cases. It is commonly
agreed that imbalanced datasets adversely impact the performance of the classifiers as the learned
model is biased towards the majority class to minimize the overall error rate. So, the oversampling
is performed on a small number of instances. Also, under-sampling is performed to make balanced
data because a single instance has many copies compared to other instances for the same class. The
proposed system employs the oversampling method for AD, EMCI, and LMCI. The under-sampling
technique is also applied to the NC class. All AD classes have 6,000 MRI images after resampling
techniques. Consequently, there are now 24,000 images in the dataset. After that, the data is processed,
normalized, and transformed into the proper format.

In the second stage, the skull is eliminated using the Brain Extraction Tool (BET), as depicted
in Fig. 2. Third, the data normalization is performed, which means altering the pixel range or voxel
intensity values. This seeks to delete some data variations, such as changing subject poses or differences
in image contrast, to make detecting small differences easier. Data normalization methods include re-
scaling data within the range [0, 1].

Figure 2: Skull removal using BET
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Finally, data Augmentation is conducted. According to the limited availability of medical datasets,
the dataset is expanded using typical data augmentation techniques like flipping, which flips images
vertically or horizontally. As a result, the dataset was divided into 12,000 images for each class
to comprise 48,000 images for all classes. The main motivations for utilizing data augmentation
techniques are maximizing the dataset and solving the overfitting problem.

In this stage, the skull is removed from images by using the brain extraction tool (BET), as shown
in Fig. 2. BET estimates the brain and non-brain threshold based on intensity, identifies the center
of gravity of the head, identifies an initial sphere based on the gravity center, and extends the sphere
tessellation until it reaches the edge of the brain [23,27].

3.2 Fusion Phase
Two stages of the fusion model were used: early and late. Each is used separately to enhance

image sharpening, feature enhancement, and improved classification. The process of fused images is
performed by using early fusion (Laplacian Re-Decomposition (LRD)) and late fusion (Canonical
Correlation Analysis (CCA)) by fusing MRI and PET images. In the case of late fusion, the features
are extracted first using VGG16 and then fused.

3.2.1 Early Fusion (Laplacian Re-Decomposition)

The multi-scaling transformation (MST) approach is a popular modeling paradigm for medical
image fusion [6]. The MST methods include three stages: decomposition, selection of fusion rule,
and reconstruction. First, the original images are broken down using MST tools into high-frequency
sub-band (HSI) and low-frequency sub-band images (LSI). HSI primarily contains texture features
of the source images, and LSI contains the background information; secondly, several fusion rules
are adopted to fuse HSI and LSI; lastly, reverse decomposition operation is used to rebuild the
fused outcome according to the decomposition process. The LRD is composed of three main parts:
gradient-domain image enhancement (GDIE) [22,23], LP, and decision graph re-decomposition
(DGR). To improve LRD detail extraction capabilities through the adaptive gradient, mapping is
performed by GDIE. LP helps to split image features in a multi-scale fashion. Because of redundant
and complementary information heterogeneity, overlapping and non-overlapping domain images are
generated by establishing global decision graphs via DGR for better fusion results.

Furthermore, global decision graphs are used to help describe the logical relationship between
GDR and IRS (m1–m14). The GDIE includes four main components and is the first phase of
LRD: maximum local difference (MLD), interval division of feature information, remapping gradient
feature, and convolution operation [22]. The second phase of LP splits the improved image of GDIE
into HSI with edges and details and LSI with background information. Finally, the DGR can correctly
classify HSI information that is redundant and complementary to HSI. In addition, DGR can
decompose HSI to overlap images of the domain and non-overlapping images, which is conducive
to the design fusion rules with less interphase interference and more targeted, as shown in Fig. 3.
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Figure 3: Laplacian Re-Decomposition

Guide: The four components of GDIE are the MLD, division of feature information, convolution
operation, and remapping features.

