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Abstract: With the increased advancements of smart industries, cybersecurity
has become a vital growth factor in the success of industrial transformation.
The Industrial Internet of Things (IIoT) or Industry 4.0 has revolutionized
the concepts of manufacturing and production altogether. In industry 4.0,
powerful Intrusion Detection Systems (IDS) play a significant role in ensuring
network security. Though various intrusion detection techniques have been
developed so far, it is challenging to protect the intricate data of networks. This
is because conventional Machine Learning (ML) approaches are inadequate
and insufficient to address the demands of dynamic IIoT networks. Further,
the existing Deep Learning (DL) can be employed to identify anonymous
intrusions. Therefore, the current study proposes a Hunger Games Search
Optimization with Deep Learning-Driven Intrusion Detection (HGSODL-
ID) model for the IIoT environment. The presented HGSODL-ID model
exploits the linear normalization approach to transform the input data into
a useful format. The HGSO algorithm is employed for Feature Selection
(HGSO-FS) to reduce the curse of dimensionality. Moreover, Sparrow Search
Optimization (SSO) is utilized with a Graph Convolutional Network (GCN)
to classify and identify intrusions in the network. Finally, the SSO technique
is exploited to fine-tune the hyper-parameters involved in the GCN model.
The proposed HGSODL-ID model was experimentally validated using a
benchmark dataset, and the results confirmed the superiority of the proposed
HGSODL-ID method over recent approaches.
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1 Introduction

With the gradual advancements of informatization and industrialization, the safety and control-
lability of the industrial Internet of things (IIoT) have gained significant interest among research
communities. The main idea behind the development of IIoT is to reap the advantages of Internet
of Things (IoT) technologies and apply it in Industrial Control Systems (ICSs). ICSs have become
an essential part of critical structures. ICSs are used for a known period in monitoring industrial
machinery and the associated processes [1]. It accomplishes real-time observation and communication
with machines, performs real-time data collection and analysis, and keeps a log of every activity of
the industrial systems. The application of IoT in such mechanisms improves the network’s security
and brings intelligence to the automation and optimization of industrial progressions [2]. Supervisory
Control and Data Acquisition (SCADA) mechanism is one of the major components of ICSs. It
offers a Graphical User Interface (GUI) via Human Machine Interface (HMI) [3]. HMI eases the
processes, for an operator, in terms of system status monitoring, communication with IIoT gadgets,
and triggering the alarm in case of abnormal actions. Network intrusion is any effort to destroy the
integrity, availability, or confidentiality of the network and its host [4]. It is considered the most typical
menace in cyberspace. This is because the existing intrusion prevention conditions are insufficient and
static in nature. Conventional Network Intrusion Detection (ID) techniques are generally passive and
cannot efficiently identify different types of unknown intrusions [5,6]. Thus, developing a precise and
effective intellectual network ID approach is imperative.

An intrusion Detection System (IDS) is a network security gadget that observes real-time network
trafficking and triggers a warning or takes proactive actions in case of any suspicious communications
[7]. IDSs vary from other prevention mechanisms by detecting the ongoing invasion or invasion that
happened earlier [8]. ID can generally be modelled as a binary classification issue that differentiates
whether a network traffic conduct is anomalous or normal or a multi-class classifier issue, in which the
network traffic conduct is recognized and the network attack type is fixed [9]. Over the past few years,
various developments have occurred in the field of Artificial Intelligence (AI), like Deep Learning
(DL) and Machine Learning (ML) methods that aim to enhance IoT IDS. The existing demands have
been discussed up-to-date via a critical review and the taxonomy of literature [10,11]. Several relevant
researchers have applied different ML and DL methods, using numerous datasets, to execute and
authenticate the enhancement of IoT IDS. However, it is still a debate whether the ML method or DL
method is highly efficient in framing a potential IoT IDS [12]. In literature, the time taken to develop,
train, test, and validate an IoT IDS was not considered so far to assess certain IDSs approaches.
However, this is an important factor that decides the efficiency of online IDSs [13]. Recently, DL
methods have gained popularity since they can resolve network ID issues [14].

