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Abstract: In the present technological world, surveillance cameras generate
an immense amount of video data from various sources, making its scrutiny
tough for computer vision specialists. It is difficult to search for anomalous
events manually in these massive video records since they happen infrequently
and with a low probability in real-world monitoring systems. Therefore,
intelligent surveillance is a requirement of the modern day, as it enables
the automatic identification of normal and aberrant behavior using artificial
intelligence and computer vision technologies. In this article, we introduce
an efficient Attention-based deep-learning approach for anomaly detection
in surveillance video (ADSV). At the input of the ADSV, a shots boundary
detection technique is used to segment prominent frames. Next, The Light-
weight Convolution Neural Network (LWCNN) model receives the segmented
frames to extract spatial and temporal information from the intermediate
layer. Following that, spatial and temporal features are learned using Long
Short-Term Memory (LSTM) cells and Attention Network from a series of
frames for each anomalous activity in a sample. To detect motion and action,
the LWCNN received chronologically sorted frames. Finally, the anomaly
activity in the video is identified using the proposed trained ADSV model.
Extensive experiments are conducted on complex and challenging benchmark
datasets. In addition, the experimental results have been compared to state-of-
the-art methodologies, and a significant improvement is attained, demonstrat-
ing the efficiency of our ADSV method.
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1 Introduction

Recently, the surge in the overall crime rate has become one of the leading causes of losing
money and lives [1]. Advanced surveillance is the most effective method for promptly detecting such
unusual events. A significant amount of attention is paid to anomaly event recognition in video
surveillance due to its wide range of applications in a variety of fields, such as crime prevention,
traffic safety, and intelligent video surveillance monitoring [2]. Globally, vast amounts of surveillance
cameras have been installed in a variety of locations for public safety in recent years [3]. Due to the
limits of manual monitoring, law enforcement agencies are unable to identify or prevent abnormal
behavior. Unusual behavior must be identified using a computer vision-based system capable of
classifying usual and unusual behavior without any individual involvement. Such an intelligent method
is preferable for monitoring and reduces the amount of labor needed for 24-h manual observation.
The literature [4–6] provides several approaches for defining anomalous activity as “the existence of
variation in normal patterns.” For instance, anomaly detection is addressed as a classification issue
[7,8], whereby visual features are fed into the algorithm, which then learns the difference between usual
and unusual events. In other contexts, such as the detection of violence and road traffic accidents [9],
it is recognized as a binary classification issue. However, these solutions are restricted to two kinds
of behaviors: violent behavior, and normal behavior, offering only a percentage of the solution for
implementation in real-world scenarios. Until now, sparse coding-based anomaly detection methods
have demonstrated promising results [10–12], and these methods are assumed to be the standard for
anomaly classification. These techniques are trained so that the start segments of video clips (i.e.,
prior to an uncommon event) are utilized to develop a vocabulary of usual events. Despite that,
this strategy is insufficient for correctly detecting aberrant activities from a dictionary of regular
events. Anomaly detection strategies based on weakly-supervised Multiple-Instance Learning (MIL)
are also investigated in [13]. During the training phase of this technique, the videos are separated
into a predefined number of clips. These clips generate bag instances containing samples of usual and
unusual events, and they can learn instance-level labels for the bags they create. Since surveillance
system changes over time, sparse-coding schemes have particular problems. For example, transferring
the dictionary learned from usual and unusual events, results in a high proportion of false alarms. In
addition, distinguishing irregular activities in surveillance cameras is exceedingly challenging due to
their low quality, high intra-class flexibility, and absence of labeled data, as anomalous activities are
infrequently connected with normal appearance. Machines must rely on visual characteristics, whereas
people can distinguish both typical and atypical events using their rational thinking. In general,
visually robust features exceed visually weak features for event detection and recognition [14]. Existing
approaches are predominantly plagued by a high rate of false alarms, resulting in poor performance.
In addition, while these methods perform well with tiny datasets, their effectiveness is limited whenever
applied to actual scenarios. In this research, we solve these issues by proposing a unique and optimal
Light-weight technique to predict abnormalities in surveillance footage. The proposed ADSV method
employs a windowing method and analyses a sequence of frames in chronological order to track
motion as well as action in surveillance footage. The proposed ADSV method learns the visual unique
characteristics from a series of frames per training sample by using the video’s spatial and temporal
characteristics. The prominent contribution of our research work may be summarized as follows:

• An effective and efficient shot segmentation-based pre-processing strategy is proposed, wherein
shots are segmented from surveillance video having anomaly activity using a shot boundary
detection algorithm.

