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Abstract: Deep Learning (DL) is known for its golden standard computing para-
digm in the learning community. However, it turns out to be an extensively uti-
lized computing approach in the ML field. Therefore, attaining superior
outcomes over cognitive tasks based on human performance. The primary benefit
of DL is its competency in learning massive data. The DL-based technologies
have grown faster and are widely adopted to handle the conventional approaches
resourcefully. Specifically, various DL approaches outperform the conventional
ML approaches in real-time applications. Indeed, various research works are
reviewed to understand the significance of the individual DL models and some
computational complexity is observed. This may be due to the broader expertise
and knowledge required for handling these models during the prediction process.
This research proposes a holistic approach for pneumonia prediction and offers a
more appropriate DL model for classification purposes. This work incorporates a
novel fused Squeeze and Excitation (SE) block with the ResNet model for pneu-
monia prediction and better accuracy. The expected model reduces the human
effort during the prediction process and makes it easier to diagnose it intelligently
as the feature learning is adaptive. The experimentation is carried out in Keras,
and the model’s superiority is compared with various advanced approaches.
The proposed model gives 90% prediction accuracy, 93% precision, 90% recall
and 89% F1-measure. The proposed model shows a better trade-off compared
to other approaches. The evaluation is done with the existing standard ResNet
model, GoogleNet+ResNet+DenseNet, and different variants of ResNet models.

Keywords: Disease prediction; pneumonia; deep learning; SE; ResNet; fused
network model

1 Introduction

With the emergence of society, environmental conditions, living habits, and peoples’ lifestyles gradually
increase the severity of various issues indirectly over other connected diseases [1]. Major diseases like
cardiovascular disease, brain damage, diabetes, cancer and vision impairments, etc., have a crucial impact
worldwide [2]. While considering diabetes alone, roughly 422 million people are affected all over the
world, and of which about 90% have Type II diabetes. With age, the loss of function and heart
senescence leads to increased heart disease risk. Nearly 90% of global death is due to heart disease [3].
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These sorts of global diseases seriously influence the human health condition and diminish personal
productivity. Similarly, it worsens the social pressure and triggers the medical expenditure on health
conditions [4]. The ultimate objective is to identify the risk probability of any individual suffering from a
particular disease [5]. Many factors influence various conditions among the vast populations. By
considering the different feature sets with extensive and more comprehensive dimensions, the individual,
complexity, and disease variations must be identified [6]. Simply handling all these essential tasks
manually is not only complex, but it also consumes vast financial and human resources. The enormous
development of society has endorsed technological progression. It leads to more rapid medical data
acquisition. The medical institutions worldwide are acquiring diverse health-related data and continuously
expanding the scaling process [7]. These sorts of medical data include basic patient information, i.e.,
electronic medical records (EMR) and electronic health records (HER), instrument (medical) data, image
data and so on [8]. This data is highly vulnerable to various factors. For instance, redundant or incomplete
data is identified due to timeliness or personal security issues that make the data fallacious and privacy-
based issues. Additionally, medical data is divergent from ordinary data due to its high dimensionality,
complexity, irregularity, and heterogeneity and includes more unstructured data [9]. It is highly complex to
attain or handle these data manually. However, in reality, medical diagnosis is constrained by medical
conditions, diagnostician level, and patient differences. Based on these issues, some people urgently require
various auxiliary techniques to assist in disease identification and prediction [10].

With advanced technologies in medical image processing [11] and other applications [12], a lot of work
has been put into creating automated algorithms modelled over the past few years. These approaches often
use images to forecast disease occurrence based on intensity, such as existing prediction, simply a reference
process, or a referable perception process, among other things. In contrast, Chen et al. [13] used a transfer
learning method to identify disease in the earlier stage. Azarang et al. [14] suggested utilizing sparse
representation and unbalanced data to categorize the image as usual or malicious using a multi-kernel
cross-learning approach. To detect referable images, Wei et al. [15] used an assembly of nine
GoogleNets. For identifying imagination as simply a reference image, Zhou et al. [16] created a
convolutional neural network. These approaches often provide excellent clinical effectiveness before
determining the seriousness by creating optimum models utilizing many datasets. They are, however,
frequently criticized for their lack of readability because they merely offer a unique number as a medical
result for an input image, leaving no intelligible evidence (such as the appearance of particular disease-
related characteristics) to back up the diagnosis. The medical data offered by these technologies are
complicated for doctors to comprehend and adopt, completely restricting their use in practice.