In this background, the current study introduces a Hunger Games Search Optimization with Deep
Learning-Driven Intrusion Detection (HGSODL-ID) model in an IIoT environment. The presented
HGSODL-ID model exploits the linear normalization approach to transform the input data into
a useful format. The HGSO algorithm is employed for Feature Selection (HGSO-FS) to reduce
the curse of dimensionality. Moreover, Sparrow Search Optimization (SSO) is utilized with Graph
Convolutional Network (GCN) for classification and identifying intrusions in the network. Finally, the
SSO method is exploited to fine-tune the hyper-parameters related to the GCN model. The proposed
HGSODL-ID approach was experimentally validated using a benchmark dataset. In short, the paper’s
contribution is summarized as follows.

• Develop a new HGSODL-ID technique for intrusion detection in the IIoT environment.
• Design a new HGSO-FS technique for the feature selection process.
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• Employ GCN-based classification with an SSO-based hyperparameter tuning process to
improve the detection rate.

2 Literature Review

Awotunde et al. [15] presented a DL-based ID paradigm for IIoT, with hybrid rule-based Feature
Selection (FS), for training and verifying the dataset. The trained method was executed using a hybrid
rule-based FS and Deep Feedforward Neural Network (FFNN) technique. Li et al. [16] presented
a DL technique for ID in which the Multi-Convolutional Neural Network (CNN) fusion approach
was used. Based on the correlation values, the feature data was separated into four portions, after
which 1D feature data was transformed into a grayscale graph. By employing flow data visualization
system, CNN was established as a solution for ID problems with four optimal outcomes. In the study
conducted earlier [17], the authors presented a forensic-based DL technique (termed Deep-IFS) for
intrusion recognition in IIoT traffic. This method learnt local representation with the help of the
Local Gated Recurrent Unit (LocalGRU) and established a Multihead Attention (MHA) layer to
capture and learn about global representations (e.g., long-range dependency). A residual connection
was planned amongst the layers to prevent data loss. One of the important challenges faced by the
present IIoT forensics structure is its restricted scalability, which limits its efficiency in controlling
huge volumes of IIoT traffic data generated by IIoT devices.

Al-Hawawreh et al. [18] introduced a detection method based on DL approaches, while the model
was trained and tested using the data retrieved from the Remote Telemetry Unit (RTU) streams of the
gas pipeline model. The model employed the Sparse and Denoising Autoencoder (AE) approach upon
unsupervised learning. In contrast, Deep Neural Network (DNN) was employed upon supervised
learning to generate high-level data representation in unlabelled and noisy data. Gyamfi et al. [19]
presented a lightweight IDS based on the Online Incremental Support Vector Data Description
(OI-SVDD) anomaly detection method on IIoT devices and Adaptive Sequential Extreme Learning
Machine (AS-ELM) on Multi-access Edge Computing (MEC) servers. Furthermore, the authors
employed MEC servers that offered computational resources to execute the AS-ELM technique at
network edges. Fatani et al. [20] established an extraction feature and selective approaches for the
IDS model with the help of the SI technique. The authors designed a feature extraction process based
on CNNs. Afterwards, the authors examined an alternative FS technique with the help of the newly-
established SI technique, i.e., Aquila Optimizer (AQU).

3 The Proposed Model

In the current research, an HGSODL-ID technique has been proposed for detecting and clas-
sifying intrusions in the IIoT environment. The presented HGSODL-ID model follows a series of
sub-processes: linear normalization, HGSO-FS-based feature selection, GCN classification, and SSO-
based hyperparameter optimization. HGSO-based feature selection and SSO-based optimization of
the parameters increase the detection performance of the HGSODL-ID model. Fig. 1 depicts the block
diagram of the HGSODL-ID approach.
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Figure 1: Block diagram of the HGSODL-ID approach

3.1 Data Pre-processing
Initially, the presented HGSODL-ID model exploits the linear normalization approach to trans-

form the input data into a useful format. The data should be normalized so that the dataset in the
sample lies in the interval of 0 and 1. Since the dataset generally contains normal and anomalous
traffic, avoiding the adverse effects of sample mean and variance is important. A simple linear
normalization function is employed herewith for numerical features.

x′ = x − xmin

xmax − xmin

(1)

In Eq. (1), χmin and χmax signify the minimal and maximal values from each dataset, respectively.
For feature ‘duration’, ‘src_bytes’, and dst−bytes’ are given, while the data range is large, due to which
logarithmic normalization is needed.