• MLD: in the window 3 × 3 this divides every three pixels into 12 directions. After that, pixels
will be summed in all directions, and the maximum difference will be expressed as in Eq. (1) [28]
where m represents row and n represents column:

D (i, k) =
∑m

i=1

∑n

k=1

[
max

∑12

x=1
z (x) − min

∑12

x=1
z(x)

]
(1)

where D (j, k) represents the value of MLD, and in every direction, Z(x) is the sum of all pixels.

• IDFI: The value of the threshold is chosen to divide edge information. This threshold has two
steps, as presented by Eqs. (2) and (3).

(I) Arrange D (j, k) from higher to lower to make the 1-D array.
(II) The rate of array Y is calculated with a fixed length. When its value is below 0.1, MLD

is taken as the threshold.

Rj =
∑j+l

j=1
Vj − Vj+k (2)

T = Vj if Rj < 0.1 (3)

where k = (m × n)/l, l represents fixed length, V is the size of the array, and m × n is the total length.

• Adaptive HF Information Lifting Coefficient: Adaptive HF information lifting coefficient C (j, k)
depends on MLD and fitting function Y1. Considering the fitting coordinates, Y1 is calculated
as in Eq. (4) [28]:

YI = α1x3 + α2x2 + α3 + α4 (4)
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where, α1 and α2 are the coefficients. Considering Y1, C (j, k) is calculated by Eq. (1):

C(j, k) =
{

(D (j, k)) (D (j, k)) > 0
−1 (D (j, k)) = 0

(5)

• Gradient Re mapping Image Enhancement: The localized information of the gradient of the
image is expressed as in Eq. (6) [28]:

g1 =
∑1

θ=−1

∑1

δ=−1
[p (j + θ, k + δ) − p (j, k)] (6)

where P (j, k), θ , and δ represent pixels of the source image, rows, and columns of g1, respectively.

Remapping g1 with C (j, k) and Y2 gives local template g2. The ranges of g1 and Y2 are (−1 to
1). The mapping function is 1 for better enhancement. The following relation represents these details:

Y2

(
xθ ,δ

) = w2xθ ,δ + w2 + 1 (7)

x(θ ,δ) = C(j, k) −
(

C(j, k) + 1(max (g1) − ∑3

θ=1

∑3

δ
g1(θ , δ)

)
max (g1) − min(g1)

(8)

The higher the value, the greater the enhancement. X (θ , δ) is the variable, and g2 is obtained by
Eqs. (7) and (8) [28]:

g2 =
3∑

θ=1

3∑
δ=1

Y2

(
x(θ ,δ)

)
(9)

The enhanced image is obtained by convoluting g2 with source image as in Eqs. (9) and (10) [28]:

H ( j, k) =
m∑

j=1

n∑
k=1

g2 � A ( j, k) (10)

3.2.2 LP Multi-Scale Decomposition

The Laplacian pyramid performs LSI and its decomposition. The LP decomposition algorithm
is [28]:

Hμ( j, k) =
∑τ−1

γ=1
Lγ

μ
( j, k) + Gτ

μ
( j, k) (11)

where, Lγ

μ
represents his, and G τ

μ
(j, k) represents LSI, μ is the source image, τ represents the total

length, and γ is the present length.

3.2.3 DGR Algorithm

DGR separates the complementary and redundant HSI information. DGR decomposes HSI
into images that are overlapping and non-overlapping. DGR uses global HSI decision graphs.
The redundant information is separated into overlapping images by the first classifier, m5.
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Correspondingly, in the image of the non-overlapping domain, the second classifier (m6) stores
complementary information.