The severity levels of the disease are determined using several severity classification methods [17–19]
based on the presence of distinct indicators (i.e., disease-associated characteristics) in the provided input
image. The disease-related characteristics are present, and it will considerably improve the performance
of the diagnostic conclusion by giving a complete identified section and corroboration for the complex
audits and inspection results. The author studied the potential of establishing autonomous computerized
programs for diagnosing risk levels and the existence of disease-related characteristics in endoscopic
images [20]. The existence of disease-related characteristics in endoscopic images is first discovered, and
afterwards, the extent of disease follows options on this. The findings show that utilizing the presence of
disease-related traits as a predictor makes it possible to attain excellent diagnostic ability for severity [21].
A hierarchical architecture is intended to combine the attributes of the disease critical aspects taken from
the image for severity detection due to the causal link between related functions and harshness. Finally,
the suggested computational intelligence project has three distinct benefits. First, introducing extra
information regarding related aspects via a hierarchy organization makes it feasible to enhance the
productivity of severity evaluation [22]. Second, the production of associated characteristics might make
severity diagnostics results more interpretable. Using two autonomous sample sets obtained in disease
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diagnostics, we examine the suggested technique for categorizing various severity and likelihood and
identifying simply a reference, which is critical for diagnosis and screening [23]. The author has
quantitatively measured the suggested approach’s efficacy in several expert systems.

Deep Learning works effectually using Graphical Processing Unit (GPU) systems. GPUs are effective
for various basic DL approaches with parallel-computing operations like matrix multiplication, activation
functions, and convolutions. Stacked memory and updated GPU models improve the bandwidth
significantly [24]. The improvements facilitate various primitives to use every computational resource
effectually over the available GPUs. The GPU performs more efficiently than CPU, i.e., 10–
20:1 connected to dense linear operations. The maximal parallel processing is considered the base
programming. For instance, it includes 64 computational units. It possesses four engines per
computational layer and every engine has 16 floating-point computational lanes. GPU performance is
attained only with the addition and multiplication functions to merge the instructions for primitive
matching associated with the matrix function [25]. Thus, it is known that deep learning execution over
GPU gives expected results and reduces computational complexity. The proposed model is effectually
used in medical applications.

This research concentrates on modelling an efficient approach for pneumonia prediction. Thus, faster
and more accurate pneumonia prediction means a lot. There is a need to provide timely access to the
treatment process, and saving money is substantial. Various existing research works are carried out;
however, they fail to give a better prediction. This has laid the path to perform this research, and the
following are the significant research contributions: (1) To acquire datasets from the publicly available
online resources for pneumonia prediction; (2) To fuse the well-known DL approaches, i.e., Squeeze and
Excitation network (SE) and ResNet model for disease prediction; (3) To perform training, testing and
validation using Keras; (4) To compare the anticipated fused model with the existing approach to project
the significance of the anticipated model. The work is structured as follows: In Section 2, various DL
approaches are analyzed for their pros and cons with the disease prediction; Section 3 portrays the
detailed analysis of the fused model. The numerical results and discussions related to the fused model are
demonstrated in Section 4. A summary of the work and future research ideas are provided in Section 5.

