
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.027081
Article

Read-Write Dependency Aware Register Allocation

Sheng Xiao1,*, Yong Chen2, Jing He3 and Xi Yang4

1School of Computer Science, Hunan First Normal University, Changsha, 410205, China
2School of Information Engineering, Nanjing Audit University, Nanjing, 211815, China

3Department of Computer Science, Kennesaw State University, Kennesaw, 30144-5588, USA
4Hunan Huayi Experimental Middle School, Changsha, 410205, China

*Corresponding Author: Sheng Xiao. Email: sxiao@hnfnu.edu.cn
Received: 11 January 2022; Accepted: 06 April 2022

Abstract: Read-write dependency is an important factor restricting software
efficiency. Timing Speculative (TS) is a processing architecture aiming to
improve energy efficiency of microprocessors. Timing error rate, influenced
by the read-write dependency, bottlenecks the voltage down-scaling and so
the energy efficiency of TS processors. We proposed a method called Read-
Write Dependency Aware Register Allocation. It is based on the Read-Write
Dependency aware Interference Graph (RWDIG) conception. Registers are
reallocated to loosen the read-write dependencies, so resulting in a reduction
of timing errors. The traditional no operation (Nop) padding method is
also redesigned to increase the distance value to above 2. We analyzed the
dependencies of registers and maximized the average distance value of read
and write dependencies. Experimental results showed that we can reduce all
read-write dependency by Nop padding, as well as the overhead timing errors.
An energy saving of approximately 7% was achieved.

Keywords: Read-write dependency; timing speculative; energy efficiency

1 Introduction

In the software industry and in social assessment of “carbon peaking and carbon neutralization”
energy consumption is an important indicator. Many researchers have studied the parameter from
different aspects [1–4]. Timing speculation (TS) was a concept recently proposed to apply to energy-
efficient microprocessors [5]. The TS processing breaks through the restriction of traditional circuits
on timing constraints, and makes possible a more effective software design for timing error detection
and recovery. The TS uses modules such as enhanced latches, checkers, and restorers to dynamically
detect and recover errors [5,6]. At the same time, it allows the occurrence of occasional timing errors
and executions under lower voltage of power supply, achieving thus a higher efficiency in energy
consumation. However, the error recovery operations consume a high proportion of energy. Reducing
error recovery operations is thus critical for the energy efficiency improvement. The read after write
dependency (RAW) between data is the main cause of an increased error rate. Therefore, reducing the
RAW dependency becomes the key component of efforts to improve the TS processing.

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.027081
https://www.techscience.com/doi/10.32604/csse.2023.027081
mailto:sxiao@hnfnu.edu.cn


3528 CSSE, 2023, vol.46, no.3

To reduce timing errors, we can use a compiler. The compiler is a piece of system software.
Many optimization schemes are used to generate optimized code for different architectures with a
compiler for the error reduction purposes. In our previous work [7], we used register reallocation
to reduce crosstalk, resultig in energy-saving and code-security improvement. Recently, works on
compilation-based TS processing were also published [8,9]. Hoang et al. used compiler transforma-
tions to replace long-delay operations with faster ones, thereby reducing the number of timing errors
[8]. Sartori et al. [9] evaluated the relationship between current compilation optimizations and TS
processing before the optimization. They found that the closer the read-write dependency, the greater
the likelihood of timing errors.

Many research efforts have been done for timing error detection and recovery. Tziantzioulis
et al. [10] proposed a model for voltage-scaling induced timing errors, called b-HiVE. This model
incorporated the timing-error detection and recovery attributes. The corresponding impact of these
incorporated parameters on the overall model accuracy was demonstrated. For accurately computing
DTS and activity information, Based on a concept of event propagation Zhang et al. [11] proposed
EventTimer, a dynamic timing analysis engine. Assare et al. [12] proposed a framework to estimate
the number of timing errors experienced by an application running on timing-speculative processor.
Temperature- and aging- induced timing errors in the joint accelerator-algorithm interactions were
investigated by Paim et al. for illustrating the runtime impacts of these errors [13]. They demonstrated
the runtime behavior of three advanced block-matching video encoder algorithms in a joint SAD-
accelerating operation, run based on 14 nm-FinFET technology. Tsiokanos et al. [14] provided a
novel cross-layer framework. It addressed the lack of a holistic methodology for the understanding
of the full system impact of hardware timing errors, such as when these errors propagating from the
circuit-level through the microarchitecture, up to the application software. Ainsworth et al. [15] did
a transformation of ParaMedic to ParaDox. The transformation resulted in a high performance in
both error-intensive and scarce-error scenarios, with correct executions even in either undervolted or
overclocked cases. With ExHero, a fully automated framework developped by Tsiokanos et al. [16], a
dynamic timing analysis was performed based on the historical execution data of a number of in-flight
instructions. Shin et al. [17] experimented a one-cycle error correction, by gating only the main latch in
each stage of the pipeline that precedes a failed stage. PreFix, a method developped by Soman et al. [18],
could handle hardware errors, keep running a faulty core and execute instructions. However, the above
method require the support of additional hardware devices, so increasing the system costs.

