
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.035428
Article

Data Utilization-Based Adaptive Data Management Method for Distributed
Storage System in WAN Environment

Sanghyuck Nam1, Jaehwan Lee2, Kyoungchan Kim3, Mingyu Jo1 and Sangoh Park1,*

1School of Computer Science and Engineering, Chung-Ang University, Seoul, 06974, Korea
2Department of Computer Science and Engineering, Kongju National University, Cheonan, 31080, Korea

3Qucell Networks, Seongnam, 13590, Korea
*Corresponding Author: Sangoh Park. Email: sopark@cau.ac.kr

Received: 20 August 2022; Accepted: 13 January 2023

Abstract: Recently, research on a distributed storage system that efficiently
manages a large amount of data has been actively conducted following
data production and demand increase. Physical expansion limits exist for
traditional standalone storage systems, such as I/O and file system capacity.
However, the existing distributed storage system does not consider where
data is consumed and is more focused on data dissemination and optimizing
the lookup cost of data location. And this leads to system performance
degradation due to low locality occurring in a Wide Area Network (WAN)
environment with high network latency. This problem hinders deploying
distributed storage systems to multiple data centers over WAN. It lowers
the scalability of distributed storage systems to accommodate data storage
needs. This paper proposes a method for distributing data in a WAN envi-
ronment considering network latency and data locality to solve this problem
and increase overall system performance. The proposed distributed storage
method monitors data utilization and locality to classify data temperature as
hot, warm, and cold. With assigned data temperature, the proposed algorithm
adaptively selects the appropriate data center and places data accordingly to
overcome the excess latency from the WAN environment, leading to overall
system performance degradation. This paper also conducts simulations to
evaluate the proposed and existing distributed storage methods. The result
shows that our proposed method reduced latency by 38% compared to the
existing method. Therefore, the proposed method in this paper can be used in
large-scale distributed storage systems over a WAN environment to improve
latency and performance compared to existing methods, such as consistent
hashing.

Keywords: Distributed system; distributed storage; distributed computing;
object storage

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.035428
https://www.techscience.com/doi/10.32604/csse.2023.035428
mailto:sopark@cau.ac.kr


3458 CSSE, 2023, vol.46, no.3

1 Introduction

With the recent development of big data and artificial intelligence, the global demand for data is
increasing. According to the Internet Data Center(IDC) Global Datasphere, global data generation
is expected to increase from 64 ZB in 2020 [1] to 175 ZB in 2025 [2]. A High-performance distributed
storage system is required in places that manage petabyte-scale large-capacity data, such as the
Worldwide Large Hadron Collider Computing Grid (WLCG) [3]. A distributed storage system is a
technology for storing and managing large-capacity data for artificial intelligence and extensive data
analysis. Such data is held across numerous nodes in a distributed manner and used like a single storage
system.

Methods for distributing data in a distributed storage system include table-based [4–10], hash-
based [11–18], and subtree-based [19–23] methods. Table-based data distribution technology manages
one central table in multiple servers, and the central table maintains data information and identifiers
for data storage. Each data storage places data according to a central table and references it to search
for the data. Although the table-based method has the advantage of the free arrangement of data,
the synchronization cost caused by maintaining the central table limits its scalability. The size of the
central table increases as the number of data identifiers increases. The hash-based data distribution
method arranges data with a hash key obtained through a hash function using an identifier of data. The
hash-based method has good data search efficiency. However, unlike the table-based data distribution
method, the storage device corresponding to the hash key changes when there is a change in the
number of storage nodes constituting the data storage. Moreover, these hash key changes require a
data migration to operate normally. The subtree-based data distribution method distributes data in
a tree structure so that the subtrees do not overlap. Thus, the data is distributed in non-overlapping
subtrees and mapped to data storage to maintain load balancing. However, since the subtree-based
data distribution method distributes data in units of subtrees, it is not easy to keep the locality of data.