2 Related Works

Deep Learning (DL) is a category of Artificial Intelligence (AI) approaches based on neural networks
and motivated by the brain’s structures. DL is a term that refers to approaches for automatically
recognizing the graphical model of data’s underlying and fundamental connections [26]. Unlike standard
machine learning approaches, deep learning approaches demand far less operator direction, so they do not
rely on the development of finger features, which may be moment and challenging, but instead learn
relevant feature representations [27]. Furthermore, when the number of data grows, DL approaches scale
markedly improved to classical Machine Learning. This segment provides a short overview of some key
DL concepts [28]. A Deep (Feed-Forward) Naive Bayes (DNN), on the other hand, has far more than one
hidden layer [29]. Every input network and two hidden clusters are joined to each hidden neuron by
networks in a city, so each is concealed and outputting models of many biological neurons. Furthermore,
because these circuits only accept one matrix as input, they cannot be employed directly with
neuroimaging studies. Convolutional Neural Networks (CNNs), which take 2D arrays as input rather than
external neural networks, are influenced by biological perception and are based on an essential
mathematical process called “transform”. The fundamental distinction between a CNN and a DNN is that,
all synapses in one layer input to calculate the outcome of every hidden neuron in a second. In contrast,
in the former, this is not the situation [30]. Instead, a CNN computes convolution layers by moving over
a portion of the top image to build a depth map using filtration or loudspeakers. The former learns
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photographic characteristics, converted from one array sent into the later, effectively a Deep Neural System,
to categorize the input picture using the created attributes [31]. Because of their capacity to retain the
structural stability of the image, UNet [32] designs are more suited for text categorization than regular
CNNs. They comprise process parameters that capture the essential framework and asymmetrically
expansion path. It allows accurate and consistent categorization. Furthermore, because it analyses the
picture in one pass instead of several areas in a template matching technique, a UNet design has fewer
parameters. It is quicker than typical CNNs, so such structures are termed “Fully Convolutional
Networks” (FCN). At last, it requires far less information to accomplish a feature extraction than classical
CNNs. It is critical for computer-aided diagnosis, where the quantity of information is much smaller than
other applications in image processing [32]. Implementations are better suited for text categorization than
classical CNNs, due to their capability to maintain the image’s structural strength. They have a shrinking
path that captures the practical detail and an asymmetric growing way that allows for precise
categorization. Furthermore, because it analyses the picture in one shot or several areas in a template
matching technique, a UNet design has lower complexity. It is quicker than typical CNNs, so these
structures are termed “Fully Convolutional Networks” (FCN). Secondly, it uses far less input to do a
feature extraction than typical CNNs, which is critical for medical image processing since data
availability is significantly lower than in other disciplines of machine vision.

Generative Adversarial Network (GAN) [33] is an essential class of convolutional layers. The
generating networks, which create candidates sampling based on the old given data, and the classification
algorithm, which tries to discriminate the produced candidates sampling from the actual dataset, make up
a typical GAN. The manufacturer can provide candidate sampling closely matched to the genuine
distribution of the data using such a training method. Picture amazingly (i.e., generating high-resolution
copies of the input image), art creation and picture translating (e.g., converting a day image to its night
equivalent) are all applications of GANs [34]. Retraining a deep convolutional neural network is highly
time-consuming in computer systems and data. ImageNET [35], the world’s most extensive item
identification collection, contains approximately 14 million real-life photos of animals, equipment, food,
people, and automobiles. Supervised Methods, which denotes mining several models (i.e., base models)
to provide more remarkable prediction outcomes than the existing models, is another critical area of AI
study [36]. A diversified group of base models is used in the community knowledge modelling
framework to provide single estimates from a composite of their unique outcomes on the same
information or a portion of the offered accessible data. It is a learning method that reduces the model’s
classification error and efficiently combines input from different modalities. Given that each model that
has been learned is the same across models, numerous group approaches are applied to all potential
models [37]. However, some fundamental obstacles must be overcome to promote AI’s use in medical
settings [38,39]. Kuenzi et al. [40] anticipated a novel weighted classifier-based model that merges the
prediction weight attained from DenseNet, MobileNetV3, Xception, Inception V3, and ResNet
18 models. The author shows that the final classifier model achieves 90% over the testing set [41–48].
However, these models lead to high processing time. Thus, there is no suitable method for the proposed
model. Moreover, the anticipated lightweight model is adequate for pneumonia prediction. But there are
some research constraints and challenges that need to be addressed. The present DL approaches for
pneumonia prediction show some limitations in selecting the hyper-parameters to construct an accurate
and lightweight model. These sorts of constraints are addressed in the proposed research work. Table 1
depicts the comparison of various deep learning approaches.

