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Abstract: The current adversarial attacks against deep learning models have
achieved incredible success in the white-box scenario. However, they often exhi-
bit weak transferability in the black-box scenario, especially when attacking those
with defense mechanisms. In this work, we propose a new transfer-based black-
box attack called the channel decomposition attack method (CDAM). It can attack
multiple black-box models by enhancing the transferability of the adversarial
examples. On the one hand, it tunes the gradient and stabilizes the update direc-
tion by decomposing the channels of the input example and calculating the aggre-
gate gradient. On the other hand, it helps to escape from local optima by
initializing the data point with random noise. Besides, it could combine with other
transfer-based attacks flexibly. Extensive experiments on the standard ImageNet
dataset show that our method could significantly improve the transferability of
adversarial attacks. Compared with the state-of-the-art method, our approach
improves the average success rate from 88.2% to 96.6% when attacking three
adversarially trained black-box models, demonstrating the remaining shortcom-
ings of existing deep learning models.
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1 Introduction

With the rapid development and remarkable success of deep neural networks (DNNs) in various tasks
[1–3], the security of DNNs has received increasing attention. The robustness of DNNs is of great
importance, especially in security-sensitive scenarios such as face recognition [4] and autonomous driving
[5]. However, DNNs are vulnerable to adversarial examples [6], which are crafted by adding subtle
perturbations to the original input examples. In recent years, a large number of adversarial attacks [7–10]
have been proposed to generate more aggressive adversarial examples to study the robustness of DNNs.
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Adversarial attacks can be divided into white-box and black-box attacks. In the white-box scenario, the
attacker has access to the full knowledge of the target model, including the framework, parameters, and
trainable weights. If the adversarial examples are crafted by accessing the gradient of the target model, it
is called gradient-based attacks [11]. However, in practical applications, adversaries usually do not know
or have limited knowledge of the target model. In this case, the adversarial attacks are called black-box
attacks, which can be divided into query-based attacks [12–16] and transfer-based attacks [17,18]. In
query-based attacks, it can be further divided into score-based and decision-based attacks depending on
whether the adversary generates adversarial examples by querying the classification probability output or
the hard label output of the target model. In transfer-based attacks, the adversarial examples are crafted
by attacking a substitute model of the target model, then transferring attacks to the target model.

In this work, we propose a new transfer-based black-box attack, called the Channel Decomposition
Attack Method (CDAM) to improve the transferability of adversarial examples. Specifically, it
decomposes the three-channel of the original red-green-blue (RGB) image and uses zero-value padding.
Each channel individually constitutes a three-channel image, which together with the original image
forms a set of images for gradient calculation. CDAM tunes the current gradient by aggregating the
gradients to stabilize the update direction. For escaping from local optima, CDAM adds or subtracts the
random noise of the standard normal distribution to initialize the data point at each iteration. Besides,
CDAM can be combined with other transfer-based black-box attacks [19,20] to further improve
transferability. Empirical experiments on the standard ImageNet dataset show that the proposed CDAM
can achieve higher success rates in the black-box scenario than the state-of-the-art transfer-based black-
box attack [21]. For instance, CDAM improves the average success rate of the effective transfer-based
attack by more than 8% using the adversarial examples crafted on Inception-v3. We also visualize the
adversarial examples in Fig. 1. Our contributions are as follows:

1)We propose a new transfer-based black-box attack method. Different from the others, it considers each
channel of the input separately when attacking the substitute model, and calculates the aggregated
gradient to tune the gradient direction and stabilize the gradient update.

2) CDAM initializes the data point with random noise to escape from local optima, which reduces the
dependence on substitute models and generates adversarial examples that can attack multiple black-
box. Besides, it can combine with other transfer-based black-box attack methods, which could further
enhance the transferability of crafted adversarial examples.

3) Compared to the state-of-art method: CDAM obtains the highest average attack success rates; Under
the ensemble-model setting, our integrated method achieves an average success rate of 96.6% on three
adversarially trained black-box models, which is higher than the 85.6% of the current best method.

Figure 1: Adversarial examples generated by admix attack method (AAM) [21], Combined AAM (CAAM)
[21], and our proposed CDAM, combined CDAM (CCDAM) with maximum perturbation e = 16. All
adversarial examples are crafted on inception-v3 [22]. Our proposed CDAM and CCDAM generate
visually similar adversaries as other attacks but have higher transferability
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The rest of the paper is organized as follows: Section 2 summarizes the related work; Section
3 introduces the implementation details of CDAM; Section 4 presents the experimental results and
evaluates the performance of CDAM and Section 5 summarizes the work and describes the future
work.