To safely provide storage with a larger capacity than can be provided by a single data center,
it is necessary to deploy large-scale distributed storage to multiple data centers interconnected to
each other. In this case, relatively high latency and low bandwidth must be considered for a Wide
Area Network (WAN) connection between data centers. However, existing distributed storage system
studies [4,5,11–15,19–21] not only did not consider the network latency between data centers but also
did not consider the locality of the data request. This can increase data exploration and transfer costs
due to the high latency and low bandwidth of the WAN environment.

This paper proposes a distributed storage system that considers network latency and data locality
in a WAN environment to solve these problems. The proposed system tracks the data utilization of
users by the data center for efficient data placement. Based on this utilization, each data is placed in
a data center frequently accessed by users. Therefore, data can be placed in a data center close to the
users to reduce data access latency and improve the data transmission rate. Performance evaluation is
performed in a real-world latency measurement-based environment to test the proposed method in a
real-world environment and reflect distributed storage systems deployed globally.

The structure of this paper is as follows. Chapter 2 describes data management methods of existing
distributed storage systems. Chapter 3 describes the proposed data distribution method considering
network latency and data locality in a WAN environment. In Chapter 4, performance evaluation
and analysis of the proposed data distribution method are described, and finally, in Chapter 5, the
conclusion and future research are discussed.



CSSE, 2023, vol.46, no.3 3459

2 Literature Review

A distributed storage system is a system that distributes and stores data across multiple connected
nodes and allows users to use it as a single storage space. Large-capacity distributed storage configured
across countries, such as WLCG, maintains connectivity between data centers through a WAN.
However, the existing distributed storage system that does not consider the WAN environment may
have a problem providing a service for user requests due to the high latency of the WAN environment
because user requests are searched and transmitted via the network. Therefore, it is essential to place
data on nodes that can minimize network latency to decrease data exploration and transfer costs. Thus,
in a large-capacity distributed storage system considering a WAN environment, many user requests
must be processed in high latency, so a distributed storage architecture must be constructed considering
the data exploration cost.

xFS [4] distributes data by using the centralized table. The central table, called the Manager
Map, is shared or replicated between clients and servers. The central table-based distribution method
has limitations in scalability because as the system scales, a bottleneck occurs in the search request
processing of the node managing the central table. BEAG [5] utilizes data age to estimate popularity.
It distributes data accordingly to balance the load on overall nodes. However, only age information
is considered and has a scalability problem as it is a centralized table-based approach. CORE [6]
distributes data by analyzing data locality and distributes related data together to improve I/O
performance. However, CORE needs to analyze historical data to calculate cohesion relations and
map accordingly to distribute data. As CORE uses a centralized table, it also has a scalability problem.
Other research [7–9] distributes data with the user’s social information and latency and cost of data
centers to optimize data placement. However, it requires the user’s interaction information to estimate
the access pattern to optimize a specific data set. It also has limited scalability as it is table based
approach, and heavy computation analysis on user’s interaction and data access pattern is required.
RENDA [10] uses computation resources, network latency, and bandwidth to optimize data placement
for periodic workloads in the cloud storage system. However, as it is optimized for recurrent workloads,
it is unsuitable for generic data distribution methods. Also, it has scalability problems as it is a
centralized table-based approach.

Cassandra [11] is a typical hash-based data distribution method. Cassandra improves data access
latency in large-scale distributed storage systems through Consistent Hashing [12]. However, because
Cassandra is hashing-based, it is challenging to relocate data considering data usage or network
latency. Another hash-based data distribution method, AbFS [13], handles data storage by dividing
it into units called volumes and manages segments containing multiple files as hash tables. However,
when the volume size changes, the entire remapping occurs, and the mapping relationship between the
segment identifier and the volume changes. The segment hashing technique of AbFS has a problem
in that locality of data is lowered by performing hashing only with the identifier of the corresponding
segment. In Luster [14], one management server manages multiple Object Storage Targets (OST),
and efficient data access is possible by hashing the file name. However, a single point of failure
(SPoF) problem may occur due to one management server. There is a problem in that the data
locality is lowered by hashing only with the file name. Directory Level Based Hash (DLBH) [15] uses
directory-based hashing to remove bottlenecks and provide high-speed data exploration. However,
the hash-based data distribution method has a disadvantage. High latency may occur in accessing
data in a WAN environment because data are placed without considering regional characteristics for
data usage. EdgeKV [16] proposed distributed storage system for Edge Computing that distributes data
to multiple edge groups using a hash-based method. However, the proposed method assumes data
demand coincides with the edge group, so it does not consider the data demand outside the edge