3.3 Late Fusion (Feature Fusion)
Fusing feature sets is the procedure of concatenating a set of feature vectors to acquire a unique,

robust descriptor, which provides more representative and relevant information than the input. It
is worth noting that this fusion causes the problem of high dimensionality and can degrade the
classification performance due to the “curse of dimensionality”. CCA is a learning scheme for
calculating the linear relationship between two multidimensional variables, which seeks the projection
by maximizing the correlation between two types of features. CCA is a multi-view feature fusion
approach that aims to exploit and extract relevant features from different views. This step aims to
fuse the previously extracted features to produce more informative discriminative features between
the tested groups. For this purpose, the CCA-based feature fusion technique is used because it finds
the associations between two sets of variables [29]. Obtaining the linear combinations helps discover
this association that consequently enlarges the correlation between the two variable sets. Note that due
to the different scales of the extracted features, each feature is normalized in the range [0 − 1] using
Eq. (12) before fusing the features using the CCA technique.

Norm Feature = (Old Feature − Old Featuremin)

(Old Featuremax − Old Featuremin)
(12)

3.4 Feature Extraction
Feature extraction defines a collection of data that can affect the performance of a classification

model. An expert approach is used in traditional machine learning to extract a vector of features based
on a certain domain. This preprocessing became inherent to the classification algorithm, extracting
vectors from abstracts with DL. DL models are used in medical imaging systems to extract features
automatically as pre-trained networks [30,31]. After several layers are removed, a pre-trained neural
network is transformed into a feature extraction method. This modified network is used to configure a
learning transfer procedure. Transfer learning enhances a new ML problem by transferring knowledge
from a previously perfected equivalent task [32].

VGG16 [33] is the pre-trained CNN architecture utilized in this article to extract the feature.
VGG16 architecture was introduced in 2014 by Karen Simonyan and Andrew Zisserman. AlexNet’s
successor is VGG. VGGNet-16, as shown in Fig. 4, is made up of five convolutional and pooling
layer blocks. Each of the first two blocks has two convolutional layers, followed by a max pooling
layer. In comparison, the next three blocks each have three convolutional layers, followed by a max
pooling layer. The 16 in VGG16 refers to the 16 weighted layers. It is built with a 16-layer network that
includes convolutional and fully linked layers. It comprises 13 convolutional layers, two fully connected
layers, and 1 SoftMax classifier layer. The convolutional layers’ filter dimension is 3 × 3 with a fully
connected (Dense) layer of the VGG16. This layer extracts features by returning a feature vector of
4,096 dimensions for each image [32].
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Figure 4: Pre-trained feature extraction VGG16

A crucial stage in the process of pattern recognition and visualization is feature extraction, which
is the process of converting the data into numerical values. This crucial phase helps the model identify
better accuracy. The processing becomes easier as a result. The most important characteristic of these
massive data sets is that they contain many different variables. Large amounts of data can be extracted
using the VGG16 feature extraction model, which also produces accurate findings and explores more
features than traditional features because it depends on more layers for feature extraction. One of
the most well-liked methods for extracting image features performs best when used as an aid in
classification tasks. Consequently, feature extraction has been chosen to use the VGG16 model in
the suggested work. The images have been input into the first layer of the VGG16 network for feature
extraction. After that, the images go through several convolutional layers. The image is transmitted
through the initial stack of two convolutions with a receptive area of 3 × 3 after the ReLU activation
functions. There are 64 filters on each of these layers. While the stride value is always set to 1, the
padding is always maintained at 1 pixel. This architecture maintains the full spatial resolution, and
the output activation dimensions are the same as the source images. Since the window size is 2 × 2,
the activations are routed to the pooling layer with a stride value of 2 pixels. After that, the size of the
activations is reduced by half. The output is additionally transmitted to the convolutional layers in the
second stage, which is passed on to the pooling layer and produces the output image. The convolutions
and pooling layer’s final step are reached by continuing this process. After a stack of convolutions, a
flattening layer is utilized between the three completely connected layers.