• An efficient, novel and LWCNN with TimeDistributed 2D layers is proposed to extract and
learn Spatial-temporal patterns from a series of frames per training sample.
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• The ADSV method proposes a hybrid CNN and LSTM training mode that can efficiently
process sequential data and assure training speed. In addition, the unnecessary features of data
will degrade the model’s performance; hence, the attention network is employed to reallocate
feature weights to maintain the model’s performance and enhance its generalization capability.

• The complex and challenging benchmark datasets UCF-Crime and CUHK-Avenue are utilized
to evaluate our proposed ADSV methodology. In contrast to current anomaly detection
approaches, we achieve state-of-the-art results employing our proposed ADSV system, which
is accurate while requiring fewer model parameters and a smaller overall size of the model
(54.1 MBs).

The remaining sections of the paper are structured as follows. Section 2 explains the review of
existing techniques. The proposed methodology is explained in Section 3. The dataset’s information,
the quantitative assessment, and the explanation are provided in Section 4. The concluding thoughts
and future work are presented in Section 5.

2 Related Work

The detection and recognition of anomalies in the surveillance environment have been widely
researched in the past. Conventional feature-based approaches and deep feature-based approaches
for abnormal event detection are the two primary categories mentioned in the literature on anomaly
detection methods. In the following, prominent techniques in both categories are briefly discussed.

2.1 Conventional Feature-Based Approaches
Traditionally, anomaly identification mostly relied on manual, low-level feature-based approaches.

These systems are grouped into three tiers: (1) Retrieval of features, which extracts low-level features
from the training dataset; (2) pattern learning, which is differentiated by the dispensation of regular
occurrences; and (3) anomaly identification, which identifies dissimilar patterns or deviations as
abnormal occurrences. Zhang et al. [15] used the Markov-random field to depict frequent events by
employing spatial and temporal information. In a similar way, Mehran et al. [16] proposed a social-
interacting method whereby optical flow was used to recognize regular and aberrant actions and
estimate cooperative forces. In addition, Nor et al. [17] presented a paradigm for interpretable anomaly
detection that aids prognostic and health management PHM. Their methodology relies on a Bayesian
learning algorithm with predetermined prior and probabilities [18]. It offers additional descriptions
to produce explanations locally and globally for PHM tasks. A similar Attention-based LSTM is
developed by Ullah et al. [19] for activity recognition in sports. They refined the spatial characteristics
using convolution block attention. The refined extracted features are classified into various sports
activities using a densely connected convolutional network with an activation function of SoftMax.
Selicato et al. [20] tried to detect abnormalities in gene data. For instance, they develop a method based
on ensemble for identifying regular and aberrant expression of gene patterns by employing traditional
cluster algorithms as well as principal component analysis (PCA). Riaz et al. [21] suggested deep
ensemble-based methods for anomaly detection in complicated scenarios. Furthermore, to identify
human being joints, a position-based estimation technique is integrated. The identified joints are
considered as features and sent to a neural network for the identification of anomalies. Lately,
Zhao et al. [22] came up with the unsupervised method that combined a time-varying-based sparsely
coding style, online querying inputs, as well as sparsely reconstruction capability derived using a
trained lexicon of all activities to identify irregularities in videos. However, having the ability to
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recognize abnormalities promptly has remained a difficulty, which has piqued the attention of experts
in the field.

2.2 Deep Feature-Based Approaches
In the present era, deep feature-based approaches have achieved remarkable popularity in a range

of unstructured multi-dimension data domains, such as activity recognition and video analysis, in
comparison to conventional techniques. Luo et al. [23] designed a technique wherein video frames
are encoded with a convolutional network and unusual activities are recognized with Conv-LSTM.
Furthermore, the encoder captures video deviation to identify anomalies in monitoring systems.
Luo et al. [23] developed a Conv-LSTM network with an auto-encoder for the detection of anomalies.
In addition, they extended their approach by recognizing abnormalities with Recurrent Neural Net-
work (RNN) and auto-encoder. Liu et al. [24] introduced a method for recognizing anomalies in the
video by using the spatiotemporal detector. In this model, the discriminating prominence information
and a group of temporal texture information were considered as usual data activities. Chang et al. [25]
introduced a cluster-based auto-encoder to efficaciously capture valuable patterns from regular
activities. Two phases have been utilized to understand spatiotemporal information consistency, the
spatial-auto-encoder in the first phase is responsible for the final individual frame. However, the second
phase’s temporal-auto-encoder executes and generates the RGB difference among frames. Further-
more, abnormalities in videos are identified using generative models. Sabokrou et al. [26] developed
Generative Adversarial Network (GANs) for identifying video anomalies. This network guides the
normally distributed data employing GANs strategies. Recent video annotation techniques employ
3D Convolution (C3D) and MIL to detect abnormal occurrences [27]. For instance, Sultani et al. [12]
introduced a system for identifying abnormal occurrences using weak video annotations as well as the
MIL technique. This system was implemented on regular as well as irregular video data by generating
two different bags of usual and unusual activities and further used the MIL approach to predict the
probability scores of abnormal video activity. Landi et al. [28] suggested a method for tube extraction,
which utilizes location information to construct a regression system for anomalies. Before passing the
data to the regression model [29], the pooling layer integrates the spatial and temporal information
of model inception and optic flow respectively. Zhong et al. [6] proposed an unsupervised method for
identifying abnormalities and a supervised system for classifying actions having noise annotations.
Due to the unpredictability of anomalous occurrences, the abnormal video annotations remained
unclear. In addition, a graph convolution network was developed to remove the noise from these
annotations, as well as an activity classifier was used to classify the activities. In comparison to
the current strategies, this article Presented an efficient Attention-based deep-learning approach for
anomaly detection in surveillance video. Section 3 discusses the prime components of the suggested
ADSV method.