3460 CSSE, 2023, vol.46, no.3

group. Cache-based approach [17] to lower latency in distributed coded storage systems is proposed.
However, it only suggests caching the coded data chunk to the frontend server, and only caching is
considered. A more general distributed storage system may not use coded data replication schemes,
so this method can not be applied to all distributed storage systems. And as only caching is used, the
proposed method does not improve write operations as the write operation invalidates cached data
chunks in the frontend server. Another cache-based approach [18] uses load imbalance caused by the
skewness of incoming requests to cache more popular files to improve cache hit rate and mitigate I/O
latencies. It partitions the files into partitions proportional to the expected load and places them on
different servers to distribute the load. However, this approach does not consider network latency in
a WAN environment, and the benefit of caching diminishes as the latency of accessing distributed
partitions can be high. Also, the transmission time taken to retrieve data can be smaller than the
network latency to request data as the bandwidth of the network infrastructure increases.

Subtree-based data distribution method Ceph [19] achieves load balancing through parameters
such as available capacity or data load of each subtree. However, since Ceph utilizes hashing for
data placement, the randomness of the hash function makes it impossible to map data to the
desired location. Object-based file system (OBFS) [20] provides high scalability through dynamic tree
structures. Still, because of the time-consuming search of trees distributed to nodes for data discovery,
there is a problem that search performance decreases due to high latency in WAN environments.
Dynamic Dir-Grain (DDG) [21] dynamically divides namespaces by the number of files, directories,
and the depth of directories to maintain uniform locality and data distribution. However, as the
number of files and directories increases due to the increase in file system size, the tree structure
divided based on the file system structure becomes complicated, making it challenging to apply to
large storage systems. In a study [22], data is distributed in consideration of data access time and
geographic characteristics. Because the distributed storage node creates a replica by examining the
ordered pair consisting of the most frequently accessed data and the access location in the cluster, it
was possible to place the data in consideration of data access locality. However, since all data centers
in the cluster must know the location information of all data, as the number of replicas increases,
synchronization overhead increases, and system performance decreases. In another study [23], data
is placed to optimize transmission time, and cloud service cost. However, it requires preknowledge
of data as dataset and job that requires such dataset to compute optimal placement of datasets. This
approach can only be applied to some use cases of the distributed storage system and can not be applied
to the generic distributed storage system. Also, it does not consider modifying datasets or changing
jobs and can not adapt to these changes.

For the scalability of a large-capacity distributed storage system, the WAN environment for data
storage communication must be considered. However, network latency and bandwidth that may occur
in the WAN environment are not considered in the existing system. So, this paper proposes a highly
scalable distributed storage system considering the WAN environment to solve problems that may arise
when applying existing distributed storage systems to the WAN environment.

3 Data Utilization-Based Adaptive Data Management Method

Since a large-capacity distributed storage system based on a WAN environment has high latency
between each data center as it is a physical limitation that each data center has a long distance
between them. Furthermore, as networking infrastructure evolves, high bandwidth shortens the time
to transmit data. However, the latency stays constant. So, it is necessary to minimize the exchange
of information between data centers when searching and retrieving for data to reduce the effect of



CSSE, 2023, vol.46, no.3 3461

latency. This paper proposes a distributed storage structure that enables fast data access even with
high latency in a WAN environment by placing data based on location and data usage utilization of
clients and distributed storage servers, as shown in Fig. 1.