After features extraction, the calculated features contain useful information with strong represen-
tations and redundant information. Selecting a meaningful description of the input data and elimi-
nating redundant components to achieve a compact data expression is a specific task in classification
problems. PCA is a common dimension reduction technique. The main idea of PCA is to perform an
orthogonal transformation to the basis of correlation eigenvectors and project them into the subspace
expanded by the eigenvectors corresponding to the largest eigenvalues [34].
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3.5 XGB
The proposed system based on VGG16 with XGB on AD images will be detailed in depth in

this section. The VGG16 plays a critical role in extracting all the key features from an image. This
pre-trained network was chosen to enable a more in-depth exploration of all pixels inside an image.
The work’s final stage involves using XGB to train all extracted features. XGB, a highly effective and
scalable ML technique for tree boosting, has been widely used in various domains to obtain state-
of-the-art outcomes on a wide range of data difficulties. Since it was developed by Tianqi Chen et al.,
several key system and algorithmic optimizations have been made. Among these is a novel tree-learning
approach, a theoretically justified weighted quantile sketch procedure, and parallel and distributed
computing. As an ensemble learning technique, tree boosting converts many weak classifiers into a
single strong classifier, resulting in a more accurate classification procedure [9].

4 Experimental Results

The proposed system focus on constructing an AD CAD expert system with CNN (VGG16) and
XGB. This section of the proposed system is separated into two subsections: evaluation metrics and
results. In the section on evaluation metrics, the performance measures used are detailed in depth. In
the results subsection, we introduce the outcomes of our proposed system and the entire suggested
system on the dataset. Then, the system compares our proposed framework system to numerous state-
of-the-art ML techniques in classification. The system uses a variety of performance measurements
to present some tables to address the main idea. Also, the system shows an analytical comparison in
the results subsection between the proposed system and different techniques.

4.1 Dataset
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [35] was employed for this

work. The ADNI was founded in 2003 as a public-private partnership led by principal investigator
Dr. Michael W. Weiner. ADNI’s primary goal has been to determine whether serial MRI, PET, other
biological markers, and clinical and neuropsychological tests may be utilized to track the progression
of MCI and early AD. The ADNI study was divided into three phases, which began in 2004, 2009,
and 2011. ADNI-1 examined 800 participants, and each subsequent phase included new patients and
patients who chose to continue participating in the research from the prior phase.

Data Acquisition. In this step, all training data from the ADNI dataset are collected in 2D, T1w
MRI, and PET. DICOM-formatted medical image descriptors such as Coronal, Sagittal, and Axial
are provided. The dataset includes 300 individuals separated into four categories. Each class comprises
75 patients and a total of 21 images and 816 scans. There are 5,764 images in the AD class, 5,817 in
the EMCI class, 3,460 in the LMCI class, and 6,775 in the NC class. All medical data were retrieved
in the 2D format of size 256 × 256 pixels.

4.2 Evaluation Metrics
Performance evaluation metrics are used to measure the classification model’s performance and

investigate how a model works well to achieve the goal. The test dataset uses performance evaluation
metrics to estimate the classification model’s performance and effectiveness, choosing the correct
metrics. It is essential to evaluate the model performance, such as accuracy, sensitivity, and specificity.
The proposed framework system utilized three different metrics to measure the performance, i.e.,
sensitivity (SEN), specificity (SPE), and accuracy [36]. The proposed framework takes into account
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different conditions. The experimental results are evaluated in terms of performance metrics: accuracy,
recall, Specificity, and True Positive Rate (Sensitivity).

Results: Hyperparameter selection plays an essential role in fitting modern supervised ML
algorithms. It controls the complexity and topology of the algorithms. Therefore, hyperparameters
must be selected carefully before fitting ML models to a data set. People generally explain the
hyperparameter importance based on understanding the machine learning algorithms and rank the
importance by experience. However, this is not convincing, and the hyperparameter importance should
not be universal. For example, the maximum depth of a decision tree model should be important when
the data have interaction effects. Still, its importance is negligible if the data comes from an additive
model. The settings of the classifiers were optimized to achieve the final results: for DT, the maximum
depth of a tree was 2. For RF, the best number of trees was 60; for SVM, the maximum depth was
4, and the kernel gamma was 0.01. Also, all parts of the proposed system are implemented using the
python language. The proposed system is developed on an i7/2.6 GHz processor and 8 GB RAM.