3 Proposed Methodology

This section elaborates on the proposed (ADSV) method and its fundamental component
structure. Fig. 1 depicts a visual representation of our ADSV strategy. In brief, the technique of
anomaly detection in surveillance video consists of three main components: Shot segmentation,
feature extraction, sequence learning, and abnormality classifications. To begin with, a shots boundary
detection technique is used to segment prominent frames. Furthermore, The LWCNN model receives
the segmented frames in order to extract spatial and temporal information from the intermediate layer.
Following that, spatial and temporal features are learned using LSTM cells and Attention Network
from a series of frames for each sample of abnormal activity. To detect motion and action, the LWCNN
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received chronologically sorted frames. Finally, the abnormal activities in video shots are identified
using the proposed trained ADSV model.

Figure 1: The proposed ADSV framework for video anomaly detection consists of three main compo-
nents: shot segmentation, feature extraction, sequence learning, and abnormality classifications. At the
input of the ADSV, a shots boundary detection technique is used to segment prominent frames. Next,
The LWCNN model receives the segmented frames to extract spatial and temporal information from
the intermediate layer. Following that, spatial and temporal features are learned using LSTM cells and
Attention Network from a series of frames for each anomalous activity in a sample. To detect motion
and action, the LWCNN received chronologically sorted frames. Finally, the anomaly activity in the
video is identified using the proposed trained ADSV model

3.1 Segmentation of Shots by Using Boundary Detection Algorithm
Shots Boundary Detection is a prerequisite for most video applications that include the compre-

hension, indexing, characterization, or classification of video and temporal segmentation, making
it a prominent research issue in content-based video analysis. Table 1 represents the parameter
descriptions of shots segmentation by using a boundary detection algorithm. The concept of the
boundary detection algorithm is implemented in the following key phases:
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• Image Segmentation: Divide each frame from the video into m-rows and n-columns blocks at
the image segmentation level. Then, the difference between two successive frames of the relevant
blocks is calculated. Lastly, the gap between consecutive frames is calculated by adding the
differences created by the various weights.

• Attention-Model: Attention, a neurobiological word, refers to the ability or capability to
concentrate mental energies on an object through careful observation or attentive listening.
The attention model suggests that, from a visual perspective, different contents are prioritized
based on their relative significance; it also represents the relative importance of frames. On this
basis, it is possible to conclude that pixel in different positions contributes differently to the
detection of shot boundaries; pixels on the edge contribute more than pixels in other positions.
As a result, distinct weights are assigned to blocks at various positions. The spatial distribution
of pixels with varying grey values and the relative significance of pixels with varying positions
are evaluated.

• Histogram Matching: There are several types of histogram matching. In most literature, the
matching difference is calculated using a color histogram. However, after evaluating different
types of histogram matching techniques, it was shown that the x2 histogram surpassed the others
in recognizing shot boundaries [30]. As a result, the x2 histogram matching technique is used.

• Shot-Boundary Detection: Histogram differences are used to detect shot boundary and con-
sequently extracted the key frame based on underlying activity. The threshold τ = MD +
α ×ST D has a constant value of α which applies weight to the ST D for the overall τ . If
D (ft, ft+1) ≥ τ , frame ft indicates the Prior shot’s end, while the frame ft+1 indicates the
subsequent shot’s end. Typically, the minimum feasible shot duration should be between one
and two and a half seconds long. In addition, a frame rate of at least 25–30 fps is required
to ensure smoothness, or a flashlight might be visible. Thus, a shot should consist of 30–45
frames. Therefore, a shot combining rule is provided [30]: If a captured shot contains less than
38 frames, it should be combined with the following shot or declared independent. In Table 3,
the pseudo-code implementation of shot boundary detection is presented.