3.2 Process Involved in HGSO-FS Technique
In this study, the HGSO-FS technique is employed to reduce the curse of dimensionality. HGSO

algorithm imitates the animal hunger-driven action and their behavioural preference. The model was
proposed by Yang et al. recently [21]. During food search, an animal shows two social behaviours;
initially, the animal cooperates in a group; in the next phase, some individuals do not participate in
collaborative action. To simulate social performance, the subsequent formula is used.

Zi (t→ + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Game 1z→
i(t) · (1 + randn (1)) r1 < L,

Game 2:
→

W 1i (t) · Z
→
b

i (t)

+→
Ci (t) · →

W 2i (t) ·
∣∣∣Z→

b
i (t) − Z

→
b

i (t)
∣∣∣ r1 > L, r2 > E (t) ,

Game3 :
→

W 1i (t) · Z
→
b

i (t)

−→
Ci (t) · →

W 2i (t) ·
∣∣∣Z→

b
i (t) − Z→

i (t)
∣∣∣ r1 > L, r2 < E (t) ,

(2)
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In Eq. (2), a constant number, designated to be 0.03, is denoted by the term L, and the vector that

lies in the range of [−C C] is indicated by
→
C. This value is used for controlling the range of activity.

Hence, it shrinks gradually towards zero. Further, r1 and r2 denote two random numbers in the range of
0 and 1, whereas rand (l) refers to a random integer withdrawn from a uniform distribution. The weight

of the starving animal is taken into account via two symbols:
→

W and
→

W . Z
→
b

i (t) represent the optimal
position of the individual at (t) iteration. z→

i→ (t) shows the location of its individual. The mathematical
expression of E is formulated as Eq. (3).

Ei (t) = sech (|obji (t) − Bobj (t)|) i ∈ 1, 2, 3, . . . , K (3)

Let obji be the objective function value of ith searching agent at t iteration, Bobj refers to the optimal
objective function that is accomplished at t iteration. The overall number of individuals is represented
by K. sech (x) denotes the hyperbolic function. According to Eq. (2), an individual’s behaviour can

be controlled by the ranging controller
→
C and the weights,

→
W 1 and

→
W 2. As a result, the subsequent

equation explains how to refine the three parameters to enhance the search features of an individual.

For the ranging controller
→
C, the subsequent equation defines their value across the (t) iteration.

c→
i(t) = 4 ×

(
1 − iter

Maxt

)
× r3 − 2 ×

(
1 − t

Maxt

)
(4)

In Eq. (4),
(

1 − t
Maxt

)
shows a shrinking behaviour through iteration number. Maxt stands

for the maximal iteration count, and γ3 refers to a random integer in the range of 0 and 1. For the

weights
→

W 1 and
→

W 2, the subsequent formula is applied for fine-tuning the weights across the iteration
number [22].

→
W 1i (t) =

⎧⎨⎩Hungryi (t) · K
S−Hungry (t)

× r4 r5 < L,

1 r5 > L
(5)

→
W 2i (t) = (1 − exp (− |Hungryi (t) − S−Hungry (t)|)) × γ6 × 2 (6)

Given that Hungryi (t) shows the hunger of an ith individual, Sum−Hungry (t) illustrates the
summary of hungry feelings of every individual at (t) iteration. r4, r5, and r6 denote the random numbers
in the interval of 0 and 1. The mathematical expression of Hungryi (t) is determined using the following
equation, Eq. (7).

Hungryi (t) =

⎧⎪⎨⎪⎩
0 obji (t) == Bobj (t)
Hungryi (t)
+N−Hungryi (t) obji (t) ! = Bobj (t)

(7)

In this equation, N−Hungryi (t) refers to a new hunger if the objective function of ith individuals
is not equivalent to optimal fitness. Therefore, the corresponding hunger of the new individuals is
different. Accordingly, the new hunger is mathematically modelled as follows.

N−Hungryi (t) =
{

L−h × (1 + r) TH < L−h
THi (t) TH ≥ L−h.
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where

THi (t) = obji (t) − g∗ (t)
Wobj (t) − Bobj (t)

× r7 × 2 × (U−B − L−B) (8)

In Eq. (8), Wobj (t) illustrates the worst fitness at (t) iteration. UB and LB symbolize the upper
and lower limits of the search space, correspondingly.

The fitness Function (FF) can be defined from the classification accuracy and the number of
selected features. It maximizes the classification accuracy and reduces the set size of the selected
features. Thus, a subsequent fitness function can be utilized in the evaluation of individual solutions,
as given in Eq. (9) below.