3 Methodology

This research includes two major phases: (1) dataset acquisition for predicting chest X-rays and (2)
designing a fused SE and ResNet for disease prediction. The performance of the anticipated model is
estimated with metrics such as prediction accuracy, precision, recall and F1-score.
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Table 1: Comparison of various deep learning approaches

Model Findings Depth Dataset Error rate Input size

AlexNet Use ReLU and dropout 8 ImageNet 164 227 ∗ 227 ∗ 3

VGG Mlpconv is used 3 CIFAR 100,
MNIST,
CIFAR-10

10.41,
35.68,
0.45

32 ∗ 32 ∗ 3

GoogleNet Block concept, increased
depth, filter size,
concatenation

22 ImageNet 6.7 224 ∗ 224 ∗ 3

Inception-V3 Small filter size, superior
feature representation

48 ImageNet 3.08 229 ∗ 229 ∗ 3

Inception-V4 Transform and integration 152 ImageNet 3.08 229 ∗ 229 ∗ 3

ResNet Robust towards over-fitting
owing to symmetry
mapping-based skip links

152 ImageNet 3.57 224 ∗ 224 ∗ 3

Inception-
ResNet V2

Residual link concept 164 ImageNet 3.52 229 ∗ 229 ∗ 3

Wide ResNet Increased width and
reduced depth

28 CIFAR-
100 and
CIFAR-10

18.85 and
3.89

32 ∗ 32 ∗ 3

Residual
attention NN

Attention technique 452 CIFAR-
100 and
CIFAR-10

3.90 and
20.4

40 ∗ 40 ∗ 3

Squeeze-and-
excitation
network

Interdependencies among
the channels

152 ImageNet 2.250 229 ∗ 229 ∗ 3, 224
∗ 224 ∗ 3, 320 ∗
320 ∗ 3

DenseNet Layered blocks and
connected layers

201 CIFAR-100,
CIFAR-10,
and ImageNet

3.46,
17.18,
5.54

224 ∗ 224 ∗ 3

Competitive
Squeeze and
excitation
network

Predicting mapping to re-
scale channel

152 CIFAR-
100 and
CIFAR-10

18.47 and
3.58

32 ∗ 32 ∗ 3

MobileNet-v2 Inverted residual structure 53 ImageNet — 224 ∗ 224 ∗ 3

CapsuleNet Particular relation among
the available features

3 MOST 0.00800 28.28 ∗ 1

HRNetv2 High-resolution
representation

— ImageNet 5.4 224 ∗ 224 ∗ 3

CNN High resolution 2 classes Arbitrary 6.3 16 ∗ 3 ∗ 3

CNN Pneumonia 4 classes Arbitrary 36.8 128 ∗ 3 ∗ 3

D-CNN Chest X-ray images 2 classes — — 256 ∗ 3 ∗ 3
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3.1 Dataset Description

This research considers the Pneumonia (chest X-ray) dataset, a publicly available online dataset. It
includes 540 normal samples for training, 3882 abnormal samples for training, 8 normal and abnormal
samples for validation, 234 normal samples for testing and 390 abnormal samples for training.

3.2 Design Architecture

This section discusses the design flow of the anticipated model. The flow of the anticipated model is
given in Fig. 1. It comprises inner blocks like convolutional layers, fully connected (FC) layers and
global average pooling (GAP) layers. The figure represents the convolutional blocks with several SE and
ResNet blocks.