Figure 1: Overview of the proposed distributed storage system

Data centers are connected by WAN, and storage nodes in the data center are connected by Local
Area Network (LAN). A client requests data access to the nearest data center to itself. The data center
receiving the request searches whether the nodes in the data center have the data or whether the data is
in another data center. For placement in consideration of data utilization and latency, storage nodes,
as shown in Table 1, where data are stored for each data are divided into observed, hot, and warm.

Table 1: Node description

Node Description

observed (k) storage node storage node & storage node determined by Consistent Hashing of the
key of data k

hot (k) storage node The storage node in the data center with the highest utilization of data
k. If not specified, point to the same node as observed (k)

warm (k) storage node The storage node in the data center with the second highest utilization
of data k. If not specified, point to the same node as observed (k).

candidate node If the data requested by the user does not exist in the storage node in
the data center, the node receives the data from another data center
and temporarily stores it. Also tracks data utilization.

The observed storage node is a storage node derived by hashing the key of the data to be accessed.
The hot storage node is the storage node with the highest data utilization, and the warm storage node is
the second busiest storage node. Besides the storage node, the candidate node is a node that temporarily
stores data when requested data does not exist in the data center by retrieving data from another data
center. Since the observed, hot, and warm storage nodes are separated for each data, the observed, hot,
and warm storage nodes of different data may be different. On the other hand, the candidate node is
fixed and designated as a specific node within the data center.



3462 CSSE, 2023, vol.46, no.3

The observed storage node is a storage node derived from Consistent Hashing of the data key.
Consistent Hashing is a commonly used hashing algorithm in distributed storage systems to divide
data evenly across storage nodes. Unlike the traditional hashing method, a hash ring is created, nodes
are placed on the ring, and a hash value is assigned to the first encountered node. Through this, even
if node configuration changes, the key to be migrated is less than the existing hashing method. When
Consistent Hashing is performed, data is uniformly distributed across all storage nodes. The data
center directly determines the observed node of the data through a hash function. The observed node
also stores information about the hot and warm storage nodes of the stored data. When data is initially
stored, the observed storage node of the data is initialized to the hot, warm storage node, and when the
data is changed to the new hot and warm storage node, the observed storage node updates hot and
warm storage node information. The hot storage node for specific data is a storage node belonging
to the data center with the highest data utilization. It may be changed to another storage node as the
data utilization changes. The warm storage node is a storage node belonging to the data center with
the second-highest data usage rate.

The candidate node performs the role of temporarily storing the requested data from the client,
tracking the data usage, and selecting the hot/warm storage. Data that does not exist in the storage node
in the data center is maintained in the candidate node for the time specified by the administrator from
the time the data center processes the client’s request and records the number of data accesses of the
client while each data is maintained. When the specified time elapses, the utilization of the hot, warm
storage nodes is compared with the existing hot and warm storage nodes for the corresponding data
to reselect hot and warm storage nodes. To prevent all infrequently used data from being managed, the
candidate node of each data center stores only the M data with high utilization.

candidate nodes create the usage information list L with the top M data that they manage with
high utilization every ttr time specified by the administrator to reselect the hot and warm storage nodes
and broadcast it to other candidate nodes. candidate nodes collect and aggregate L s broadcast by other
candidate nodes through Algorithm 1 to create a Laggr list that includes all top data utilization of other
data centers.

Algorithm 1: Processing of the received usage list
1: procedure OnReceiveUsageList(Lrecv, Laggr)
2: for each l in L do
3: if ∃l′.key (l′.key = l.key ∧ l′ ∈ Lrecv) then
4: if ∃l′.key (l′.key = l′′.key ∧ l′′ ∈ Lrecv) then
5: if l′.usage > l′′.usage_1stmax then
6: l′.usage2ndmax ← l′′.usage1stmax
7: l′.usage1stmax ← l′.usage
8: else if l′.usage > l′′.usage2ndmax then
9: l′.usage2ndmax ← l′.usage
10: else
11: continue

(Continued)