Fitness = α ∗ Error Rate + (1 − α) ∗ #SF
#All_F

(9)

Here, ErrorRate refers to the classification error rate utilizing the selected features. ErrorRate
can be computed as a percentage of false classifications to the number of classifications created and
exhibited. It is written as a value in the range of 0 and 1. While ErrorRate can complement the
classification accuracy, #SF denotes the quantity of the selected features, and #All_F denotes the
total sum of attributes in the original dataset. α is utilized to control the significance of subset length
and classification quality. In this experiment, α is set to 0.9.

3.3 GCN-Based Intrusion Detection
For intrusion detection and classification, the GCN model is exploited in the current study.

In GCN models, the nodes are represented through pass and aggregate messages amongst the
neighbouring nodes. Though various types of GCN models have been proposed earlier, the most
utilized version has been used in this study, too [23]. Properly, a GCN layer is determined as given
below.

h(l+1)

i = f

⎛⎝∑
j∈Ne(i)

1√
D̃i,iD̃j,j

h(l)
j W (l)

⎞⎠ , (10)

Here, h(l)
i represents the latent representation of the node vi from layer l, Ne (i) signifies a group

of neighbours of the node, vi, and W l refers to the detailed trainable weighted matrix layer. f refers to
the non-linear activation function, and Rectified Linear Unit (ReLU) can be chosen as the activation
function after the preceding analysis (expressed as fReLU (·) below). D̃ represents the diagonal degree
matrix of Ã and is determined as D̃i,i = ∑

j Ãi,j, whereas Ã = A + I refers to the adjacency matrix
of the input element network G with self-connection I. Regularly, GCN can be changed from matrix
procedure [24]:

H (l+1) = fReLU

(
D̃− 1

2 ÃD̃− 1
2 H (l)W (l)

)
. (11)

For the primary layer, H (0) = X signifies the element matrix of input networks.

H (1) = fReLU

(
ÃXW (0)

)
. (12)

The framework of GCN is to provide end-to-end training and incorporate task-specific loss
functions. At the time of original analysis, GCN executes the semi-supervised classification tasks.
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So, Cross Entropy (CE) loss is estimated with the addition of the Softmax function as the final resultant
layer. The entire CE errors are estimated on a graph for every sample as labelled below.

Lcls = −
∑

i∈L

∑c

c=1
Yiclog Ŷic (13)

Here, L implies the group of nodes with a label, C denotes the count of classes, Y represents the
label, and Ŷ = softmax (H) indicates the forecast of GCN that passes the hidden representations from
the last layer H (L) to the softmax function.

3.4 Hyperparameter Tuning Using SSO Algorithm
Finally, the SSO technique is exploited to fine-tune the hyper-parameters related to the GCN

method. SSO is inspired by the vigilant and predatory behaviours of the sparrow population [25].
Discoverer, entrant, and vigilant are the roles played by every sparrow in its population. In this work,
if the fitness of an entrant is highly efficient than the discoverer, then the entrant becomes a discoverer
to find their food. The updated position of the discoverer is formulated as follows.

X t+1
i,j =

⎧⎪⎨⎪⎩Xi,j. exp
(

− i
α.itermax

)
, if R2 < ST

Xi,j + Q.L, if R2 ≥ ST
(14)

Here, j = 1, 2, 3, d, itermax signifies the maximal iteration count, t characterizes the current
iteration, α ∈ [0, 1] denotes a random number, Xij denotes the location data of i-th sparrow in jth
parameter, ST ∈ [O.5, 1] signifies the safety value, R2 ∈ [0, 1] denotes the warning value, L symbolizes
a 1 × d matrix whereas all the elements in this matrix are 1 and Q represents a random number
following a normal distribution. In this method, Entrants are a type of sparrow with low energy in
the population. Sparrows with low energy find it challenging to search for food in their region. So, it
flies to another location or follows the discoverer to find their food. The discoverer and the entrant
replace one another based on the quantity of the stored energy. The updated position of the entrant is
calculated as follows.