On the software side, there were also some studies considering the compiler optimization of TS
processors. Hoang et al. [8] found that some code sequences demand more circuit timing deadlines
than others. Furthermore, by selectively replacing these codes with instruction sequences which are not
only semantically equivalent but also able to reduce activities on timing critical circuit paths, we can
trigger fewer timing errors and hence reduce recovery costs. Sartori et al. [9] advocated that binaries for
timing speculative processors should be optimized differently from those generated for conventional
processors, to maximize energy-saving benefits of timing speculation. There were also some of the
methods overusing hardware resources, shown in references [19–21]. Meixer et al. [19] established a
code conversion method to avoid using faulty processor components. Reddi et al. [20] applied compiler
optimization to reduce the stress on the power delivery system. Hari et al. proposed a system software-
guided method for detection of hardware faults happended during the lifetime of a processor [21]. All
of these findings indicate that software approaches are valuable to improve the performance of TS
processor.

In this paper, we propose a new read-write dependency reduction method to improve the
performance of TS architecture. A heuristic register reallocation procedure was set up to reschedule



CSSE, 2023, vol.46, no.3 3529

the registers, based on the dynamically monitored distance values of read-write dependencies in each
basic block. Nop fill methods were then used for further distancing the read-write dependencies.

2 Materials and Methods

2.1 Motivation
2.1.1 Timing Speculation Overview

Timing speculation (TS) can be used to improve energy efficiency through voltage reduction. In
order to solve the accidental errors, the corresponding error detection and recovery circuit have been
redesigned for the TS processors. Fig. 1 shows the relevant logic of a typical TS processor like Razor,
or called Razor trigger. In the first clock cycle, the circuit meets the timing requirements, no timing
error occurs, and the Error signal remains low.

Figure 1: Typical TS processor pipelining [5]

When the combinational logic exceeds the expected delay due to sub-critical voltage scaling, timing
errors will be detected. As shown in the third cycle of Fig. 1, due to the excessive scaling of voltage,
the effective data of the shadow latch are inconsistent with the data in the main trigger, resulting in
a system error and an error signal at high level. In a general pipeline system, once an error occurs in
a certain stage, the subsequent pipeline work needs to be re-executed. Only in this way can the whole
system work normally. However, in the TS processor, if an error is found, the correct value is reserved in
the shadow latch, so the error in a certain stage can be accurately recovered. Subsequently, the content
in the shadow latch can be directly used for processing. Therefore, timing errors can be prevented from
affecting the entire pipeline. For example, in cycle 4, the recovery logic works. The shadow latch is used
to recover the error data, thus ensuring that the error will not remain in the subsequent stages.

The TS processor effectively reduces the impact of occasional timing errors on the system through
the error detection and recovery circuit. However, these functional units still requires a large amount
of overhead. How to minimize the verhead is an important issue to be solved for the TS processor.

2.1.2 RAW in Pipeline

Reducing power consumption is an important aspect of processor design. TS processors can
make the system work in a low power state through error recovery logic. However, its error recovery
logic needs to be supported by additional energy consumption. Too many errors will make the TS
processor consume more energy. Therefore, reducing TS processor errors is the key to improving TS
processor performance. According to the research in [9], the error rate of TS processor is related to
the dependence on data read and write. If the read write dependency can be eliminated, most timing
inference errors will be eliminated.