CSSE, 2023, vol.46, no.3 3463

Algorithm 1: Continued
12: end if
13: Laggr \ {l′′}
14: else
15: l′usage1stmax ← l′.usage
16: l′.usage2ndmax ← 0
17: end if
18: {l′} ∪ Laggr

19: end if
20: end for
21: return Laggr

22: end procedure

In Algorithm 1, the data usage list L received from other candidate nodes is called Lrecv, and it
is aggregated in the list Laggr. At this time, only the data included in the data usage list L managed by
candidate nodes are collected. As shown in lines 4–13, if data contained in Lrecv already exists in Laggr, the
largest value and the second largest value are compared and updated. Also, as shown in lines 13 and 18,
if Laggr already has utilization information. It is updated with new information. Otherwise, the largest
and second-largest values are initialized and added to Laggr, as shown in lines 14–18. When initialization
is performed because there is no utilization information in Laggr, the data utilization included in Lrecv is
set to the maximum value, and since there is no second-highest value, it is set to 0.

Each candidate node uses the usage list L of the data it manages and the aggregated usage list Laggr

to reselect the hot and warm storage nodes through Algorithm 2.

Algorithm 2: Determining target data for hot and warm by data center
1: procedure OnAggregateUsageList(L, Laggr)
2: Lhot ← {∅}
3: Lwarm ← {∅}
4: for each l in L do
5: if �l′.key(l′.key = l.key ∧ l′ ∈ Laggr) then
6: {l} ∪ Lhot

7: else
8: if l.usage > l′.usage1stmax then
9: {l} ∪ Lhot

10: else if l.usage > l′.usage2ndmax then
11: {l} ∪ Lwarm

12: end if
13: end if
14: end for
15: return Lhot, Lwarm

16: end procedure

Algorithm 2 compares Laggr with L after aggregation to determine which data in the data center
needs to be placed in newly selected hot and warm nodes. For example, if the utilization of any data A
in L is greater than the maximum utilization of the same data A in Laggr, the storage node hot for this
data is designated as the storage node in that data center. Therefore, to select hot and warm storage



3464 CSSE, 2023, vol.46, no.3

nodes, initialize the data lists Lhot and Lwarm for hot and warm as shown in lines 2–3, and then compare
the utilization for each data as shown in lines 4–14. As shown in line 5, if there is no element l of the
data usage list L in Laggr, it means that the storage node in the other data center does not have the
data l, so as in line 6, designate the storage node in the data center to which current candidate node
belongs as the hot node for l. If data utilization information is included in Laggr, the Lhot or Lwarm list
is updated by comparing the utilization as in lines 8–12. Finally, two created lists containing data to
be allocated to hot, warm storages are returned as a result, as shown in line 15. The data center then
assigns a storage node and selects it as a new hot/warm storage node for the data. The candidate node
migrates the temporarily stored data to the selected hot and warm storage nodes. Then, the candidate
node notifies the observed storage node of the data to store the information about the new hot/warm
storage node and informs the old hot/warm storage node for the corresponding data to remove stored
data. When all candidate nodes have done this, they know the hot, warm storage node information for
each data.

Fig. 2 describes the structure of accessing observed, hot, and warm storage nodes and data
placement by Consistent Hashing in the proposed distributed storage system.

(a) (b)

Figure 2: Data placement (a) without hot, warm (b) with hot, warm

Fig. 2 shows Client 1 accesses data A to the distributed storage system through data center DC1.
In this case, Fig. 2a is a case in which DC1 receives a request data A for the first time. DC1 finds out the
observed storage node of the data through Consistent Hashing, requests data A from the data center to
which the observed storage node belongs, and receives information on the hot and warm storage nodes
that store data A, including observed. DC1 replicates data from the closest of the observed, hot, and
warm storage nodes to the candidate node and sends it to Client 1. The proposed system reduces the
overall access delay time because frequently used data is managed in the frequently used data center.