X t+1
i,j =

⎧⎪⎨⎪⎩Q. exp
(

Xworst − X t
i,j

i2

)
, if i >

n
2

X t+1
P + ∣∣Xi,j − X t+1

P

∣∣ A+.L, otherwise
(15)

In Eq. (15), Xworst denotes the worst location of the existing population, XP indicates the optimal
location of the existing population, A corresponds to the 1 × d matrix, and all the elements in this
matrix are random numbers in the range of 1 or −l, while A+ = AT(AAT)−1. If i is greater than nl2, it
implies that it is highly challenging for the sparrow with low energy to search for food. So, it should fly
to other regions to search for food or towards the vicinity of the discoverer to acquire further energy.
Fig. 2 demonstrates the steps involved in the SSO technique.
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Figure 2: Steps involved in SSO

In the sparrow population, some sparrows are named vigilant sparrows. These sparrows are
generally accountable for 10%–20% of the overall population. Once it realizes the danger, the sparrow
near the edge of the group moves quickly to a secure central area to avoid the danger. The sparrows at
the optimum location of the population randomly walk toward other sparrows to avoid danger. The
updated position of the vigilant sparrow is formulated as follows.

X t+1
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X t

best + β.|X t
i,j − X t

best|, if fi > fg

X t
i,j + K.

(∣∣X t
i,j − X t

worst

∣∣
(fi − fw) + ε

)
, if fi = fg

(16)

In Eq. (3), the optimum location of the existing population is denoted by Xbest, β represents the
step size that is uniformly distributed random value with mean and variance [0, 1], K ∈ [1, 1] denotes
a random number, fg exemplifies the fitness of the present optimal sparrow, fi epitomizes the fitness
of the existing sparrow, ε indicates a small constant to avoid the denominator from being zero, and fw

represents the fitness of the current worst sparrow. Once the fitness of the present sparrow is higher
than the optimal sparrow, it implies that the sparrow is at the edge of the population and is susceptible
to attack. So, such sparrows should move towards the safest place. Once the fitness of the present
sparrow is equivalent to that of the optimal sparrow, it implies that the sparrow is in a safe region.
Now, it moves closer to the sparrow to prevent danger.

SSO approach extracts a Fitness Function (FF) to achieve enhanced classification outcomes. It
allocates a positive numeral to indicate the superior execution of a candidate solution. In this research,
the reduced classification error rate is treated as the Fitness Function as given in Eq. (17).

fitness (xi) = Classifier Error Rate (xi) = number of misclassified samples
Total number of samples

∗ 100 (17)

4 Experimental Validation

The proposed HGSODL-ID model was experimentally validated using the NSL-KDD dataset
[26]. The dataset was generated in the year 2009 and is broadly utilized in network intrusion
detection experiments. In modern literature, all the researchers employ the NSL-KDD dataset as
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a potential baseline dataset since it is highly helpful for researchers to compare different types of
intrusion detection methodologies. Tables 1 and 2 show a detailed description of binary and multiclass
classification.

Table 1: Details on binary classification

NSL KDD dataset–binary classification

Class No. of samples

Normal 77054
Abnormal 71553

Total number of samples 148607

Table 2: Details on multiclass classification

NSL KDD dataset–multiclass classification

Class No. of samples

Normal 77054
Dos 53475
Probe 14077
R2L 3749
U2R 252

Total number of samples 148607

4.1 Result Analysis on Binary Dataset
Fig. 3 shows the confusion matrices created by the HGSODL-ID model on the applied binary

dataset. On 70% of training (TR) data, the proposed HGSODL-ID model categorized 53,207 samples
under the Normal class and 49,746 samples under the Abnormal class. Also, on 30% of testing (TS)
data, the presented HGSODL-ID technique recognized 22,916 samples as Normal class and 21,214
samples as Abnormal class.

Table 3 offers the overall classification outcomes accomplished by the proposed HGSODL-ID
model on the binary dataset. Fig. 4 provides the analytical results of the proposed HGSODL-ID
model on 70% of TR data. The experimental outcomes imply that the proposed HGSODL-ID model
achieved maximum performance in all aspects. For example, the HGSODL-ID method classified the
normal class samples with an accuy of 98.97%, precn of 98.96%, recal of 98.98%, Fscore of 98.97%, and
a Gmean of 98.98%. Also, the proposed HGSODL-ID algorithm classified the abnormal class samples
with an accuy of 98.97%, precn of 98.68%, recal of 99.19%, Fscore of 98.93%, and a Gmean of 98.98%.
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Figure 3: Confusion matrices of HGSODL-ID approach upon binary dataset (a) 70% of TR dataset
and (b) 30% of TS dataset