In Table 3, the MRI was used. In the evaluation and comparison of the approaches, four
performance metrics are used. Also, as shown in Table 3, the PET image was used. The results also
show that the proposed architectures are appropriate for fused images.

Table 3: The performance evaluation of the proposed framework system for early fusion image

DWT VGG16
Modality Metrics NB DT RF SVM XGB NB DT RF SVM XGB
MRI ACC

Spec.
Sens.
DSC

86.40 86.84 89.47 89.91 92.54 87.28 87.72 90.79 91.66 93.86
81.82 81.25 86.84 86.07 89.87 82.27 83.33 87.34 88.60 91.25
88.74 89.86 90.79 91.95 93.96 89.93 90.00 92.62 93.28 95.27
89.63 89.86 92.00 92.25 94.28 90.23 90.60 92.93 93.60 95.36

PET 85.98 86.82 88.38 91.07 91.23 88.16 89.91 90.78 92.10 92.98
79.54 83.65 82.68 88.67 89.43 81.92 84.34 84.70 86.05 88.09
87.37 91.76 91.54 93.78 93.54 91.72 93.10 94.40 95.77 95.83
88.53 89.76 90.57 91.34 92.14 90.78 92.15 92.78 93.79 94.52

The
proposed
framework

92.65 95.72 94.87 96.00 96.98 91.62 96.67 96.23 97.29 98.06
89.71 95.00 90.75 91.89 94.70 89.71 92.84 89.74 93.74 94.32
85.10 91.63 92.65 94.56 97.53 83.76 96.45 96.00 96.13 97.02
85.23 90.32 92.76 95.01 98.00 85.32 96.67 96.34 96.36 97.89

This section presents a comprehensive framework for the early detection of AD. This work
uses five techniques: NB, DT, RF, SVM with linear kernel, and XGBoost. The hyperparameter
of techniques presented for the classification algorithm is performed to induce classifiers. In the
evaluation and comparison of the approaches, four performance measures are used. The results show
that the proposed framework is appropriate. They also obtain a very promising accuracy of 98.06%
for 2D multi-class AD stage classifications. As shown in Table 3, five classifiers are performed. The
results describe that the proposed model is superior to NB, DT, RF, and SVM, with 98.06% accuracy
in the case of CNN (VGG16). Also, the results describe that the proposed model is superior to the five
ML techniques used in this chapter, with 96.98% accuracy in the case of using DWT.

Fig. 5 shows the results of the receiver operating characteristic (ROC) curves for five different
classifiers. A ROC curve for the proposed work and comparison with other classifiers can be seen.
The proposed system in cases of pre-trained VGG-16 and XGB has a higher ROC curve compared to
Fig. 5, which is based on DWT as a feature extractor.
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Figure 5: Comparison between (A) ROC curve for the performance evaluation of the proposed
framework system using DWT and (B) ROC curve for the performance evaluation of our framework
system using pre-trained VGG-16

Table 4 shows that CCA is used to fuse features after extraction from MRI, and PCA performs
PET images using VGG16 and reduces features. In Table 3, our proposed framework achieved the
highest ACC with 99.22%. In the evaluation and comparison of the approaches, four performance
measures are used. The results show that the proposed framework is appropriate. They also obtained
a promising accuracy of 99.22% compared to other techniques, as presented in Table 4. Also, the
system compares VGG16 feature extraction and DWT, where VGG16 in our proposed work is superior
to DWT.

