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Abstract: Modern cloud services are monitored by numerous multidomain
and multivendor monitoring tools, which generate massive numbers of alerts
and events that are not actionable. These alerts usually carry isolated messages
that are missing service contexts. Administrators become inundated with
tickets caused by such alert events when they are routed directly to incident
management systems. Noisy alerts increase the risk of crucial warnings going
undetected and leading to service outages. One of the feasible ways to cope
with the above problems involves revealing the correlations behind a large
number of alerts and then aggregating the related alerts according to their cor-
relations. Based on these guidelines, AlertInsight, a framework for alert event
reduction, is proposed in this paper. In AlertInsight, the correlations among
event sources are found by mining a sequence of historical events. Then, event
correlation knowledge is employed to build an online detector targeting the
correlated events that are hidden in the event stream. Finally, the correlated
events are aggregated into a single high-level event for alert reduction. Because
of the weaknesses of the commonly used pairwise correlation analysis methods
in complex environments, an innovative approach for multiple correlation
mining, which overcomes computational complexity challenges by scanning
panoramic views of historical episodes from the perspective of holism, is
proposed in this paper. In addition, a neural network-based correlated event
detector that can learn the event correlation knowledge generated from cor-
relation mining and then detect the correlated events in a sequence online is
proposed. Experiments are conducted to test the effectiveness of AlertInsight.
The experimental results (precision = 0.92, recall = 0.93, and F1-score = 0.93)
demonstrate the performance of AlertInsight for the recognition of multiple
correlated alerts and its competence for alert reduction.
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1 Introduction

1.1 Background
With the rapid development of advanced technologies such as big data, artificial intelligence,

and the Internet of Things, modern cloud-based information systems are becoming increasingly
massive and complex [1–3]. The operation and maintenance of cloud services are usually supported by
automated platforms where numerous and varied monitoring tools are deployed to constantly patrol
the running statuses of cloud services and related technology stacks. When anomalies are detected,
the monitoring tools report alert events to the administrators, who can identify and handle them as
soon as possible. On the one hand, the deployment of monitoring will gradually expand and penetrate
various fields with the evolution of business applications. On the other hand, administrators always
conduct comprehensive monitoring strategies for safety purposes. This situation adequately ensures
that administrators perceive anomalies in time. However, at the same time, it also brings nonnegligible
side effects. Some root cause problems may lead to numerous consequential alert messages from
different sources, and redundant alerts may overload the administrators. This unwanted situation
is called alert flooding [4,5]. Without understanding the event correlations hidden in flooding, it
is challenging for administrators to prioritize critical alerts and assess possible incident impacts. In
contrast, if we know the correlations among events, we can group the discrete events into clusters
according to their correlations. Compared with those obtained from many independent original events,
aggregation results significantly reduce administrators’ workload. Correlation knowledge can also
effectively help administrators narrow their scope of attention and infer the propagation paths of
failures. Moreover, this alert reduction idea does not interfere with the deployment of alert policies,
which can still have the fine granularity to ensure a full runtime range for system monitoring.

However, obtaining knowledge of the correlations among alert event sources is nontrivial.
Traditionally, such correlation knowledge usually comes from expert experience, but unfortunately,
expertise mostly includes condensed, abstract, and generalized dogma, so it is still a long way from
direct practice. Much research seeks to discover correlation knowledge using data mining [6,7]. This
approach is free from mechanical models and empirical guidance, but only by the characteristics of
the historical events can we determine the evidence of the correlations contained in it and then obtain
correlation knowledge. Compared with methods based on expert experience, data mining methods are
more targeted, practical, and easier to implement as automated and intelligent tools.

1.2 Motivation
This paper focuses on discovering event correlations in an alert event sequence. According to

our investigation, most correlation mining methods are generally based on pairwise correlations and
assume that multiple correlations are composed of pairwise correlations from bottom to top [6,8,9]. As
shown in Fig. 1, we first find the three pairwise relations, E1→E2, E2→E3, and E4→E2, and then, the
clusters shown on the right side of Fig. 1 can be found. However, in our experience, the mining methods
based on pairwise correlations are insufficient. Pairwise correlations have some limitations in alert
correlation mining. Let us take an event sequence as an example, as shown in Fig. 2. The horizontal
axis in Fig. 2 represents time, and the vertical axis represents different event sources. Intuitively, {E3,
E4, E5} is a set of possibly correlated events. However, from the perspective of the correlations between
any pair of the three events, E3, E4, and E5, neither the “statistical support” nor the “vector distance”
measures can yield reliable pairwise correlations.
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Figure 1: An example of composing multiple correlations by pairwise relations

Figure 2: The dilemma of pairwise correlations. (a) An example of an event sequence. (b) Low
accompanying support by statistics. (c) Large distance between vectors

In complex systems, many multiple correlations cannot be linearly constructed in a bottom-up
manner via pairwise correlations. For this phenomenon, a qualitative analysis is given below. For
example, concerning {E3, E4, E5}, among which any two events have no strong correlation, it is easy to
find the actual significance as follows. A cloud service (E5) is supported by dual active instances (E3

and E4). E3 and E4 have weak influences on each other. When one fails, the over conformity caused
by load shifting increases the failure probability of the other instance. The overlapping failures of E3

and E4 eventually lead to the breakdown of E5.