Table 3: Results of the analysis of the HGSODL-ID approach upon binary dataset under different
measures

Labels Accuracy Precision Recall F-score G-Mean

Training phase (70%)

Normal 98.97 99.25 98.76 99.00 98.98
Abnormal 98.97 98.68 99.19 98.93 98.98

Average 98.97 98.96 98.98 98.97 98.98

Testing phase (30%)

Normal 98.98 99.18 98.86 99.02 98.99
Abnormal 98.98 98.77 99.12 98.94 98.99

Average 98.98 98.98 98.99 98.98 98.99

Fig. 5 portrays the results of the analysis of the HGSODL-ID approach on 30% of TS data.
The experimental outcomes infer that the proposed HGSODL-ID technique obtained the maximum
performance under all prospects. For example, the HGSODL-ID algorithm classified the normal class
samples with an accuy of 98.98%, precn of 99.18%, recal of 98.86%, Fscore of 99.02%, and a Gmean of
98.99%. Additionally, the proposed HGSODL-ID method categorized the abnormal class samples
with an accuy of 98.98%, precn of 98.77%, recal of 99.12%, Fscore of 98.94%, and a Gmean of 98.99%.
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Figure 4: Results of the analysis of the HGSODL-ID approach on 70% of TR data in the binary dataset

Figure 5: Results of the analysis of the HGSODL-ID approach on 30% of TS data in the binary dataset

Both Training Accuracy (TA) and Validation Accuracy (VA) values acquired by the proposed
HGSODL-ID algorithm on the binary dataset are illustrated in Fig. 6. The experimental outcomes
denote that the proposed HGSODL-ID algorithm obtained the maximal TA and VA values, while VA
values were higher than TA.

Both Training Loss (TL) and Validation Loss (VL) values, accomplished by the proposed
HGSODL-ID technique on a binary dataset, are established in Fig. 7. The experimental outcomes
infer that the proposed HGSODL-ID method accomplished the minimal TL and VL values. In
contrast, VL values were lesser than TL.
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Figure 6: TA and VA analyses results of the HGSODL-ID approach on a binary dataset

Figure 7: TL and VL analyses results of the HGSODL-ID approach in the binary dataset

To demonstrate the betterment of the proposed HGSODL-ID model, a detailed comparison
study was conducted, and the results are shown in Table 4 and Fig. 8. The results confirmed that
the AE model attained the least accuy of 82.85%. In addition, Deep Convolutional Neural Network
(DCNN), Recurrent Neural Network (RNN), and Fuzziness models achieved moderately improved
accuy values such as 84.44%, 83.26%, and 83.76%, respectively. Moreover, STL-IDS and Multi-CNN
fusion models reported reasonable accuy values such as 85.47% and 86.42%, respectively. But, the
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proposed HGSODL-ID model achieved the maximum classification performance with an accuy of
98.98%.

Table 4: Comparative analysis results of the HGSODL-ID approach and other recent methods upon
the binary dataset

Methods Accuracy

HGSODL-ID 98.98
DCNN 84.44
RNN 83.26
STL-IDS 85.47
Fuzziness 83.76
AE 82.85
Multi-CNN fusion 86.42

Figure 8: Comparative analysis results of the HGSODL-ID approach on the binary dataset

4.2 Result Analysis on Multiclass Dataset
Fig. 9 portrays the confusion matrices generated by the HGSODL-ID method on the applied

Multiclass dataset. On 70% of TR data, the proposed HGSODL-ID technique categorized 53,275
samples under the Normal class, 36,991 samples under the Denial of Service (DoS) class, 9,651 samples
under the Probe class, 2,385 samples under the Remote-to-Local (R2L) class, and 136 samples under
User to Root (U2R) class respectively. Along with that, on 30% of TS data, the presented HGSODL-ID
methodology recognized 22,871 samples as Normal class, 15,837 samples as DoS class, 4,165 samples
as Probe class, 999 samples as R2L class, 81 samples as U2R class.
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Figure 9: Confusion matrices of HGSODL-ID approach upon multiclass dataset (a) 70% of TR data
and (b) 30% of TS data

Table 5 provides the overall classification outcomes of the proposed HGSODL-ID model on the
Multiclass dataset. Fig. 10 presents the analytical results of the HGSODL-ID algorithm on 70% of
TR data. The experimental outcomes infer that the proposed HGSODL-ID methodology produced
the maximum performance under all aspects. For instance, the HGSODL-ID technique classified the
normal class samples with an accuy of 98.85%, precn of 98.99%, recal of 98.79%, Fscore of 98.89%, and a
Gmean of 98.85%. Moreover, the proposed HGSODL-ID method classified the U2R class samples with
an accuy of 99.82%, precn of 45.48%, recal of 85%, Fscore of 59.26%, and a Gmean of 92.12%.