Table 4: The performance evaluation of the proposed framework system for late fusion image

CCA

DWT-PCA VGG16-PCA

Metrics NB DT RF SVM XGB NB DT RF SVM XGB

ACC 93.67 96.27 96.27 97.05 97.56 92.87 97.12 97.00 98.32 99.22
Spec. 89.32 91.69 94.65 95.07 92.65 92.87 94.85 95.88 95.87 96.54
Sens. 90.63 95.54 96.98 96 97.37 90.45 98.64 97.43 97.23 99.54
DSC 91.36 95.73 97 96 96.87 91.39 98 97.89 98.03 99.67

Fig. 6 shows that the proposed system compares five ML techniques in the case of using single
modality image MRI and PET. Each of them shares in the process of classification separately. Also,
the early fusion between two modalities of MRI and PET images is performed using LRD. In
comparison, late fusion is performed between two modalities of MRI and PET images using feature
fusion CCA. The results show that the proposed framework based on pre-trained VGG16 and late
fusion using CCA is superior to using a single modality and early fusion using LRD with ACC 99.22%,
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Spec. 96.54%, Sens. 99.54%, and DSC 99.67%. Also, Computational complexity is used to measure
the computational difficulty of a mathematical function. There are two types of complexity: Time
complexity, which is the amount of time it takes a given sequence of operations, and space complexity,
which is the amount of memory needed for a given sequence of operations. The Computational
Complexities of different ML Models as the following. First, the Computational Complexities time for
KNN in the train is time complexity = O(k ∗ n ∗ m), while test time Complexity = O(n ∗ m), and space
complexity = O(n ∗ m). Second, SVM train time complexity = O(n∧2), while test time complexity =
O(n′ ∗ m), and space complexity = O(n ∗ m). Third, DT train time complexity = O(n ∗ log(n) ∗ m),
while test time complexity = O(m), and space complexity = O (depth of the tree). Finally, RF train
time complexity = O(k′ ∗ n ∗ log(n) ∗ m), Test Time Complexity = O(m ∗ k′), and Space Complexity
= O (k′ ∗ depth of tree). NB Training Time Complexity = O(n ∗ m), Test Time Complexity = O(m),
Run-time Complexity = O(c ∗ m). Where n = number of training examples, m = number of features,
n′ = the number of support vectors, k = number of neighbors, k′ = the number of trees.

Figure 6: Comparison between (a) Single modality image, (b) Early fusion (LRD), and (c) Late fusion
(CCA)
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Table 5: Comparison of the proposed framework with the state-of-the-art models

Study Year Dataset Modality Technique Accuracy

Payan et al. [37] 2015 ADNI MRI 3D−CNN AD vs. EMC
vs. HC: 89.47%

Sarraf et al. [38] 2016 ADNI MRI,
fMRI

CNN AD vs. HC:
98.84%

Sahumbaiev et al. [39] 2018 ADNI MRI 3D−CNN AD/MCI/NC:
88.31%

Ge et al. [40] 2019 ADNI MRI Multi-scale
DCNN

AD/NC:
98.80%

Ruiz et al. [41] 2020 ADNI 3D MRI CNN AD, EMCI,
LMCI, NC:
66.67%

Helaly et al. [42] 2021 ADNI 2D MRI CNN AD/EMCI/
LMCI/NC:
97%

Proposed framework
with early fusion

2022 ADNI 2D MRI, PET XGB based
on
VGG16

AD/EMCI/
LMCI/NC:
98.06%

Proposed framework
with late fusion

2022 ADNI 2D MRI, PET XGBT based
on
VGG16

AD/EMCI/
LMCI/NC:
99.22%

In Table 3, a comparison is made between the proposed framework and state-of-the-art models.
Table 4 compares the medical image multiclass of AD stages classification. The proposed framework
obtained the highest accuracy of 98.06%. Sahumbaiev et al. [39] obtained the second-highest accuracy
of 88.31%, Helaly et al. [42] achieved the third-highest accuracy of 97%, and the lowest accuracy
was achieved by Ruiz et al. [41]. Therefore, from the empirical results, the proposed framework has
been demonstrated to consist of appropriate simple structures that reduce computing complexity and
overfitting. It also demonstrates highly promising multi-class classification accuracy. Table 5 shows a
comparison of the proposed framework with the state-of-the-art models.