4 Performance Evaluation and Discussion

This paper analyzed the latency of data access based on the actual network latency data between
data centers to evaluate the performance of the proposed distributed storage system. The data set
used for performance analysis was collected by Verizon on latency that occurred in April 2021 from
designated routers in major network hubs worldwide [24]. Next, consider how data is placed on a
distributed storage node. Data is assumed to be evenly distributed among distributed storage nodes
through Consistent Hashing. Since the latency for the client to access specific data follows a normal



CSSE, 2023, vol.46, no.3 3465

distribution, the average access time of the system can be obtained as in Eq. (1).

δaverage = δ1 + δ2 + . . . + δn

n
(1)

δn is the n th data center access delay time for the client. Based on the formula Eq. (1), the result of
calculating the average data access latency by country of the Verizon dataset [24] is shown in Table 2.

Table 2: Worldwide network average latency measurement data

Korea Singapore Hongkong Sydney Tokyo India UK

Korea 5 102.491 40.778 147.541 38.790 153.160 233.883
Singapore 102.491 5 33.297 92.060 76.465 39.106 163.298
Hongkong 40.778 33.297 5 124.516 51.034 83.923 275.279
Sydney 147.541 92.060 124.516 5 113.647 141.059 251.639
Tokyo 38.790 76.465 51.034 113.647 5 123.646 222.504
India 153.160 39.106 83.923 141.059 123.646 5 119.062
UK 233.883 163.298 275.279 251.639 222.504 119.062 5

The existing method used only consistent hashing without considering the data utilization, and
the proposed method were compared based on latency data on Table 2. The distribution of which data
the client accesses when accessing the data follows the Zipf distribution (s = 1.01).

This paper performed an empirical test based on average latency measurement data and compared
the proposed method and the existing consistent hashing-based method. The results of analyzing
the average data access latency time by country of the two methods and where the data centers are
only located in Korea are shown in Fig. 3. The proposed method has about 38% latency performance
improvement compared to the existing method. Furthermore, where the data centers are only located
in Korea show very low latency when accessed from Korea, as expected, and high latency when accessed
from the UK.

Figure 3: Average latency of client accessing the distributed storage

The proposed method reduces the overall access latency because the data is placed in a data center
with high utilization, and excess latency introduced by accessing data in other data centers is reduced.
Moreover, the proposed method can improve the overall system performance of the distributed storage
system of WAN-connected data centers. However, the consistent hashing-based method shows higher
latency because the data is placed by a hashing function, which is random, so accessing data in other
data centers is higher than the proposed method.



3466 CSSE, 2023, vol.46, no.3

Next, to evaluate the performance of the proposed system in various aspects, the average data
access latency was measured while varying (a) the number of data centers, (b) the number of objects
stored in the data center, and (c) the size of the list managed by candidate node M. As shown in Fig. 4,
the proposed distributed storage system did not show any significant effect, such as increasing or
decreasing the average access latency, even if the number of data centers increased.

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

ycnetal
ssecca

egarev
A

(m
s)

The number of datacenters

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 a
cc

es
s 

la
te

nc
y

(m
s)

The number of stored data (objects)

(a) (b)

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 a
cc

es
s 

la
te

nc
y 

(m
s)

Value of 

(c)

Figure 4: Average latency of client accessing the distributed storage with varying parameters

This is because even as the number of data centers increases, data is consistently replicated around
frequently accessed data centers. Similarly, it was found that an increase in the number of stored data
had no significant effect on the average access latency because the number of client requests is constant
regardless of the total number of stored objects. Next, the average data access latency according to the
change in the list size M managed by the candidate node tended to decrease the average access latency
as M increased because the more data candidate held, the faster nearby clients accessed the data.

The average data access latency according to the time change is shown in Fig. 5. Here, the unit
of time is ttr, which is the period during which the candidate nodes broadcast the usage information
list L.