2 Related Work

Gradient-based Attacks: DNNs are vulnerable to adversarial attacks. Fast gradient sign method
(FGSM) [11] generates adversarial examples that can deceive the neural network by adding increments to
benign examples in the direction of the gradient. Due to the low attack success rate of FGSM, the Basic
iterative method (BIM) [7] extends FGSM by multi-step iterations to improve the success rates of the
attacks. Projected gradient descent (PGD) [8] introduces random initialization and projection based on
BIM to improve the attack success rate further. Deepfool [9] uses l2 norm to limit perturbation size to
minimize the adversarial perturbation. However, such attacks cannot be applied directly to the black-box
models, and it is difficult to transfer the adversarial examples crafted on the white-box model to black-
box models.

Query-based Attacks: Query-based attacks are divided into score-based attacks and decision-based
attacks. In the score-based setting, the adversary can query the target model’s confidence score to guide
the attack’s process [12,14]. Zeroth order optimization (ZOO) [14] is the first proposed score-based
attack, which reduces the attack time and ensures the attack effect by approximating the first and second
derivatives and hierarchical attacks. Natural evolution strategies (NES) [23] utilize natural evolution to
estimate gradients. Random gradient-free (RGF) [24] samples distribution-independent random vectors to
estimate the gradient. Prior-guided random gradient-free (P-RGF) [15] further improves the query
efficiency of RGF with a transfer-based prior. Different from score-based attacks, decision-based attacks
can only use hard labels fed by the target model to craft adversarial examples. For example, the first
decision-based adversarial attack in Reference [13] makes the adversarial example travel along the
boundary between the adversarial and non-adversarial regions. Simple black-box attack (SimBA) [16]
updates the query sample by a greedy strategy without estimating the gradient explicitly. Query-efficient
boundary-based black-box attack (QEBA) [17] uses the projection function to sample from a lower
dimensional space to improve the sampling efficiency. However, query-based attacks require thousands of
queries on the black-box model in practical black-box attack scenarios, which is inefficient and easily
detectable.

Transfer-based Attacks: Different models trained on the same dataset may share similar decision
boundaries. Adversarial examples can be transferred across models to some extent. Therefore, transfer-
based attacks center on finding a substitute model and performing a white-box attack on the substitute
model. Then the crafted adversarial examples are transferred into the inaccessible black-box target model.
Attacking a set of substitute models [25,26] helps to improve transferability. However, it suffers from
expensive computational costs. The poor transferability of the adversarial examples generated based on
optimization and iterative methods leads to poor success rates in attacking black box models. Momentum
iterative fast gradient sign method (MI-FGSM) [18] integrates momentum into the iterative method to
enhance the transferability. It accumulates velocity vectors along the gradient direction of the loss
function during the iterative process to stabilize the update direction and avoid undesirable local maxima.
Diversity input method (DIM) [20] proposes randomly transforming the input samples with a certain
probability and then using them as the classifier’s input for subsequent derivation operations. It can be
combined with MI-FGSM to improve transferability. Translation-invariant method (TIM) [19] reduces the
dependence of substitute models by translational invariance property; it convolves the gradient with a
predefined Gaussian kernel to update the gradient to generate more transferable adversarial examples.
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Nesterov iterative fast gradient sign method (NI-FGSM) [27] proposes using the Nesterov Accelerated
Gradient instead of momentum. Unlike MI-FGSM, it obtains the gradient information for the next
iteration in advance, which means that NI-FGSM can look forward better and jump out of the local
optima faster than MI-FGSM. AAM [21] is one of the best transfer-based attacks. It randomly selects a
set of samples from different categories, which are added to the original input sample in a small
proportion by linear interpolation to construct a set of input samples. AAM improves the transferability
of adversarial examples by calculating the average gradient of a set of mixed input samples. Although
these methods produce adversarial examples with good transferability, they treat the input samples as a
whole without considering the sample channel-to-channel effects, which may be one of the reasons why
there is still a considerable gap compared to white-box attacks.

3 Methodology

3.1 Attack Scenarios

Given a substitute model f with parameters h and x 2 X is a benign image with the ground-true label y,
Lðf ðx; hÞ; yÞ denotes the loss function of f. Our goal is to find an adversarial image xadv 2 X that satisfies
Eq. (1):

f ðx; hÞ 6¼ f xadv; h
� �

s:t: jjx� xadvjjp � e; (1)

where jj � jjp denotes p�norm distance and e is the maximum upper bound allowed for the perturbation. The
smaller e, the smaller the difference between the adversarial image and the benign image.