5 Discussion

The proposed system identifies this variability and differentiates between NC and MCI groups
according to the imaging variability and variable neuropathology during AD progression. The model is
based on a nontraditional feature extraction technique, VGG16. The VGG16 feature extraction model
can extract a huge amount of data and results in good accuracy. It is one of the most popular image
feature extraction techniques, which performs better if any DL model is applied for classification tasks.
Hence, the VGG16 model has been chosen for feature extraction in the proposed work. The VGG16
model is implemented using fused MRI and PET scans. Various layers are utilized in the complete
architecture of the proposed models’ designs to extract features. After the feature extraction step, the
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extracted features were given to the ensemble classifier, which classified the result into four categories:
NC, EMCI, LMCI, and AD. The VGG16 contains 16 layers: convolution, input, dense, pooling, and
output. Then a comparison was conducted with the proposed framework presented in Tables 3 and 4
with the comparison results. The XGB based on VGG16 as a feature extractor presented yields better
results than other classifiers, compared to Tables 3 and 4. The proposed framework system enabled the
study groups to succeed in providing discrimination power. Therefore, the proposed system presented
superior results to the other classifiers. A high-bias classifier has proven that the DT has been prone
to overfitting. This fact about DT can explain the RF results, which can overcome the problem by
building a number of DTs. Finally, it could provide high-performance results because NB showed
good performance with small datasets and was not affected by overfitting. The proposed fusion data
system helps determine NC, EMCI, MCI, and AD diagnosis.

Basheera et al. [43] presented an approach in which the grey matter is extracted from brain voxels
and is classified using CNN. The grey matter is separated as a CNN input. A Gaussian filter is used
to improve the voxel. The algorithm for skull stripping is also used to delete irrelevant tissues from
enhanced voxels. Then, the hybrid-enhanced independent component analysis segments the voxels.
They carried out clinical assessments and reached 90.47% accuracy with their approach.

In addition, Lin et al. [44] presented a method that has been validated on standardized MRI data.
In leave-one-out cross-validations, this method obtains an accuracy of 79.9% and an AUC of 86.1%.
While maintaining a good balance between sensitivity and specificity, their method outperforms other
state-of-the-art methods in accuracy and AUC. The presented CNN-based method for the prediction
of MCI-to-AD conversion using only MRI data shows great promise.

With the vast growth in processing power and improved development of DL tools, DL-based
frameworks for predicting neurological illnesses have become attractive. The following list of difficul-
ties and related future perspectives:

• The supervised architecture has limitations because producing label data requires a lot of work,
it is hard to scale, and it is difficult to choose the right bias levels. Unsupervised learning is not
typically a choice taken into account for image analysis. Unsupervised architecture, however,
creates a data-driven decision support system using the dataset in addition to learning features
from it. Thus, problems relating to medical imaging can be resolved using unsupervised deep
architecture.

• It is still difficult to predict neurological problems in real-time using imaging data. However,
stream processing has been introduced for using a parallel computing approach to process large
amounts of data.

• Constructing a bias-free neuroimaging dataset is difficult since learning systems have a history
of producing computational artifacts. The issue can be reduced by incorporating a sizable
dataset into the model, researching the relationship between extracted features, and fine-tuning
the model’s parameters.

6 Conclusion

In the early stages of AD, diagnosis is difficult for various reasons, including that the disease
manifests differently in each individual. The proposed model uses Laplacian Re-Decomposition for
image fusion to help in the early diagnosis of AD, using data from two modalities: MRI and PET,
in association with XGB, to classify the fused imaging into three categories, NC, MCI, and AD.
The results proved the improvement in the competitive performance of the method. The proposed
framework was superior to NB, DT, SVM, and RF. Furthermore, the dataset is augmented using
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techniques with simple data augmentation. In the future, the integration between medical images and
genetic data should be performed to build a comprehensive system for early AD detection. Second,
the image segmentation phase should be applied to highlight Alzheimer’s features for early detection
prior to AD stage classifications rather than working on the whole image. Finally, it is intended to
employ advanced approaches for data augmentation.
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