3.2.1 Squeeze and Xcitation Blocks (SE)
SE block is a computational unit modelled for any transformation For : X ! U ; X 2 RH�W�C where

For specifies standard convolutional operator, U specifies output, X specifies input, H specifies height, C
specifies channel, and W specifies width. Consider, V ¼ v1; v2; . . . ; vc½ � specifies the set of filter kernels
(learned), where vc specifies the cth parameter filter. The output of Ftr as U ¼ u1; u2; . . . ; uc½ � and it is
expressed as in Eq. (1):

uc ¼ vc � X ¼
Xc0

s¼1

vsc � xs (1)

Figure 1: Flow of ensemble classifier model
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Here, � specifies convolution, vc ¼ v1c ; v
2
c ; . . . ; v

c0
c

� �
and X ¼ x1; x2; . . . ; xc

1
h i

. For simplicity, biases

are excluded, and vsc specifies a 2D spatial kernel, which specifies vc single channel, which acts as
channel X. The summation of all channels generates the output. Therefore, the channel dependencies are
merged with vc via spatial correlation. The anticipated network is authorized with essential information
features through some transformations. The building block of ResNet is shown in Fig. 2, and the
integrated model is shown in Fig. 3.

Figure 2: SE-ResNet model

3.2.2 Squeezing with Global Information
The filter works with the local receptive field, and the converted output is not competent to share the

essential data with successive channels. The channel dependency is measured as an issue that turns out to
be severe in the deep learning network model. It turns out to be a crucial issue in smaller receptive field
sizes. A global summary for the channel is noted as channel statistics attained with squeeze global spatial
information to solve this issue better. The adoption of GPA pools is probably the essential feature with
channel descriptors. The spatial dimensions W � H ; generate channel statistics z 2 Rc by shrinking U , as
the cth element is computed with Eq. (2):

zc ¼ Fsq ucð Þ ¼ 1

H �W
XH
i¼1

XW
j¼1

uc i; jð Þ (2)

Here, uc specifies transformation output based on the image intensity of every convolution operation
using the local receptive of the input X image. The coordinates i; jð Þ specifies pixel position,
i ¼ 0; 1; 2; . . . ; H � 1 and j ¼ 0; 1; 2; . . . ;W � 1: The output transformation U is interpreted as the
local descriptors collection eliminates the entire image. It is extensively utilized for feature engineering.
To be more specific, global average pooling is used.
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3.2.3 Adaptive Recalibration With Excitation
Here, the simple gated function is performed with sigmoid activation to attain a suitable objective that

fulfils two criteria: (1) the model captures channel non-linearity, and (2) it needs to predict the non-mutual
relationship among the multiple channels and facilitate to emphasize the activation. The channel-wise values
are attained from the prior squeeze operation, which completely captures the feature dependencies during
excitation operation. It is mathematically expressed as in Eq. (3):

s ¼ Fex z; Wð Þ ¼ r g z;Wð Þð Þ ¼ r W2d W1zð Þð Þ (3)

Here, d specifies the activation function (ReLU). It is shown as W1 2 R
c
r�c and W2 2 R

c
r�c. Here, a

parameterized gating function with two fully connected layers (FC) is used to diminish the model
complexity and enhance generalization. In the dimensionality-reduction (nonlinear) layer with W1

parameters and reduction ratio, dimensionality increases with W2 parameters and ReLU. The outcome is
attained using re-scaling, and it is expressed as in Eq. (4):

xc ¼ Fscale sc; ucð Þ ¼ scuc (4)

Figure 3: Proposed SE-ResNet architecture
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Here, X ¼ x1; x2; . . . ; xc½ � and Fscale uc; scð Þ specifies the channel-wise influence towards the feature
mapping uc 2 RH�w and sc is scalar.

3.2.4 Dropout
During the neural network training phase, the model must learn features and random noise from the

provided training data and is over-fitted. The model performs poorly during the testing phase with some
unknown datasets. Specifically, poor performance is observed when the network possesses enormous
neurons with independent parameters. It is a technique where some neuron percentages are deleted during
the network training phase. The neuron that intends to be removed has to be chosen randomly to assist
the model with more generalization. It predicts the unseen dataset well. The dropout approaches need to
address the over-fitting issues in the anticipated model.