Table 1: The parameter descriptions for the algorithm of shot boundary detection

Symbols Parameter descriptions

BD (ft, ft+1) Block Difference is the inconsistency between two frames’ relevant blocks.
H (ft, j, c, b) Histogram measurement at the “bth” block of frame “t” for the “jth” grey value

in “c” RGB channel.
H (ft+1, j, c, b) Histogram measurement at the “bth” block of frame “t + 1” for the “jth” grey

value in “c” RGB channel.
NB Count of all the blocks.
NH The total amount of grayscale values that can be used.
D (ft, ft+1) The difference in histograms between two successive frames.
Wk The weight of the Block at (k).
MD Estimating the histogram’s mean value.
ST D Calculating the histogram’s standard deviation.
x A frame of reference.
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3.2 Proposed LWCNN Method
CNNs were motivated by biological processes similar to the structure of the visual cortex in

animals. The connection of the neurons in the convolution layers (CL) is arranged in a similar way
to that of the visual system in an animal. Each neuron in the cortex responds to stimuli within a
small portion of the input frame, known as the reception field. CL can maintain spatial relationships
among input frames in video analysis by learning feature representations by applying filters whose
values are learned throughout the training process [31]. The Proposed LWCNN method is comprised
of three TimeDistributed 2D CL and two TimeDistributed 2D max pooling layers, with the number
of channels, kernel, padding, and strides stated in Table 2. Furthermore, a kernel size of 3 × 3, a
stride of 2 × 2, and an activation function of the Rectified Linear Unit (ReLU) are applied to each
TimeDistributed 2D CL. Besides that, TimeDistributed 2D max pooling with a stride size of 2 × 2 is
used to minimize the network’s size following the second and third CL. Each convolutional process
utilizes same-padding techniques to avoid losing information at the border of the input frame. In the
first CL, we start with 64 feature maps, which are then followed by the identical feature maps in the
second CL, and 128 activation maps are generated in the final CL.

Table 2: Descriptions of LWCNN technique used in the proposed ADSV method

LWCNN layer No. of channels Kernel (h × w) Padding Stride (h × w) Output Parameters

TimeDistributed-2D CL1
(ReLU)

64 3 × 3 Same 2 × 2 5,112 × 112 × 64 1792

TimeDistributed-2D CL2
(ReLU)

64 3 × 3 Same 2 × 2 5, 56 × 56 × 64 36928

TimeDistributed
Max-Pooling-2D1

1 2 × 2 – 2 × 2 5, 28 × 28 × 64 0

TimeDistributed-2D CL3
(ReLU)

128 3 × 3 Same 2 × 2 5, 14 × 14 × 128 73856

TimeDistributed
Max-Pooling-2D2

1 2 × 2 – 2 × 2 5, 7 × 7 × 128 0

TimeDistributed Flatten-1 – – – – 5, 6272 0

Table 3: Pseudo-code implementation of shots boundary detection algorithm

Pseudo-code of shots segmentation by using a boundary detection algorithm

Required: The whole videos dataset = Tv ∈ R3

Required: Divide each frame f from the video into sixteen blocks i.e., ∀ f ∈ B16

for T ← 1Tv do
for f ← 1T do

BD (ft, ft+1) ← ∑3

c=1

∑NB
b=1

∑NH
j=1

H (ft, j, c, b) − H (ft+1, j, c, b)

x
D (ft, ft+1) ← ∑N

k=1 WkBDk (ft, ft+1)

MD ←
∑Tv−1

ft=1
D (ft, ft+1)

Tv−1

ST D ←

√√√√∑Tv−1(D(ft ,ft+1))
2

ft=1

Tv−1

(Continued)
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Table 3: Continued
Pseudo-code of shots segmentation by using a boundary detection algorithm

τ = MD + α × ST D
if D (ft, ft+1) ≥ τ then

prior shot end frame ft

Succeeding shot end frame ft+1

else
Print (“shot not found”)

end if
end for
return shot boundary detection for the input video
Repeat loop till the end frame of the video

end for

As input, the suggested framework takes a sequence of the segmented frames that have been
preprocessed. In addition, the proposed LWCNN is used to capture the spatial information of each
frame, which is subsequently fed into the LSTM to extract temporal information. As shown in Fig. 1,
we employed a frame-wise LWCNN to retrieve the spatial information of each frame. Furthermore,
the input frames (f t, f t+1, f t+n) are fed separately into an LWCNN, which converts every single frame
into a particular series of spatial information representations, as shown in Eq. (1), where Ft represents
a series of spatial information representations. Besides this, the temporal information ht+1 is generated
utilizing a series of spatial information representations as input to the LSTM model, as illustrated in
Eq. (2). The LSTM layer’s hidden state at time step t is represented by ht, while the hidden state at
time step t−1 is represented by ht−1 [32]. The information from the previous time step is provided as
input to the current time step.