In the distributed storage system to which only Consistent Hashing is applied, the average data
access latency is measured as constant, but in the distributed storage system to which the method
proposed in this paper is used, the average data access latency decreases rapidly from immediately
after the first ttr. Therefore, if the data distribution method proposed in this paper is used, data service
with lower latency is possible even in a WAN environment. And also limit of data utilization can be
higher as the waiting time induced by latency is lowered. As physical network latency also plays a role in



CSSE, 2023, vol.46, no.3 3467

the data transmission rate, the data transmission rate between the user and distributed storage system
is also higher. Therefore, in a distributed storage system deployed over nodes connected with a WAN
environment, the proposed method can improve system performance and enable the deployment of a
large-scale distributed storage system.

Figure 5: Average latency of client access according to time change

5 Conclusion

Establishing distributed storage system through the connection between data centers is necessary
to overcome the storage capacity limitation of a single data center. Because WAN connections between
data centers have high latency, the location where data is stored is vital to reduce the impact of latency
and bandwidth. However, the existing distributed storage system does not consider the network latency
between data centers.

This paper proposes a distributed storage system that provides low-latency data search even in a
WAN environment by storing data in locations based on the user’s data utilization. For this, each
data center tracks the user’s data utilization and places the data in an area with high utilization,
demonstrating that low-latency data exploration and retrieval is possible. Analysis of average latency
using global major network hub latency data showed that the proposed system reduced latency by 38%
compared to the existing system. This improvement can be applied to large-scale distributed storage
systems where the storage node is deployed globally and connected via WAN to lower latency and
achieve higher data utilization.

However, the proposed method has a limitation in that the user must request the data, and when
the number of requests is sufficient, the system migrates that data near the user. The time needed for
the system to be efficient can be adjusted through Ttr. However, it has its limitation, as lower Ttr means
frequent data migration is required. For future research, it is necessary to study a way to reduce the
overall latency while reducing data migration and improving system reaction time to the data demand
from the user.

Funding Statement: This research was supported by the Chung-Ang University Graduate Research
Scholarship in 2021. This study was carried out with the support of ‘R&D Program for Forest Science
Technology (Project No. 2021338C10-2223-CD02)’ provided by Korea Forest Service (Korea Forestry
Promotion Institute).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



3468 CSSE, 2023, vol.46, no.3

References
[1] M. Shirer, Data Creation and Replication will Grow at a Faster Rate than Installed Storage Capacity,

San Francisco, CA, USA: Business Wire, 2021. [Online]. Available: https://www.businesswire.com/news/
home/20210324005175/en/

[2] D. Reinsel, J. Grantz and J. Rydning, Data Age 2025: The Evolution of Data to Life-Critical, Needham,
MA, USA: IDC, 2017. [Online]. Available: https://www.seagate.com/files/www-content/our-story/trends/
files/idc-seagate-dataage-whitepaper.pdf

[3] M. Gaillard, CERN Data Centre passes the 200-petabyte milestone, Geneva, Switzerland: Cern, 2016.
[Online]. Available: https://cds.cern.ch/record/2276551

[4] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli et al., “Serverless network
file systems,” in Proc. of the Fifteenth ACM Symp. on Operating Systems Principles, Copper Mountain,
Colorado, USA, pp. 109–126, 1995.

[5] X. Y. Luo, G. Xin and X. L. Gui, “Data placement algorithm for improving I/O load balance without using
popularity information,” Mathematical Problems in Engineering, vol. 2019, pp. 2617630, 2019.

[6] S. Vengadeswaran. and S. R. Balasundaram, “CORE-An optimal data placement strategy in hadoop for
data intensive applications based on cohesion relation,” Computer Systems Science and Engineering, vol.
34, no. 1, pp. 47–60, 2019.

[7] J. Zhou, J. Fan, J. Jia, B. Cheng and Z. Liu, “Optimizing cost for geo-distributed storage systems in online
social networks,” Journal of Computational Science, vol. 26, pp. 363–374, 2018.

[8] B. P. Shankar and S. Chitra, “Optimal data placement and replication approach for SIoT with edge,”
Computer Systems Science and Engineering, vol. 41, no. 2, pp. 661–676, 2022.