In this work, we use the l1 norm to restrict the adversarial perturbations, i.e., Eq. (2):

xadv ¼ argmax
jjx�x0jj1�e

L x0; y; hð Þð Þ: (2)

3.2 The Channel Decomposition Attack Method

Transfer-based attacks transfer adversarial perturbations on a substitute to target models. However, due
to the high dependence on the substitute models, they are easy to fall into local optima, which is also called
the ‘overfit’ of the substitute model.

The process of generating adversarial examples is also treated as the training process of a neural
network. In this perspective, DIM, SIM, and AAM could all be treated as ways to improve transferability
through data augmentation.

However, to the best of our knowledge, existing attacks treat the RGB channels as a whole at each
iteration to improve the transferability, without considering the impact of each channel individually.
During each iteration of the attack, we consider the impact of each channel of RGB input. The RGB
input channels are decomposed and padded with a zero-value matrix, with each channel forming a
separate three-channel input. We feed them into the model to calculate the gradients. Then we calculate
the aggregated gradient to tune the gradient update direction. We formulate this as Eq. (3):

xR; xG; xB ¼ CDPðxÞ (3)

where xR; xG; xB are the decomposed and padded images of the three R, G, and B channels respectively.
CDP refers to the decomposition and padding of the input x. We show the entire attack framework in Fig. 2.
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PGD improves the attack success rate by adding random noise, essentially adding pixel values to the
images. From this, we can infer that appropriate noise addition or reduction can effectively improve the
success rate of adversarial attacks. As shown in Fig. 2, we initialize the data point by adding or
subtracting random noise sampled from standard normal distribution during each iteration, to further
improve the transferability. The formula can be expressed as Eq. (4):

xadd; xsub ¼ x� p � Nð0; 1Þ; (4)

where Nð0; 1Þ is the standard normal distribution of random noise and p is the hyper-parameter.

With the above analysis, we propose the CDAM. It calculates the aggregated gradient to tune the
direction of the update gradient. Its formula can be expressed as Eq. (5):

g
X 0
1

tþ1 ¼
1

n

X
x012X 0

1

Xn�1

i¼0

r
x0adv1t

L f ci � x0
adv

1t
y; h

� �� �� �
; (5)

where n is the scale copies of each input, ci 2 ½0; 1� control the portion of x01advt and X 0
1 is the first set of input

obtained by Eq. (3), i.e., X 0
1 ¼ ½x; xR; xG; xB�.

Adding or subtracting the random noise from the standard normal distribution, thus initializing the
position of the input to escape from local optima. The gradient can be formulated as Eq. (6):

g
X 0
2

tþ1 ¼
1

n

X
x022X 0

2

Xn�1

i¼0

r
x0adv2t

L f ci � x0
adv

2t
y; h

� �� �� �
; (6)

where X 0
2 is obtained by Eq. (4).

Figure 2: The framework of CDAM, whereH denotes the image height andW denotes the image width, sgn
is the sign function, xadvt�1 is the adversarial example at t � 1-th iteration, � denotes element-wise add, �
denotes element-wise minus. The adversarial examples generated by CDAM can attack multiple black-
box models
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In summary, g
X 0
1

tþ1 is used to tune the gradient and stabilize the update direction. g
X 0
2

tþ1is used to initialize
the position of input to escape from local optima. The final update gradient is obtained by the above two
gradients as Eq. (7):

ĝtþ1 ¼ a � gX 0
1

tþ1 þ b � gX 0
2

tþ1; (7)

where a and b control the portion of g
X 0
1

tþ1 and g
X 0
2

tþ1. The CDAM is summarized in Algorithm 1.

Algorithm 1: CDAM

Input: A classifier f with loss function L, A benign example x with the ground-truth label y, the maximum
perturbation e, number of iterations T and decay factor l