Ft = LWCNN ( ft, ft+1, ft+n) (1)

ht+n = LSTM (Ft) (2)

3.3 Sequence Learning and Anomalies Classification
The algorithms developed for applications that need sequential or temporal data are known

as sequence learning. Moreover, RNNs are introduced to identify latent sequential patterns inside
temporal and spatial sequential data. Video data is also a form of time series data in which changes in
visual contents are represented by a large number of frames in such a way that the sequence of frames
assists in knowing the context of behavior. In the case of long-term sequences, RNNs can comprehend
such sequences, but they forget the sequence’s prior inputs. This is referred to as the vanishing gradient
issue, and it can be addressed using the LSTM, a type of RNN capable of tracking long sequences.
Its distinctive structure, consisting of input, output, and forget gates, identifies long-term sequence
patterns. During training, a sigmoid unit needs to adjust the gates by learning where to open and
close them. Eqs. (3) to (8) outline the activities performed by the LSTM unit, where the input gate at
time t is it and the forget gate at time t is Ft, which clears data from the memory cell as required and
maintains a record of the preceding frame whose data must be erased from memory. The output gate
Ot contains information regarding the next step, where g is the recurrent unit with activation function
“tanh” that is generated using the current frame’s input and the state of the previous frame St−1. Using
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“tanh” activation and the Ct memory cell, the LSTM step’s hidden state is computed. An attention
unit improves the capabilities of these LSTM layers [33]. The output of the final time step of ht+n is
supplied as an input to the following attention unit. After receiving input from the attention network,
the fully connected layer determines the final estimation score for each anomaly class.

it = σ((xt + St−1)Wi + bi) (3)

Ft = σ((xt + St−1)W f + bf ) (4)

Ot = σ((xt + St−1)WO + bO) (5)

g = tanh((xt + St−1)W g + bg) (6)

Ct = Ct−1 · ft + g · it (7)

St = tanh (Ct) · Ot (8)

3.4 Attention Mechanism
Attention has likely become the most essential idea in the fields of deep learning as well as

computer vision. It is based on the biological systems of beings, which prefer to concentrate on the
unique aspects of enormous amounts of data. The attention technique tackles extremely long-range
dependency issues in LSTMs [33]. As seen in Fig. 1, the output at time i is given by yi = g(yi−1, si, ci)

where si is the decoder’s hidden state. The context vector ci is the weighted sum of the attention weight
aij and the encoder’s hidden state hj, as given in Eq. (9). Attention weight aij is computed according
to Eq. (10) and indicates the correlation between the j-th location of the input sequence and the i-th
location of the result sequence. The attention score, eij, is dependent on the hidden state si−1 of the
decoder and the j-th annotate hj of the input sequence, as indicated in Eq. (11), where v, w1 and w2

are the parameter matrices that are calculated by training the model. The technique of computing
attention scores utilizing the preceding hidden state of the decoder is known as the Bahdanau style. In
this study, the Bahdanau attention mechanism is utilized to enhance the sequential learning model.

ci =
Tx∑
j=1

aijhij (9)

aij = exp(eij)∑Tx
k=1 exp(eik)

(10)

eij = vᵀ tanh(w1si−1 + w2hj) (11)

4 Experimental Results

Our proposed ADSV framework is evaluated using two publicly accessible datasets: CUHK-
Avenue and UCF-Crime. Fig. 2 depicts a selection of usual and unusual event frames extracted
from these datasets. Furthermore, the Three-Dimensional Uniform Manifold Approximation and
Projection (3D-UMAP) Projection of the evaluated datasets is given in Fig. 3. The two quantitative
measures were used to evaluate the proposed ADSV method: frame-based area under the curve (AUC)
and receiver operating characteristic (ROC). Table 9 shows the training parameters of the proposed
method. The algorithm is implemented employing Karas-supported Tensor Flow in the Python 3.7.1
platform. Experiments were performed on a computer (PC) equipped with an Nvidia-GeForce RTX-
3070 GPU, 32 GB of RAM, the Windows 10 operating system, and the CUDA toolkit 11.0 with
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cuDNN v8.0. The experimental results showed the efficacy of the suggested ADSV method as well as
a sustained breakthrough in the state-of-the-art methods.