[9] A. Atrey, G. Van Seghbroeck, H. Mora, F. De Turck and B. Volckaert, “SpeCH: A scalable framework
for data placement of data-intensive services in geo-distributed clouds,” Journal of Network and Computer
Applications, vol. 142, pp. 1–14, 2019.

[10] H. K. Thakkar, P. K. Sahoo and B. Veeravalli, “Renda: Resource and network aware data placement
algorithm for periodic workloads in cloud,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 12, pp. 2906–2920, 2021.

[11] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage system,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[12] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine et al., “Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world wide web,” in Proc. of the Twenty-Ninth
Annual ACM Symp. on Theory of Computing, El Paso, Texas, USA, pp. 654–663, 1997.

[13] A. F. Díaz, M. Anguita, H. E. Camacho, E. Nieto and J. Ortega, “Two-level hash/table approach for
metadata management in distributed file systems,” The Journal of Supercomputing, vol. 64, no. 1, pp. 144–
155, 2013.

[14] P. Braam, “The Lustre storage architecture,” arXiv preprint arXiv:1903.01955, 2019.
[15] L. Ran and H. Jin, “An efficient metadata management method in large distributed storage systems,” in

Proc. of the Int. Conf. on Human-Centric Computing 2011 and Embedded and Multimedia Computing 2011,
China, pp. 375–383, 2011.

[16] K. Sonbol, Ö. Özkasap, I. Al-Oqily and M. Aloqaily, “EdgeKV: Decentralized, scalable, and consistent
storage for the edge,” Journal of Parallel and Distributed Computing, vol. 144, pp. 28–40, 2020.

[17] K. Liu, J. Peng, J. Wang and J. Pan, “Optimal caching for low latency in distributed coded storage systems,”
IEEE/ACM Transactions on Networking, vol. 30, pp. 1132–1145, 2021.

[18] Y. Yu, W. Wang, R. Huang, J. Zhang and K. B. Letaief, “Achieving load-balanced, redundancy-free cluster
caching with selective partition,” IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 2, pp.
439–454, 2019.

https://www.businesswire.com/news/home/20210324005175/en/
https://www.businesswire.com/news/home/20210324005175/en/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://cds.cern.ch/record/2276551


CSSE, 2023, vol.46, no.3 3469

[19] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long and C. Maltzahn, “Ceph: A scalable, high-performance
distributed file system,” in Proc. of the 7th Symp. on Operating Systems Design and Implementation, Seattle,
Washington, USA, pp. 307–320, 2006.

[20] F. Wang, S. A. Brandt, E. L. Miller and D. D. Long, “OBFS: A file system for object-based storage devices,”
in Proc. of the 21st IEEE / 12th NASA Goddard Conf. on Mass Storage Systems and Technologies, Greenbelt,
Maryland, USA, pp. 283–300, 2004.

[21] J. Xiong, Y. Hu, G. Li, R. Tang and Z. Fan, “Metadata distribution and consistency techniques for large-
scale cluster file systems,”IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 5, pp. 803–816,
2010.

[22] P. Matri, A. Costan, G. Antoniu, J. Montes and M. S. Pérez, “Towards efficient location and placement of
dynamic replicas for geo-distributed data stores,” in Proc. of the ACM 7th Workshop on Scientific Cloud
Computing, New York, USA, pp. 3–9, 2016.

[23] C. Li, Q. Cai and Y. Lou, “Optimal data placement strategy considering capacity limitation and load
balancing in geographically distributed cloud,” Future Generation Computer Systems, vol. 127, pp. 142–
159, 2022.

[24] IP Latency statistics. [Online]. Available: https://www.verizon.com/business/terms/latency/

https://www.verizon.com/business/terms/latency/

	Data Utilization-Based Adaptive Data Management Method for Distributed Storage System in WAN Environment
	1 Introduction
	2 Literature Review
	3 Data Utilization-Based Adaptive Data Management Method
	4 Performance Evaluation and Discussion
	5 Conclusion
	References