3530 CSSE, 2023, vol.46, no.3

The read/write dependency is mainly caused by the segmented execution of the pipeline. In a five
level pipeline, as shown in Fig. 2, its second stage is to read data from a register, and its fifth stage
is to write data to a register. When the last instruction needs to read the register value written by
the previous instruction between two consecutive instructions, a RAW dependency will be generated.
More generally, if Dis (i, j) is to represent the distance between instruction i and instruction j, and
instruction j needs to read the data written to the register by instruction i, then when Dis (i, j) meets
Eq. (1), there is a dependency between them after reading and writing. In Eq. (1), DISRAW is the
distance between RegRead and WriteBack stages.

Dis (i, j) < DISRAW (1)

RegReadFetch Exectute LeadStore LeadStore

Figure 2: Pipeline of StrongArm

2.2 Read-Write Dependency-Aware Register Reallocation (RWDRR)
Aiming to realize the active optimization of the whole program such as the system library, we make

the optimization process get the disassembly code and the analyzed results as inputs. The Read-Write
Dependency-Aware Interferogram (RWDIG) constructor is then used to build the RWDIG from the
disassembly code and to set its weights. We make finally the RWDRR processor analyze the RWDIG
to relocate the registers and to generate optimized code. The core of the optimization is to build the
RWDIG and RWDRR programs. The details are described in the following subsections.

2.2.1 RWDIG Construction

In order to conduct a more comprehensive analysis, the code of the static library is also included
in the analysis. We take the binary code as the entry point, and obtain the register level information
through decompilation. Then, with the help of the method described in [22], a read-write correlation
sensing interferogram (RWDIG) is constructed. RWDIG is a directly weighted graph. It can be
represented by quadruple RWDIG = (V , EI , EN, WE), Where v ∈ V represents a variable or constant
of the program, e(u, v) ∈ EI expresses that the node u and node v can’t share the same register,
e′(u′, v′) ∈ EN expresses that the node u and node v may be the same register and the weight represents
the minimal number of instructions of such read-write dependency if the node u and v are assigned to
the same register.

To improve the pertinence of the program, we have modified the calculation of weights. In [22],
the weight value of this graph only represents the number of times that read/write dependencies exist,
but in fact, TS processors are only sensitive to read/write dependencies that generate forwarding. If
read after write dependencies do not generate forwarding, it will not adversely affect timing errors of
TS processors. Therefore, we correct the calculation of the weight to: if two nodes are allocated to the
same register, the number of times that they generate forwarding between them.

For the RWDIG setup, we take the disassembly code as input and assume that there are infinite
registers, called virtual registers in many compilers. First, we change the disassembly code to a static
single assignment form for each basic block, ensuring that the registers are defined only once (lines
1–4). Then, we construct the data stream for each basic block using the method described in reference
[23] and obtain the lifetime of each register in each instruction (lines 5–6). The interference map can be
constructed by analyzing the active registers in each instruction (lines 7–15). Once the interferogram
is obtained, we can use the contour analysis results to add weights to the edges (lines 16–19). Then we



CSSE, 2023, vol.46, no.3 3531

finally return the constructed RWDIG (line 22). The detailed construction is presented in Algorithm 1.
In this program, the CFG is the control flow graph, and each node represents a basic block containing
the number of instructions executed in order. The Lfregi represents a register that is defined before the
instruction and will be used after the instruction that called the active register.

Algorithm 1: RWDIG Construction.
Input:

S: the disassemble of source codes
M: the profile inform

Output:
RWDIG(V,EI, EN,WE)

1:Consturct the CFG by S
2: for each node v of CFG do
3: Tranform v to SSA
4: end for
5: do the dataflow analysis for the transformed CFG
6: Lfregi = get the life info by step 5 for each node in CFG
7: for each node v in CFG do
8: for each i in v do
9: for each m, k in Lfregi and m �= k do
10: V.add(m)
11: V.add(k)
12: EI.add(m, k)
13: end for
14: end for
15:end for
16: for each weight info <m, k, wm,k> in M do
17: EN .add(m, k)
18: WE.add(wm,k)
19: end for
20: return RWDIG(V,EI, EN,WE);

2.2.2 RWDIG Based RWDRR

Based on the above modified RWDIG, we have implemented a new RWDIG based read/write
correlation aware register relocation (RWDRR) algorithm. We take the RWDIG of each process as
the input, and sort according to the weight of the edge in EN. (line 1). Because the larger the weight
value of the EN side is, the higher the frequency of the two nodes connected to the side is, the easier it
is to generate more read-write dependencies. Therefore, we try to allocate the two points connected to
the EN side to different registers to reduce read-write dependencies (lines 2–36). But different from the
reference [22], when there are multiple registers to choose from, we try to reuse the used registers to
leave more available registers for conflict resolution. The detailed program is shown in Algorithm 2:



3532 CSSE, 2023, vol.46, no.3

Algorithm 2: RWDIG Construction.
Input:

The RWDIG(V,EI,EN,WE) for every processor;
The registers that can be used R = {r0, r1, . . . , rn}

Output:
The results of registers allocation for each node V in RWDIG;

1:E’ = sort the edges in EN by WE in decrease
2: for each e∈E’ in ordered do
3: if e∈EI then
4: if neither node is assigned for any registers then
5: Get the most used two registers to assigned for the two nodes
6: else if both nodes are allocated the same register then
7: Change any one of the node with the minimal used register
8: else if only one node is allocated to the register ri then
9: search the register rj �= ri to allocate for node v.
10: end if
11: else
12: if neither node is allocated to any register then
13: do it as the above line 5
14: else if only one node is allocated to register ri then
15: do it as the above line 9
16: end if
17: end if
18:end while

2.3 Nop Padding Method
To loosen effectively the read-write dependency, we use the Nop approach to pad the instructions,

with a minimal distance value preset at 2. The details are shown in Algorithm 3. First, the register
in the original assembly instruction is replaced according to the result obtained by RWDRR (line
1–5). Next, the CFG is constructed (line 6). And we traverse each instruction in each node n of the
CFG in turn (line 7–21). If the instruction i is the first instruction of the CFG node, we traverse each
precursor node p of the node n in turn. If there is a read-write dependency between the last instruction
of p, which expressed by plast, and the current instruction i, we add a Nop instruction at the end of
the corresponding precursor node p. If the instruction i is not the first of the CFG node, we judge
whether it has read-write dependency with its previous instruction. If so, add a Nop instruction before
the current instruction i.

Algorithm 3: Nop padding Construction.
Input:

M: the register allocation map for each node V in RWDIG
S: the disassemble of source codes

Output:
CFG’: the CFG after Nop padding

1: for each instruction i in S
(Continued)



CSSE, 2023, vol.46, no.3 3533

Algorithm 3: Continued
2: for each register r in i:
3: R = M(V(r))
4: end for
5: end for
6: CFG(V’,E’) = Construct the CFG for S
7: for each node v in V’:
8: for each instruction i in v:
9: if i is the first instruction:
10: for each p in Parent (v):
11: if p last and i have Read-Write dependency
12: add Nop instruction after p last in p
13: end if
14: end for
15: else:
16: if i and i −1 have Read-Write dependency:
17: add Nop instruction before i
18: end if
19: end if
20: end for
21: end for
22: return CFG’

3 Results

3.1 Experimental Methodology
To evaluate the effectiveness of the method in this paper, we built an experimental process as shown

in Fig. 3.

Source Code

Modified
GCC by

RWDRR 

GCC

Profile Info

Optimazed
Binary Code

Binary Code

Compared by
sim-profile

Results
Reports 

Figure 3: Experimental framework

In the experiment, we first use the GCC [23,24] compiler to obtain the binary under the O2
optimization option. Then, we modified the register allocation method of GCC by using our RWDRR
and obtained the optimazed binary code. The source and the optimized codes are then compared
and the performance of RWDRR are evaluated with the following parameters: average distance of
read-write dependency, minimum distance of read-write dependency, impact of Nop padding and
energy saving value. We select the MiBench [25] and Mediabench [26] as the benchmark, and the target



3534 CSSE, 2023, vol.46, no.3

architecture is StrongARM. The results of read-write dependency rumbers obtained in the benchmark
testing are shown in Table 1.

Table1: The number of Read-Write dependencies by GCC

Benchmarkes Number Benchmarkes Number

basicmatch_large 345580 dijkstra_large 254954
basicmnatch_smnall 345497 dijkstra_small 122938
bitcnts_large 238603 patricia_large 299280
bitcnts_small 238599 patricia_small 127280
qsort_large 269550 ispell 399010
qsort_small 290855 search_large 276056
susan_s_large 404997 blowfish_en 298706
susan_e_large 213386 blowfish_de 81994
susan_c_large 347166 rijndael_en 242539
susan_s_small 387228 rijndael_de 223996
susan_e_small 185618 sha 400153
susan_c_small 335301 bin/rawcaudio(adpcm_c) 294799
jpeg-6a/cjpeg_large 557450 bin/rawcaudio(adpcm_d) 358832
jpeg-6a/djpeg_large 483977 crc 168817
jpeg-6a/cjpeg_small 537632 fft_i 316053
jpeg-6a/djpeg_small 500575 fft 316049
lame3.70/lamne_large 330314 bin/toast 6463
lame3.70/lame_small 347278 bin/untoast 6556