Figure 2: Samples of the anomaly detection dataset

Figure 3: The 3D-UMAP Projection of the datasets Avenue and UCF-Crime

4.1 Datasets
CUHK-Avenue: the CUHK-Avenue dataset was collected at the Chinese University of Hong

Kong using a static video camera with a clear resolution of 640 pixels by 360 pixels, which captured
street activities. This dataset contains 16 train video clips representing regular human activity and
21 test video clips representing anomalous human activities and events. Walkers on the walkway and
groups of walkers gathering on the pavement are examples of regular behavior. In contrast, persons
wasting or discarding goods, loitering, going toward the camera, strolling on the grass, and leaving
items are examples of anomalous activity.
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UCF-Crime: The UCF-Crime dataset contains 1900 long, unedited videos for 13 real-world
anomaly activities, such as abuse, arrest, assault, arson, burglary, explosion, fighting, road accident,
robbery, stealing, shooting, shoplifting, and vandalism. The training set of the UCF-Crime dataset
included 800 videos of normal events and 810 videos of abnormal events. The testing set consisted of
the remaining 150 regular videos and 140 abnormal ones. In Table 4, the statistical information of the
UCF-Crime dataset is presented.

Table 4: The statistical facts contained within the UC-Crime dataset

Types of anomalies The number of videos Training data Testing data

Abuse. 50. 48. 02
Arrest. 50. 45. 05
Assault 50. 47 03
Arson 50. 41 09
Shooting 50. 27 23
Fighting 50 45 5
Explosion 50 29 21
Vandalism 50 45 05
Shoplifting 50 29 21
Stealing 100 95 05
Burglary 100 87 13
Robbery 150 145 05
Accident 150 127 23
Sum 950 810 140

4.2 Dataset Visualization Using UMAP
UMAP is a lately introduced strategy for learning manifolds that aims to accurately reflect local

structures as well as effectively integrate global structures [34]. It offers a significant benefit over t-
distributed Stochastic Neighbor Embedding (t-SNE). In contrast to t-SNE, UMAP has been shown
to work effectively with huge datasets. UMAP is built on the following hypotheses:

• The data is transferred equally throughout a Riemannian manifold.
• The Riemannian metric is locally unchanging.
• The manifold is locally connected.

Based on these assumptions, the manifold can be represented as a fuzzy topological structure of
the sample points with High Dimension (HD). The embedding manifold is determined by looking
for a fuzzy topological structure in the Low-Dimension (LD) projection of the data. To construct
the fuzzy topological structure, UMAP employs an HD graph to represent the sample points. The
resultant HD graph is a weighted graph, where edge weights denote the probability that two points are
related. UMAP calculates the similarities between HD sample points using an exponential probability
distribution.

Pi/j = exp

(
−

(
d

(
xi, xj

) − σi

)
σi

)
(12)
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The distance between the ith and jth sample points are denoted by d
(
xi, xj

)
, while the distance

between the ith data point and its first nearest neighboring are denoted by σ . The HD probability of
data is symmetrized in UMAP:

Pij = P(i/j) + P(j/i) − P(
i
j

)P(
j
i

) (13)

The generated graph is a probability graph, as previously stated, and UMAP must identify the kth

adjacent neighbors:

k = 2
∑

i Pij (14)

UMAP generates and optimizes an LD version of the HD graph that is as similar as possible.
UMAP employs a probability measure to model distance in low dimensions:

qij =
(

1 + α
(
yi − yj

)2b
)−1

(15)

where α ≈ 1.93 and b ≈ 0.79 by default for UMAP. UMAP utilizes Binary Cross-Entropy (CE) as a
cost function because of its capacity to capture the global data structure:

CE (P, Q) =
∑

i

∑
j

Pij log
(

Pij

Qij

)
+ (

1 − Pij

)
log

(
1 − Pij

1 − Qij

)
(16)

where P denotes the high-dimensional, and Q represents low-dimensional sample points’ probabilistic
similarity. To update the coordination of the LD sample points until convergence, cross-derivative
entropy is utilized. In addition, Stochastic Gradient Descent was utilized by UMAP because of its
quicker convergence and lower memory consumption. Several essential hyper-parameters influences
UMAP’s performance. The hyper-parameters are mentioned below:

• The target embedding’s dimensionality.
• Selecting a low value for the k number of neighbors suggests that the interpretation will be

extremely localized and extract fine-grained structural details. On the other hand, selecting a
considerable value suggests that the prediction will be based on wider regions, which means
some fine information structure will be missed.

• The smallest distance among points in the embedding space can be accepted. Lower minimum
distance values will capture the underlying manifold structure more precisely, resulting in heavy
clouds that make viewing difficult.