3.2.5 Architectural Model
The model is constructed with SE and ResNet blocks (See Fig. 3a), where the original ResNet blocks are

fused entirely with special computational SE. The block is constructed with some GAP layer followed by an
FC non-linearity model. The proposed system consists of six ResNet blocks and one SENet. The six ResNet
blocks are connected back to back as shown in Fig. 3. The side outputs are taken from the last four ResNet
blocks because the feature map size attained from the first two blocks is larger. The first two blocks learn
lower-level visual features that are not so appropriate for classification purposes. The inner model
specifies the total SE and ResNet block splits where the output blocks are fed into the concatenated
model. The outer model specifies the number of SE and ResNet blocks that forms the fused network
model. The input chest X-ray image is fed into the Conv1 layer, followed by the six ResNet layers, while
the output from the third ResNet layer is fed to the ResNet layer and extracted as a side output. This
process is carried out until the last (sixth ResNet) layer. The fused results of all these sides are provided
for scaling output and global pooling. The layer functionality is described above. However, the output
from the sigmoid layer is also given to the scaling layer. Based on this functionality, the images are tested
and trained. However, the complex nature of the anticipated model leads to computational complexity.
When the learning model gets deeper, it becomes extremely difficult for the layers to propagate the
information from shallow layers, and the information is lost. It is known as the degradation problem.

Figure 3(a): One ResNet Unit
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4 Numerical Results and Discussion

The anticipated deep network model is executed in the Keras simulation environment. The outcomes are
validated with accuracy, recall, precision, and F-measure. The deep network model is known as an ‘inducer’.
For deep classification, inducers are used for provisioning the system performance. It provides superior
outcomes compared to other techniques. The initial step is to construct multiple subsets from the
available training set. Next, the classifiers are merged with SE blocks and ResNet, where outcomes are
attained with superior predictive function. Here, the available online dataset is considered, and evaluation
is done with various metrics and expressed in Eqs. (5)–(8):

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(5)

Precision ¼ TP

TP þ FP
(6)

Recall ¼ TP

TP þ FN
(7)

F � measure ¼ 2 TPð Þ
2 TPð Þ þ FNð Þð Þ (8)

True Positive (TP)–the model intends to identify the right features as appropriate ones;

True Negative (TN)–the model intends to identify the incorrect features as wrong ones;

False Positive (FP)–the model intends to predict the incorrect features as the right one;

False Negative (FN)–the model intends to predict the right features as the wrong ones;

The provided images are resized and transformed to grey-scale to feed the anticipated SE and ResNet model
input. The batch size must be chosen during the training process, and the total iterations are set to 100 epochs. Some
ten iterations are chosen to get an average result during the testing process. Here, batch normalization accelerates
the quick convergence and training process before provisioning the input to the successive layers. Batch
normalization is performed to attain superior enhancement during the training process. The experimental result
demonstrates that the model works superiorly during the testing and training phases by handling the over-fitting
problem. Some dropout techniques are provided to establish the generalized model to handle this issue. The
loss function is reduced gradually during the testing and training process. The training loss is zero during a
stable state, and the testing loss is nearer to zero, where the difference between the training and testing loss is
nearer to zero. It shows that the anticipated model shows better generalization and no over-fitting issues, i.e.,
training loss 00validation lossð Þ and not an under-fitting issue ðtraining loss 00validation lossÞ. The accuracy is
gradually incremented for all iterations. The iterations show stability where the difference between the testing
and training accuracy is vast; however, it becomes smaller later. It specifies that the model works superiorly
over the unknown data, i.e., under-fitting or over-fitting.

Here, metrics like precision, recall, F1-measure, and accuracy are evaluated and compared. Table 2
compares the anticipated deep SE-ResNet model with the existing standard ResNet model. The
anticipated model shows 90% prediction accuracy, which is 25% higher than the standard model.
The precision is 93%, which is 23% higher than the ResNet model, and recall is 90%, 35% higher than
the standard ResNet model. F measure is 89% which is 29% higher than the traditional approach (see
Fig. 4). Similarly, the outcomes of the individual ResNet-50 and DenseNet are lesser than the proposed
model. Figs. 5 and 6 depict the training accuracy, validation accuracy and training loss and validation loss.
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It is recorded that the class accuracy is higher, i.e., 100% which is complex comparatively and like other
classes. The execution speed is roughly 12 ms for predicting the incoming image features and depicts the
comparative performance of the anticipated model with the general approaches. From the above figures,
the model shows clear dominance over the prevailing methods. The standard ResNet predicts the
complexity of the correlation when the input image is enormous (data volume) and complex. However,
the model does not use the higher spatial information without entirely relying on the spectral signature.
Some existing approaches need many parameters as the layers are FC. Therefore, connection weights
proliferate and turn uncontrollably, leading to over-fitting, inefficiency, redundancy, and lack of
generalization ability. Moreover, some complexity are caused by differentiating the features, which is
noise sensitive, tedious, and time-consuming. Some deep CNN models show superior performance when
compared to conventional learning approaches but lack the fine-tuning of parameters. Generally, ResNet
possesses huge parameters and complex network architecture and is computationally expensive. Stacking
convolutional layers provide a more profound architecture that does not increment generalization and