3.2 Experiment Results
3.2.1 Occurrence Times with One Distance of Read-Write Dependency

In some architectures, read-write dependencies can be eliminated by pass-through techniques.
This requires that the distance value of the read-write dependency must be set over 1. The worst-case
execution results of our proposed algorithm are evaluated by comparing the number of occurrences
of read-write dependency distance obtained in GCC mode with that obtained in RWDRR condition.
Table 2 shows the optimization results of our RWDRR. The obtained value of occurrences of read-
write dependencies for GCC next distance, and that of occurrences of read-write dependencies for
RWDRR next length (without Nop padding) for the same testing case set are listed side by side.

It is clear that there is a significant decrease in the number of occurrences of dependency (Table 2,
column 3 vs. column 2), and as can be seen from the last row of Table 2, the average number of
occurrences decreases from 536 to 184, without Nop Padding. If Nop padding is added, the number
of occurrences is reduced to zero (data shown below), so RWDRR shows a positive effect on the
benchmark results for the worst-case processing.



CSSE, 2023, vol.46, no.3 3535

Table2: The comparsion result of worst cases

Benchmarks GCC RWDRR without Nop padding

basicmatch_large 421 241
basicmatch_small 334 220
bitcnts_large 507 295
bitcnts_small 777 59
qsort_large 307 143
qsort_small 648 287
susan_s_ large 588 211
susan_e_large 427 129
susan_c_large 143 87
susan_s_small 861 265
susan_e_small 980 108
susan_c_small 371 138
jpeg-6a/cjpeg_large 786 270
jpeg-6a/djpeg_large 783 219
jpeg-6a/cjpeg_small 740 76
jpeg-6a/djpeg_small 349 121
lame3.70/lame_large 649 174
lame3.70/lame_small 99 96
dijkstra_large 636 224
dijkstra_small 437 299
patricia_large 829 124
patricia_small 439 77
ispell 919 258
search_large 208 255
blowfish_en 879 248
blowfish_de 901 202
rijndael_en 196 166
rijndael_de 314 98
sha 942 251
bin/rawcaudio(adpcm_c) 245 257
bin/rawcaudio(adpcm_d) 433 117
crc 977 269
fft_i 294 71
fft 146 296
bin/toast 488 132
bin/untoast 245 167
average 536 184



3536 CSSE, 2023, vol.46, no.3

3.2.2 Influence of Nop Padding

Nop padding increases the distance between read and write dependencies, but also adds extra idle
time and space. Therefore, we analyze the impact of Nop padding on the whole system from both
positive and negative aspects.

Positive Influence

In order to distance further the read-write dependency, Nop padding instructions are used. To
evaluate its positive influence, we compared its performance by Eq. (2). Where Disavg is the averaged
distance of read-write dependency without Nop padding, and Disavgnop is the averaged distance of Read-
write dependency with Nop padding. The results are shown in Fig. 4.

imp = Disavg − Disavgnop

Disavg

(2)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

im
pr

ov
ed

 p
er

ce
nt

ag
e

Benchmark

Improved Percentage by Nop Padding

Figure 4: The improvement of Nop padding on occurrence numbers

It can be seen from Fig. 4 that the improvement percentage by Nop padding ranges from 20%
to over 85% , such as for benchmark Dijkstra_large, for its averaged distance value of read-write
dependency, with an averaged improvement value of about 55%, as shown in the last bar in the
above figure. Therefore, the effect of Nop padding on the dependency distance is obvious and can
be effectively used to eliminate the read-write errors.

Negative Influence

Although the Nop instruction itself is a null operation and consumes very low energy, it still wastes
the corresponding clock cycles and increases the size of the code itself. In order to evaluate its impact,
we have carried out analytical experiments. The results are shown in Figs. 5 and 6, respectively.

Fig. 5 shows the ratio of the time increased by the Nop instruction to the total program time. It
can be seen from the figure that the maximum time cost is 2.26%, the minimum is only 0.3%, and the
average increased cost is 1.29%.