When analyzing multiple correlations straightforwardly, it is necessary to examine all combina-
tions of events, which requires an algorithm with combinatorial complexity. Since there are often large
numbers of event types in real problems, algorithms with combinatorial complexity are not feasible.
Therefore, we attempt to innovatively discover multiple correlations among two or more events directly
from historical episodes. We first illustrate this idea with a simple example. As shown in Fig. 3, we have
attempted to adopt an approach with a more global and historical view, using unrelated random events
as a background to highlight correlation clusters. We explain the method in detail in the following
sections. In addition, the discovery of event correlations is not the ultimate goal. Based on correlation
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knowledge, we need to perform further research to detect correlated events from alert floods and
reduce the number of alerts in real time. The following sections also elaborate on our correlated event
detection model.

Figure 3: An example of the basic technical idea of our approach. The overlaid results of the historical
episodes show significant local hotspots, which can be considered event correlations to be evaluated

1.3 Contributions
Our contributions can be summarized as follows.

1. Motivated by real applications, this paper proposes an end-to-end framework called AlertIn-
sight for alert reduction to help administrators respond to alert events more efficiently.
AlertInsight can be used to discover event correlation knowledge by mining historical alert
event sequences. Then, this knowledge can be used to detect the presence of correlated events
in an event sequence online.

2. This paper proposes an unsupervised algorithm for mining multiple correlations to discover
correlation knowledge.

3. To detect correlated events based on (2), an online model is designed based on machine
learning, which can be used to identify correlated events from an alert event sequence in
real time.

4. We conduct simulation experiments in which we compare AlertInsight with other correlation
analysis methods and validate the effectiveness of the proposed correlated event detection
model. The experimental results demonstrate the effectiveness of AlertInsight.
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5. We have developed a simulation system to generate correlated events and released the
source code publicly (available online at https://github.com/yumg/alerts-simulator), allowing
researchers and practitioners to easily use it in future studies [10].

2 Problem Statement

In this section, we first show the application scenarios of the target problems, then define several
key concepts, and finally, provide the objective of our research.

Fig. 4 illustrates the application scenario of our research. Various monitoring tools generate a
large number of alert events. Usually, these events are collected and persistently stored. Without
losing generality, we assume that there is an event database that manages these event data. If the
administrators browse events directly from the event database, they will likely be overwhelmed by
redundant information overload. Therefore, it is necessary to set the “reduction filter” module to
group raw alert events according to the obtained correlation knowledge. This module can provide
a more organized and focused browsing view of alert events. This allows administrators to respond
to alerts more efficiently. This paper studies how to obtain the “correlation knowledge” and build the
“reduction filter” module. Next, we provide several necessary concepts to help elaborate the problem
and specific research methods. For convenience, the main mathematical notations used in this paper
are summarized in Table 1.

Figure 4: The application scenario and desired objective

https://github.com/yumg/alerts-simulator
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Table 1: Summary of mathematical symbols

Symbol Explanation
Ei The i-th alert source.
ESOURCE The universal set of all Ei.
TS The timestamp.
e An alert event. e = <TS, Ei> denotes an alert event originating from Ei at time TS.
S An event sequence that represents all historical events.
EPISODE An event episode is a subsequence of S containing events that are limited in a time frame.
CORRELATION A set of alert sources with multiple correlations.

Alert Source and Alert Event: Alert events (hereafter referred to as events) originate from the
triggering of an alert checking policy. The alert checking policy is the alert source, which also represents
the event type. Conversely, each event is an instance of that type. We use the set ESOURCE = {Ei |
i∈N∗, i ≤ n} to represent n alert sources and the tuple e=<TS, Ei> to represent one alert event, where
TS denotes the timestamp of the event, and Ei is the corresponding alert source.

Event Sequence: The alert sources generate events at all times, forming a sizable collection of events
in which each event element <TS, Ei> has a timestamp property. Therefore, the events form a stream
in chronological order, which we call an event sequence. Such a sequence can be expressed as a list S =
[<TS1, Ei1>, <TS2, Ei2>, <TS3, Ei3> . . . <TSn, Ein>]. The time attributes of events make the event
sequence more interesting; e.g., to examine event correlations, one should focus on event objects that
occur closer together, and the repetition of historical events also brings many meaningful insights to
data mining.