Table 2: Performance metrics comparison

Metrics ResNet
[34]

GoogleNet + ResNet +
DenseNet [41]

ResNet-
50 [41]

DenseNet
[41]89

SE+ResNet
(proposed)

Precision 70% 86% 86.7% 87% 93%

Recall 55% 87.03% 86.6% 87.02% 90%

F-
measure

60% 86.9% 86.6% 87.10% 89%

Accuracy 65% 86.8% 86.7% 87.12% 90%

Figure 4: Comparison of various performance metrics
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validation accuracy. However, it ends with the adoption of more parameters with increased training time.
While comparing the ResNet-18 and ResNet-50, it is observed that the accuracy of the proposed SE-
ResNet is promising compared to the existing approaches. In some cases, a dense network model
performs more efficiently than the available ResNet model with respect to accuracy. However, this dense
network model consumes more memory than another ResNet model from various concatenated layers.

Here, the deep SE and ReLU are skipped connections to handle the vanishing gradient efficiently and
facilitate smooth gradient flow. Finally, global pooling is adopted before the final fully-connected layers,
inherent in the prevailing CNN model. The similarities and relations are easily predicted among the
feature maps and output. The proposed deep SE-ResNet model shows two potential benefits with the
deep network model. Specifically, the process is performed concurrently with going deep. It is also
known as the split and merges technique and needs some hyper-parameters known as cardinality to
determine how the parallel path and division are necessary for the model. So, the anticipated model

Figure 6: Training and validation loss

Figure 5: Training and validation accuracy
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requires only one hyper-parameter known as cardinality indeed of huge hyper-parameters needed by the
conventional deep CNN model. The expected SE block is authenticated to learn the complex features
using feature independencies. Similarly, the model comprises skip connections over the ResNet block,
eliminating vanishing gradients. Therefore, the method provides superior outcomes compared to other
approaches. However, there are some misclassifications during the testing process. These
misclassifications are due to a lack of variations, insufficient datasets, and similarity patterns. Moreover,
the enhancements in the model architecture are due to the fused nature of the model. The existing
approaches show some misclassification rates compared to others.

5 Conclusion

This work calibrates the SE and ResNet-based deep network model, composed of the SE computational
layer over the ResNet model, to recognize the disease. With the initiation of the proposed model, the work
provides conclusive outcomes drawn with the reduction of complexity and hyper-parameter and an increase
in the ability to learn highly complex features. It is known that the strategy is essential for the extraction of
more robust discriminative features. Moreover, adopting batch normalization provides the model with a
faster training capacity, even in the case of a large dataset. The anticipated model is scalable owing to
the faster convergence rate and lower complexity. It attains an average prediction accuracy of 90%, the
precision of 93%, recall of 90%, and F-measure of 89%, respectively, with the chest X-ray dataset.
The knowledge extracted from this work shows better prediction accuracy with the provided dataset. The
outcomes demonstrate that the anticipated model offers a superior breakthrough in modelling a deep
network model. The simulation is done in Keras, and the anticipated model shows a better trade-off than
other approaches. The primary research constraint is the acquisition of the dataset and the training process
for 100 epochs. This work will be extended with the adoption of the complex dataset, and this model can
be tested over the other learning approaches to evaluate the results with further enhancement. Also, pre-
trained network models are adopted for further analysis.
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