Fig. 6 shows the ratio of the space added by the Nop instruction to the original size of the program.
It can be seen from the figure that the space cost is slightly higher than the time cost, up to about 5%,
and the average cost is 2.75%. But in general, the cost is acceptable.



CSSE, 2023, vol.46, no.3 3537

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

co
st

 p
er

ce
nt

ag
e

Benchmark

timing cost

Figure 5: The time cost of the Nop padding

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%

co
st

 p
er

ce
nt

ag
e

Benchmark

space cost

Figure 6: Space cost of the Nop padding

3.2.4 The Energy Saving Values

Impact of our RWDRR method on the system energy consumption were evaluated, by normaliz-
ing and calculating the energy consumption through Eq. (3): Where, E1 represents the system energy
consumption before optimization, and E2 represents the energy consumption after optimization.

P = E1 − E2
E1

(3)

The obtained results (Fig. 7) show that the system energy consumption can be improved, with the
maximum increase of nearly 14%, and the averaged improvement percentage is about 7%.



3538 CSSE, 2023, vol.46, no.3

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%

sa
vi

ng
 p

er
ce

nt
ag

e

Benchmark

Energy saving percentage

Figure 7: Energy saving of the RWDRR

4 Discussion

Experimental results showed that our new method can effectively increase the read-write corre-
lation distance through an optimized speculative execution. This optimization method reduces the
energy consumption caused by speculative error detection and recovery and is especially promising
for applications running under low power supply voltage. As a software optimization approach, it
requires no additional hardware, and no dependency on a specific architecture. The experimental
results showed that our algorithms are capable of increasing the dependency distance value by 55%,
and that the reduced timing error rate allows to achieve an average power savings of about 7%.

5 Conclusions

Software optimization on the TS platform showed promising features for improving energy
efficiency in the microprocessor development. Reducing the read and write dependencies rsulted in
a significant reduction of the timing error rate and thus the voltage of the TS processor. Optimized
voltage down-scaling benefits microprocessor’s power consumption. Our new method and experimen-
tal results demonstrated that the goal of reducing timing error rate and read/write dependancy of
registers is achievable via software optimizations without additional hardware support.

Funding Statement: This work was supported by the Project of Hunan Social Science Achievement
Evaluation Committee (XSP20YBZ090, Sheng Xiao, 2020).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] P. Hemalatha and K. Dhanalakshmi, “Cellular automata based energy efficient approach for improving

security in iot,” Intelligent Automation & Soft Computing, vol. 32, no. 2, pp. 811–825, 2022.
[2] S. Mahmoud and A. Salman, “Cost estimate and input energy of floor systems in low seismic regions,”

Computers, Materials & Continua, vol. 71, no. 2, pp. 2159–2173, 2022.



CSSE, 2023, vol.46, no.3 3539

[3] M. Maharajan and T. Abirami, “Energy efficient qos aware cluster based multi-hop routing protocol for
wsn,” Computer Systems Science and Engineering, vol. 41, no. 3, pp. 1173–1189, 2022.

[4] H. G. Zaini, “Forecasting of appliances house in a low-energy depend on grey wolf optimizer,” Computers,
Materials & Continua, vol. 71, no. 2, pp. 2303–2314, 2022.

[5] D. J. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao et al., “A Low-power pipeline based on circuit-level timing
speculation,” in Proc. IEEE/ACM, Washington, DC, USA, pp. 7–18, 2003.

[6] B. Greskamp and J. Torrellas, “Paceline: Improving single-thread performance in nanoscalecmps through
core overclocking,” in Proc. PACT , Brasov, Romainia, pp. 213–224, 2007.

[7] S. Xiao, J. He, X. Yang, Y. Wang and J. Lu, “Crosstalk aware register reallocation method for green
compilation,” Computers, Materials & Continua, vol. 63, no. 3, pp. 1357–1371, 2020.

[8] G. Hoang, R. Findler and R. Joseph, “Exploring circuit timing-aware language and compilation,” in Proc.
ASPLOS, Newport Beach, CA, USA, pp. 345–356, 2011.

[9] J. Sartori and R. Kumar, “Compiling for energy efficiency on timing speculative processors,” in Proc. DAC,
SanFrancisco, CA, USA, pp. 1297–1304, 2012.