Table 5: Results of the analysis of the HGSODL-ID approach on the Multiclass dataset under different
measures

Labels Accuracy Precision Recall F-score G-mean

Training phase (70%)
Normal 98.85 98.99 98.79 98.89 98.85
Dos 99.27 99.22 98.75 98.98 99.15
Probe 99.50 96.62 98.11 97.36 98.87
R2L 99.51 90.55 90.27 90.41 94.90
U2R 99.82 45.48 85.00 59.26 92.12

Average 99.39 86.17 94.18 88.98 96.78

(Continued)
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Table 5: Continued
Labels Accuracy Precision Recall F-score G-mean

Testing phase (30%)
Normal 98.93 99.05 98.88 98.97 98.93
Dos 99.37 99.35 98.89 99.12 99.26
Probe 99.51 96.66 98.23 97.44 98.93
R2L 99.51 90.00 90.24 90.12 94.88
U2R 99.86 60.90 88.04 72.00 93.78

Average 99.43 89.19 94.86 91.53 97.16

Figure 10: Results of the analysis of the HGSODL-ID approach on 70% of TR data in the multiclass
dataset

Fig. 11 shows the analytical results of the proposed HGSODL-ID method on 30% of TS data.
The experimental outcomes imply that the presented HGSODL-ID algorithm achieved the maximum
performance under all aspects. For example, the HGSODL-ID approach classified the normal class
samples with an accuy of 98.93%, precn of 99.05%, recal of 98.88%, Fscore of 98.97%, and a Gmean of
98.93%. Furthermore, the HGSODL-ID technique classified the U2R class samples with an accuy of
99.86%, precn of 60.90%, recal of 88.04%, Fscore of 72%, and a Gmean of 93.78%.

To establish the supremacy of the proposed HGSODL-ID methodology, a detailed comparative
analysis was conducted and the results are shown in Table 6 and Fig. 12 [12]. The results state that
Stacked Autoencoder (SAE) algorithm reached the least accuy of 79.54%. Also, Artificial Neural
Network (ANN) and STL-IDS models achieved moderately improved accuy values such as 79.81%
and 79.95%, correspondingly. Moreover, RNN and Multi-CNN fusion models reported reasonable
accuy values such as 81.05% and 81.30% correspondingly. But, the proposed HGSODL-ID technique
achieved the maximum classification performance with an accuy of 99.43%.
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Figure 11: Results of the analysis of the HGSODL-ID approach on 30% of TS data in the multiclass
dataset

Table 6: Comparative analysis results of HGSODL-ID approach and other recent methods upon
multiclass dataset

Methods Accuracy-multiclass

HGSODL-ID 99.43
RNN model 81.05
SAE 79.54
STL-IDS 79.95
ANN 79.81
Multi-CNN fusion 81.30

Figure 12: Comparative analysis results of HGSODL-ID approach on multiclass dataset
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From the detailed results and discussion, it is evident that the proposed HGSODL-ID model is
an excellent performer compared to other models.

5 Conclusion

In this study, an HGSODL-ID method has been developed for the detection and classification of
intrusions in the IIoT environment. The presented HGSODL-ID technique follows a series of sub-
processes namely, linear normalization, HGSO-FS-based feature selection, GCN classification, and
SSO-based hyperparameter optimization. HGSO-based Feature Selection and SSO-based optimal
parameter tuning enhance the detection performance of the HGSODL-ID model. The proposed
HGSODL-ID method was experimentally validated with the help of benchmark datasets and the
outcomes signify the supremacy of the HGSODL-ID technique over recent approaches since the
method achieved the highest accuracy of 99.43%. Thus, the HGSODL-ID model can be exploited to
accomplish network security in a smart factory environment. In future, the outcomes of the HGSODL-
ID model can be boosted with the help of data clustering or outlier removal approaches.
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