4.3 Evaluation and Comparison of the Avenue Dataset
The CUHK Avenue dataset is an open-source dataset that is commonly used to assess video

anomaly detection techniques. We compared our proposed ADSV system to various current tech-
niques on this dataset [6,11,23,24,35–38], including supervised and unsupervised strategies that also
presented their frame-based AUC values on the CUHK Avenue dataset. Recent techniques, including
Liu et al. [24] and Zhou et al. [39], revealed an AUC value of 84.9% and 86.1%, correspondingly, for the
CUHK Avenue dataset. Zhou et al. [39] outscore earlier methods, as well as other recent techniques,
including those described in [40], further reported high accuracy on the Avenue dataset. However,
the ADSV system performs more effectively than most current methods, enhancing further state-of-
the-art accuracy for the Avenue dataset. The proposed system outperforms state-of-the-art methods
and accomplishes a frame-based AUC of 99%. Table 5 displays the quantitative comparison of the
proposed ADSV system with the numerous current strategies in terms of frame-based AUC values.
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Figs. 6c and 6d depict the training accuracy and loss graphs for the proposed system using Avenue
Dataset respectively.

Table 5: A frame-based (AUC) evaluation of the proposed ADSV technique to existing approaches
for the Avenue Dataset

Method CUHK-Avenue Dataset

Hasan et al. [35] 70.2
Luo et al. [38] 80.3
Chong et al. [36] 80.6
Tudor Ionescu et al. [37] 81.7
Liu et al. [24] 84.9
Zhou et al. [39] 86.1
Proposed ADSV 99.0

4.4 Evaluation and Comparison of the UCF-Crime Dataset
The UCF-Crime dataset is an open-source dataset that is commonly used to assess algorithms

for detecting anomalies in surveillance videos. We compared our ADSV method for video anomaly
to other existing techniques [6,11,12,35,38] using the UCF-Crime dataset. The ROC and AUC are the
evaluation metrics used to assess the performance of our system. We established the AUC and ROC
curves using the test set from the UCF-Crime dataset to compare them to the results in [6,11,12,35,38].
The experimental research results shown in Fig. 4 reveal that our framework surpasses the techniques
described in [6,11,12,35,38]. Table 6 compares the frame-based AUC values for the UCF-Crime
dataset with other existing techniques. It can be seen that the proposed framework obtained the
highest frame-based AUC value of 97%, a 14.88% increase over the approach of Zhong et al. [6], which
achieved the last highest AUC value of 82.12%. Following, other research in [11,12,35] obtained AUC
values of 75.41%, 50.6%, and 65.51%, respectively, revealing that our framework performs effectively
with the UCF-Crime dataset. Fig. 5 illustrates the frame-based anomalies detection efficiency of the
suggested ADSV method with the anomaly scores for the following test video sequences: (a) Arrest-
48, (b) Fighting-47, (c) Assault-51, and (d) Normal Videos-27. Figs. 6a and 6b depict the training
accuracy and loss graphs for the proposed model using UCF-Crime Dataset respectively.

4.5 In Comparison to Contemporary Methods
In this subsection, the performance of our proposed ADSV framework for anomaly detection

is compared to that of existing methodologies utilizing the UCF-Crime dataset. The authors of
[41] analyzed a range of deep learning algorithms using multi-layer Bidirectional Long Short-Term
Memory Neural Network (BLSTM) integration, such as VGG-19, InceptionV3, and ResNet-50.
Among all these methods, the technique with the smallest model size is ResNet-50+multi-layer
BLSTM. In addition, Deep learning models have become increasingly sophisticated in the current
era, requiring massive quantities of storage; they also have enhanced computation costs and restrictive
installation protocols over the connected device. A delay in responses can lead to the loss of human
life or property in an anomaly detection system; hence, efficient model selection is essential to
every anomaly detection system. In comparison to other existing approaches [6,41–43], the suggested
ADSV method for anomaly detection has a minimum storage capacity, fewer learning parameters,
and a quicker processing time. Table 7 compares the effectiveness of the proposed ADSV method
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to existing contemporary strategies in terms of model size (MB), time complexity, and parameter
count. Furthermore, a strong and effective anomaly detection system with low false alarm rates is
highly desired since, in everyday life surveillance, the frequency of normal actions occurring is higher
than the frequency of abnormal actions. Consequently, we made a comparison between the proposed
framework and recently published methodologies, as given in Table 8, and the results suggest that the
proposed ADSV framework has had the minimum false alarm rates. In comparison to earlier methods,
the suggested ADSV framework can process a sequence of 32-frames in 0.26 s [6,41–43]. Figs. 7a and
7b depict the class-wise accuracy of the CUHK-Avenue and UCF-Crime Dataset respectively.