Event Episode: An event sequence usually refers to a whole collection or an unbounded stream.
However, the study of event sequences often involves or focuses on some subsegments. An event
episode is a subsegment containing events that are limited to a time frame. We use a list EPISODE
= [<TSm, Ej1>, <TSm’, Ej2> . . . <TSn, Ejx>] to represent an event episode in some time range from
TSm to TSn.

Event Correlation: In this paper, the so-called event correlation (“correlation” for short) refers to
the companionship or co-occurrence between alert events generated from related sources. Based on this
definition, we determine the relationships among the alert sources by searching the evidence of event
companionship and symbiosis from the event sequence. The event correlations can be represented as
sets of alert sources. For example, the set CORRELATION = {Ei, Ej, Ek} indicates that Ei, Ej, and Ek

have multiple correlations.

With these definitions, our objective is to solve the following problems.

1. Correlation Mining: We aim to discover the event correlation knowledge contained in historical
event sequences.

2. Correlated Event Detection: Based on the acquired event correlation knowledge, we want to
detect the correlated events in an event sequence online.

3 Methodology

3.1 Framework
For the problems in Section 2, we propose an end-to-end framework called AlertInsight for alert

reduction, as shown in Fig. 5. The process of acquiring and applying the “correlation knowledge”
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using AlertInsight is described in detail. In AlertInsight, a module called “explorer” is set to find the
correlations in an event database. The correlations and episodes are managed as knowledge. Since
the task of the explorer is usually a sample mining process with limited historical information, not
all the episodes with correlated events can be identified. Additionally, catching up with the latest
events in a stream is unrealistic. Therefore, an additional detector module is set, which learns the event
correlations and generalizes the ability to identify correlated events. Then, the detector can examine
any episode online to suggest possible correlated events.

Figure 5: The framework of AlertInsight

AlertInsight is divided into offline and online parts. The offline work should be iteratively
performed with reasonable scheduling. The explorer continuously replenishes and updates the “corre-
lation patterns and episodes” in the knowledge base. When the knowledge base is updated, the detector
must be updated accordingly. The detector is eventually embedded in the “reduction filter” to support
correlated event aggregation for online browsing and querying. The explorer and detector are the
two critical components of AlertInsight and correspond to the “correlation mining” and “correlated
event detection” problems raised at the end of Section 2, respectively. In the following, we present the
corresponding methods and models.

3.2 Correlation Mining
We mentioned some “correlation mining” challenges earlier. Multiple correlations may be missed

or misjudged using methods based on pairwise correlation. Therefore, we propose an innovative
method of multiple correlation mining for the explorer module of AlertInsight. We attempt to skip
the study of pairwise correlations and use a holistic perspective to determine which multiple events
may relate to each other.

The core idea for finding multiple correlations is as follows.

1. In general, events that receive attention are usually nonrandom. In other words, random
situations are less worthy of attention.

2. Nonrandom events may recur for analogous reasons. The correlated events will be implicated
in this recurrence.
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3. Based on the above premise, compared with a random distribution, the clusters of events with
repetitive traces indicate that the events involved may be relevant. The more significant the
repetition, the more convincing it is.

The above also echoes the proverb “history repeats itself,” which is a phrase demonstrating the
constant reincarnation and reciprocation of cause and effect in reality. A method based on pairwise
correlations follows a reductionist logic. The opposite of reductionism is holism, which encourages us
to go beyond the micro level and focus on the system as a whole.

Our proposed methodology for “correlation mining” is as follows. We examine the possible
multiple correlations of each alert source in turn. Taking Ek ∈ ESOURCE as an example, we obtain all
event instances of Ek from the event sequence S or a sample segment from S. Assuming that there are
p event instances in Ek, which are denoted as ek (1 ≤ k ≤ p), we take each ek. TS as the base time and
select the episode around that base moment. We assume there are p episodes, denoted as EPISODEk

(1 ≤ k ≤ p). For convenience, we convert each EPISODEk into a vector EPISODE_V k. Assuming that
ESOURCE is ordered, for example, by the dictionary order of the source name, we sort EPISODE_V k