[10] G. Tziantzioulis, A. M. Gok, S. M. Faisal et al., “B-HiVE: A bit-level history-based error model with value
correlation for voltage-scaled integer and floating point units,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conf. (DAC), Moscone Center San Francisco, CA, IEEE, 2015.

[11] Z. Zhang, Z. Guo, Y. Lin, R. Wang and R. Huang, “EventTimer: Fast and accurate event-based dynamic
timing analysis,” in 2022 Design, Automation & Test in Europe Conf. & Exhibition (DATE), Antwerp,
Belgium, pp. 945–950, 2022.

[12] O. Assare, R. K. Gupta, “Performance analysis of timing-speculative processors,” IEEE Transactions on
Computers, vol. 71, no. 2, pp. 407–420, 2022.

[13] G. Paim, H. Amrouch, L. M. G. Rocha, B. Abreu, E. A. C. da Costa et al., “A framework for crossing
temperature-induced timing errors underlying hardware accelerators to the algorithm and application
layers,” IEEE Transactions on Computers, vol. 71, no. 2, pp. 349–363, 2022.

[14] I. Tsiokanos, G. Papadimitriou, D. Gizopoulos and G. Karakonstantis, “Boosting microprocessor effi-
ciency: Circuit- and workload-aware assessment of timing errors,” in 2021 IEEE Int. Symp. on Workload
Characterization (IISWC), Virtual Online, pp. 125–137, 2021.

[15] S. Ainsworth, L. Zoubritzky, A. Mycroft and T. M. Jones, “ParaDox: Eliminating voltage margins via
heterogeneous fault tolerance,” in 2021 IEEE Int. Symp. on High-Performance Computer Architecture
(HPCA), Virtual Online, pp. 520–532, 2021.

[16] I. Tsiokanos and G. Karakonstantis, “ExHero: Execution history-aware error-rate estimation in pipelined
designs,” IEEE Micro, vol. 41, no. 1, pp. 61–68, 2021.

[17] I. Shin, J. J. Kim, Y. S. Lin and Y. Shin, “One-cycle correction of timing errors in pipelines with standard
clocked elements. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 2, pp.
600–612, 2016.

[18] J. Soman and T. M. Jones, “High performance fault tolerance through predictive instruction re-execution,”
in 2017 IEEE Int. Symp. on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
Cambridge, UK, pp. 1–4, 2017.

[19] A. Meixner and D. J. Sorin, “Detouring: Translating software to circumvent hard faults in simple cores,”
in Proc. ICSTW , Anchorage, AK, USA, pp. 80–89, 2008.

[20] V. Reddi, S. Campanoni, M. S. Gupta, M. D. Smith, G. Wei et al., “Eliminating voltage emergencies via
software-guided code transformations,” ACM Transactions on Architecture and Code Optimization, vol. 7,
no. 12, pp. 1–28, 2010.

[21] S. K. S. Hari, M. L. Li, P. Ramach, B. Choi and S. V. Adve, “Mswat: Low-cost hardware fault detection
and diagnosis for multi-core systems,” in Proc. IEEE/ACM, New York, NY, USA, pp. 122–132, 2009.



3540 CSSE, 2023, vol.46, no.3

[22] S. Xiao, J. He, X. Yang, H. Zhou and Y. Yuan, “Timing error aware register allocation in ts,” Computer
Systems Science and Engineering, vol. 40, no. 1, pp. 273–286, 2022.

[23] Z. Zhou, Z. Ren, G. Gao and J. He. “An empirical study of optimization bugs in GCC and LLVM,” Journal
of Systems and Software, vol. 174, no. 3, pp. 110884, 2020.

[24] M. Shalabi, “Programs optimization in GCC compiler,” Scientific Annals of Computer Science, vol. 9, no.
2, pp. 91–108, 2018.

[25] M. R. Guthaus, J. Ringenberg, D. J. Ernst, T. Austin, T. Mudge et al., “Mibench: A free, commercially
representative embedded benchmark suite,” in Proc. IEEE/WWC, Washington, DC, USA, pp. 3–14, 2001.

[26] C. Lee, M. Potkonjak and W. M. Smith, “MediaBench: A tool for evaluating and synthesizing multimedia
and communications systems,” in Proc. IEEE/ACM, Saint Louis, MO, USA, pp. 330–335, 1997.


	Read-Write Dependency Aware Register Allocation
	1 Introduction
	2 Materials and Methods
	3 Results
	4 Discussion
	5 Conclusions
	References