Figure 4: For the UCF-Crime dataset, the proposed strategy is compared with alternative methodolo-
gies already in use. The colors black, dark brown, blue, cyan, green, gray, purple, and teal, respectively,
are used to depict the ROC curves for the binary SVM classifier [12], SCL [11], LTR [35], MIL-C3D
[12], TSN-flow [6], TSN-RGB [6], C3D [6], and ADSV approach

Table 6: A frame-based (AUC) evaluation of the proposed ADSV technique to existing approaches
for the UCF-Crime Dataset

Method UCF-Crime Dataset [12]

Binary SVM classifier [12] 50.0
LTR [35] 50.6
Spatiotemporal [44] 63.0
SCL [11] 65.51
MIL-C3D without constraints [12] 74.44
MIL-C3D with constraints [12] 75.41
TSN-Optical flow [6] 78.08
C3D [6] 81.08
TSN-RGB [6] 82.12
Proposed ADSV 97.0
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Figure 5: The abnormality score curves for four test videos of the UCF-Crime Dataset, including (a)
Arrest-48, (b) Fighting-47, (c) Assault-51, and (d) Normal-Videos-27. The ground truth anomalous
frames are highlighted by teal patches. For a more accurate depiction, we normalized anomaly values
for each video to the interval [0,1]. It indicates that as abnormalities occur, anomaly scores grow
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Figure 6: The training accuracy and loss graphs for the ADSV method using UCF-Crime Dataset are
plotted in (a) and (b), while using the Avenue dataset the proposed method generates training accuracy
and loss graphs as shown in (c) and (d) respectively

Table 7: Comparison of the parameters, model size, and computational complexity of the proposed
approach with the state-of-the-art

Method Number of
parameters
(million)

Size of model
(MB)

Time
complexity/Sequence
(s)

C3D – 313 –
VGG-19+multi-layer BLSTM 143 605.5 0.22
Inception-V3+multi-layer BLSTM 23 148.5 –
ResNet-50+multi-layer BLSTM 25 143 0.20
Proposed ADSV method 14.17 54.1 0.26

Table 8: False alarm rate comparison between the proposed ADSV method and recent existing
approaches

Method UCF-Crime Dataset [12] Avenue Dataset [11]

MIL-C3D-with-constraints [12] 1.9 –
Hasan et al. [35] 27.2 –

(Continued)
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Table 8: Continued
Method UCF-Crime Dataset [12] Avenue Dataset [11]

Lu et al. SCL [11] 3.1 –
C3D [6] 2.8 –
TSN-RGB [6] 0.1 –
TSN-flow [6] 1.1 –
Proposed ADSV 0.07 0.03

Figure 7: The confusion matrix of the proposed model using both the Avenue and UCF-Crime Dataset
are plotted in (a) and (b) respectively

Table 9: The training parameter of the proposed method

Model’s training parameters

Batch size 32
Epochs 50
Step size 1200
Initial learning rate 0.001
Optimizer Stochastic Gradient Descent (SGD)
Loss Categorical crossentropy
Training time per step 267 millisecond/step
Training time per epoch 320 s
Total training time 266.7 min

5 Conclusion and Future Direction

Intelligent surveillance systems are popular among computer vision specialists, primarily for
security objectives. They assist in rapid response and countermeasures to any anomalous events
occurring in a surveillance scene. However, such algorithms are data-hungry and require robust
processing systems for effective and efficient analysis. This research utilized several benchmark
anomaly detection datasets and presented the ADSV method for video abnormality detection with
state-of-the-art performance. In brief, the technique of anomaly detection in surveillance video
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consists of three main components: Shot segmentation, feature extraction, sequence learning, and
abnormality classifications. To begin with, a shots boundary detection technique is used to segment
prominent frames. Furthermore, The LWCNN model receives the segmented frames to extract spatial
and temporal information from the intermediate layer. Following that, spatial and temporal features
are learned using LSTM cells and Attention Network from a series of frames for each sample of
abnormal activity. To detect motion and action, the LWCNN received chronologically sorted frames.
Finally, the abnormal activities in video shots are identified using the proposed trained ADSV model.
Several evaluation criteria were used to validate our ADSV framework. It has been demonstrated that
the ADSV method is more accurate than recently published approaches. The experimental research
results show that the suggested ADSV approach significantly lowers false alarm rates when compared
to the anomaly detection literature and increases accuracy for the Avenue and UCF-Crime datasets by
12.9% and 14.88%, respectively. However, there is potential for improvement in our proposed system’s
real-time precision and efficacy. We intend to include channel and temporal Attention-based deep
learning networks in the future to improve the precision and effectiveness of the currently proposed
ADSV architecture.
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