Output: An adversarial example xadv 2 X

1: a ¼ E=T ; g0 ¼ 0; xadv0 ¼ x

2: Get a set of input X 0
1 ¼ CDPðxÞ

3: for t ¼ 0 ! t ¼ T � 1 do

4: Get a set of input X 0
2 ¼ xadvt � p � N 0; 1ð Þ

5: Calculate the gradient ĝtþ1 ¼ a � gX 0
1

tþ1 þ b � gX 0
2

tþ1

6: Update the gtþ1:

gtþ1 ¼ l � gt þ ĝtþ1

jjĝtþ1jj1
7: Update xadvtþ1 and X 0

1 by applying the sign of the gradient

xadvtþ1 ¼ xadvt þ a � sgn gtþ1ð Þ
X 0
1 ¼ X 0

1 þ a � sgn gtþ1ð Þ
8: end for

9: return xadv ¼ xadvT

4 Experiments

4.1 Experimental Setups

4.1.1 Dataset
ImageNet large scale visual recognition challenge (ILSVRC) 2012 dataset [28] is a lightweight version

of the ImageNet dataset. We select 1000 categories from the ILSVRC 2012 validation set and randomly
select one from each category, a total of 1000 images that can be correctly recognized by all models, to
verify the effectiveness of the proposed method.

4.1.2 Comparison Method
We compare the state-of-the-art methods AAM [21] and CAAM, which is combined with TIM [19] and

DIM [20]. All attack methods are combined with MI-FGSM [18].

4.1.3 Models
We validate the effectiveness of CDAM on four popular normally trained models, namely Inception-v3

(M1) [22], Inception-v4 (M2) [29], Inception-Resnet-v2 (M3) [29], and Resnet-v2-101 (M4) [30] as well as
three ensemble adversarially trained models, i.e., Inc-v3ens3 (Ma), Inc-v3ens4 (Mb) and IncRes-v2ens (Mc)
[31].
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4.1.4 Evaluation Criteria
We use the attack success rate to compare the performance of different methods. The success rate is an

important metric in adversarial attacks, which divides the number of misclassified adversarial examples by
the total number of images.

4.1.5 Implementation Details
We follow the attack setting in MI-FGSM, the maximum perturbation of e is set to 16, the number of

iterations is set to 10, and the step size is set to 1.6. For MI-FGSM, the decay factor is set to 1.0. For
DIM, the transformation probability is set to 0.5. For TIM, we adopt the Gaussian kernel with kernel size
7	 7. For SIM, the number of scale copies is set to 5 (i.e., i = 0, 1, 2, 3, 4). For AAM, the number of
samples of different categories is set to 3, and images for mixing with g ¼ 0:2. For the proposed method,
we set n ¼ 5, ci ¼ 1=2i, p ¼ 0:2, a ¼ 0:2 and b ¼ 0:5.

4.2 Single-Model Attack

We first perform two adversarial attacks i.e., AAM and our proposed CDAM on a single neural network.
We craft the adversarial examples on four normally trained neural networks and test them on seven neural
networks. Table 1 shows the success rates of these attacks.

We can observe that CDAM outperforms both attacks on the normally trained black-box models and the
adversarially trained black-box models while maintaining the success rates in the white-box scenario. In
particular, when attacking the adversarially trained black-box model, CDAM outperforms AAM by a
large margin, which is more practical for realistic scenarios.

For instance, when the attacked substitute model is M1, in the white-box scenario, both AAM and
CDAM achieve success rates of 100.0%. However, in the black-box scenario, CDAM achieves an
average success rate of 87.8%, which is 8.8% higher than AAM on the other three normally trained
black-box models.

4.3 Combined with Other Transfer-Based Attack

We also validate the attack effectiveness of our proposed CDAM combined with other transfer-based
attacks, such as TIM, DIM, and SIM. Since SIM is a special case of AAM and CDAM, we validate the

Table 1: Success rates (%) of AAM and CDAM on seven models under the single-model setting. The adversarial
examples are crafted on M1, M2, M3, and M4, respectively. * represents white-box attacks

Model Attack M1 M2 M3 M4 Ma Mb Mc

M1 AAM 100.0* 82.9 80.5 73.6 40.8 38.2 20.9

CDAM 100.0* 90.0 88.8 84.6 61.2 58.2 36.0

M2 AAM 87.0 99.8* 83.8 76.2 51.2 48.6 31.7

CDAM 92.5 99.9* 88.9 86.4 72.4 67.2 50.0

M3 AAM 89.7 85.7 99.0* 81.7 62.7 55.5 47.4

CDAM 93.2 91.6 99.1* 89.1 78.4 71.9 68.3

M4 AAM 83.0 77.3 76.9 100.0* 48.6 42.4 29.7

CDAM 87.2 84.0 84.4 100.0* 67.4 61.1 47.3
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effect achieved by combining TIM and DIM with AAM and CDAM, respectively. That is, CAAM and
CCDAM. The results are shown in Table 2.

In general, attacks combined with CDAM achieved better transferability than AMM. Taking the
substitute is M1 model for example, the success of CCDAM on three adversarially trained black-box
models outperforms CAAM with a clear margin of 13.2%∼20.0%. Such remarkable improvements
demonstrate the high effectiveness of the proposed method.

4.4 Ensemble-Model Attack

An adversarial example is more likely to be able to successfully attack another black-box model if it can
attack multiple models at the same time. MI-FGSM has proved that attacking multiple models can effectively
improve the transferability of adversarial examples. Therefore, to fully validate the effectiveness of the
CDAM, we use the ensemble-model attack proposed in [18], which fuses the logit of multiple models for
crafting adversarial examples. We attack four models, including M1, M2, M3, and M4, and verify the
effectiveness of our method on three adversarially trained models.

Since adversarial examples are crafted on four normally trained models, all attacks have very similar
success rates on these four models. Therefore, we only report the attack success rates on three
adversarially trained black-box models.

As shown in Table 3, The average attack success rate achieved by CCDAM is higher than CAAM by
7.6%. This further convincingly demonstrates the high efficacy of CDAM.

Table 2: Success rates (%) of AAM and CDAM combined with other transfer-based attacks on seven models
under a single-model setting. The adversarial examples are crafted on M1, M2, M3, and M4, respectively. *
represents white-box attacks

Model Attack M1 M2 M3 M4 Ma Mb Mc

M1 CAAM 100.0* 90.4 86.4 82.6 71.7 68.1 50.7

CCDAM 99.2* 93.2 91.8 88.5 84.9 83.1 70.7

M2 CAAM 91.5 98.9* 88.8 82.3 77.0 72.8 63.0

CCDAM 93.8 99.1* 90.9 88.1 85.0 82.9 76.5

M3 CAAM 91.4 89.5 98.4* 87.1 82.6 80.1 77.4

CCDAM 92.3 90.7 98.1* 88.0 85.8 84.3 84.3

M4 CAAM 88.5 85.2 87.6 99.9* 79.2 74.8 65.0

CCDAM 90.5 87.3 88.9 99.0* 85.8 83.6 76.7

Table 3: Success rates (%) on three adversarially trained models. Adversarial examples are crafted on M1,
M2, M3, and M4

Attack Ma Mb Mc Average

CAAM 91.6 89.4 86.4 89.1

CCDAM 97.8 96.4 95.6 96.6
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4.5 Ablation Studies of Hyper-Parameters

For the number of input examples n and the portion of the input ci, we follow the setting in the [20]
setup. We perform a series of ablation experiments to investigate the three hyper-parameters p, a and b of
CDAM, and all the adversarial examples were crafted on the M1 model.

The portion of noise p: We report the attack success rates achieved by CDAM for different values of p,
where a is fixed at 0.2 and b is fixed at 0.5. For the M1, i.e., the substitute model, CDAM achieves 100%
attack success rates. As can be seen from Fig. 3a, the success rates increase as p increase, peaking at p.

The weight of g
X 0
1

t a: We report the effect of the gradient weights calculated for the first set of images X 0
1

on the success rates, where p is fixed at 0.2 and b is fixed at 0.4. As can be seen from Fig. 3b, the success rates
reach the highest when a ¼ 0:2, and gradually decrease with the increase of a.

The weight of g
X 0
2

t b: We report the effect of the gradient weights calculated for the second set of images
X 0
2 on the success rate, where p is fixed at 0.2 and a is fixed at 0.2. As can be seen from Fig. 3c, the success

rates increase insignificantly as b continues to increase, reaching the highest rate when b ¼ 0:9 and near
b ¼ 0:5.

Through the above analysis, the change of p fluctuates a lot on the success rates, while the change of the
values of a and b has less effect on the attack success rates. Therefore, we set p ¼ 0:2, a ¼ 0:2 and b ¼ 0:5.

5 Conclusion

In this work, we propose a new transfer-based black-box attack, called the CDAM to improve the
transferability. Specifically, CDAM decomposes the channels and pads them with a zero-value matrix to
generate a set of images for tuning the gradient direction and stabilizing the update gradient. During each
iteration, it initializes the data point with random noise to escape from local optima, further improving the
adversarial attacks’ transferability. Extensive experiments show that the proposed CDAM significantly
improves the transferability of the adversarial attacks in the black-box scenario. In future work, we plan
to reduce the memory and time overhead of CDAM and increase the speed of generating adversarial
examples.
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Figure 3: Success rates (%) on the other six models with adversarial examples generated by CDAM on M1

model when varying hyper-parameters p, a and b
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