according to the order of EPISODE. Each element of EPISODE_V k corresponds to an alert source
EPISODE based on its position, and each element’s value is set as the time difference between ek. TS
and the source’s instance. If there is no source, then Null is taken. We propose a reasonable presumption
as follows by analyzing the p individual EPISODE_V k in a cross-sectional comparison. In the p
individual EPISODE_V k, the elements corresponding to the events unrelated to ek will exhibit some
randomness, while those intrinsically related to ek will show the opposite characteristic: a nonrandom
distribution. Therefore, the next step is to distinguish the nonrandom events that are correlated with
ek. For convenience, we set the matrix M = [EPISODE_V 1, EPISODE_V 2, . . . EPISODE_V p]. Each
column in M corresponds to the relative time to the Ek of a certain event source in the episodes.
To distinguish nonrandom events, we first focus on the characteristics of the value distribution of
each column of M. We use the interquartile range (IQR) [11] to determine the concentration of
the distribution of the relative times: the more concentrated the distribution is, the smaller the IQR
value, and conversely, the more random the distribution is, the larger the IQR value. Second, we can
reasonably assume that the occurrences of correlated event sources are more numerous than those of
uncorrelated sources. Under this assumption, we can search the event sources whose occurrences and
IQRs are significantly distinguished from other sources. Any outlier detection algorithm can be used
here. Our implementation utilizes the LOF method [12] to find occurrences/NormIQR significantly
larger than normal and thus identify alert sources correlated with Ek. Eventually, the results can be
represented as a set such as CORRELATIONEk = {Ek, Ex, Ey, Ez . . . }.
Algorithm 1: Correlation Mining
Require: S; ESOURCE
Ensure: CORRELATIONS = {

CORRELATIONE1
, CORRELATIONE2

. . . CORRELATIONEn

}
1: initialize CORRELATIONS as an empty collection
2: for each Ei in ESOURCE do
3: scan S to get MEi = [

EPISODE_V1, EPISODE_V2, . . . EPISODE_Vp

]
for Ei

4: set MT
Ei

= Transpose
(
MEi

)
5: initial vector COF of which the length is MT

Ei
.length

6: for int j = 0; i<MT
Ei

.length; j + + do
7: set count as the number of non-null elements which is in MT

Ei
[j]

(Continued)
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Algorithm 1: Continued

8: set NormIQR as
(

MT
Ei

[j] .getPercentile (75) − MT
Ei

[j] .getPercentile (25)
)∗

0.7413
9: set COF [j] as count/NormIQR
10: if find the outliers in COF then
11: CORRELATIONEi = the sources corresponding to the outliers’ indexes in COF
12: add CORRELATIONEi to CORRELATIONS
13: end if
14: end for
15: end for

We give an example of the above process in Fig. 6, showing the data processing and computational
steps for finding the correlation event set {E3, E4, E5} for E5. Moreover, we give the comprehensive
and detailed pseudocode of the process in Algorithm 1. Based on the pseudocode of Algorithm 1, we
can analyze the time complexity of the correlation mining process more clearly. The process is iterated
for n event types, and in each iteration, n−1 calculations are needed to obtain the coefficients for every
event type (n−1 in total). Then, an outlier detection algorithm is used to obtain the outliers among
the n−1 coefficients. This paper uses the LOF algorithm for outlier detection, and its optimized time
complexity is O(n × log(n)). Therefore, the overall time complexity of the above process is O(n(n +
n × log(n))). Although the algorithm has O(n2 × log(n)) complexity, it should be emphasized that the
above notation n refers to the number of event types rather than the number of event instances in the
sequence. That is, the time complexity of the correlation mining process is related only to the number
of event types, not to the number of event instances. This is a great advantage because, in practice, the
number of event types is often limited and relatively small. Moreover, in AlertInsight, the algorithm is
executed in an offline batch fashion, requiring less responsiveness. Therefore, the complexity of O(n2 ×
log(n)) is acceptable for the target scenario.

In addition, during the above process, it can be convenient to label the episodes that contain cor-
related events for the subsequent training of machine learning models for correlated event detection.
It is also worth noting that if we assume that there can be more than one type of correlation for
Ek, then, after each iteration, it is necessary to review the episodes that contain the correlated events
involving Ek. These episodes need to be further clustered to obtain more accurate results. However,
this assumption is ignored in this paper to highlight the basic idea.

3.3 Correlated Event Detection
The correlation mining method can be used to obtain results such as {E3, E4, E5}. However,

correlations alone do not fully solve the target problem. We ultimately need to identify correlated
events in the given episode. If the identification process relies on a correlation rule such as {E3, E4,
E5}, the obtained identification results may be inaccurate. For example, we have the two correlations
{E3, E4, E5} and {E4, E5, E6, E7}. Then, for an episode where E3, E4, E5, E6, and E7 exist, we have
no way to determine which correlation actually applies to the episode and cannot accurately identify
its correlated events. Therefore, to further achieve correlated event detection, we need to design a
detection model for the detector module in AlertInsight.

As shown in Fig. 7, for each CORRELATION obtained by correlation mining, the corresponding
EPISODEs are recorded. With this information, the problem of detecting correlated events in an
EPISODE can be transformed into classifying the EPISODE itself, i.e., determining whether an
EPISODE belongs to the category represented by a certain CORRELATION. This paper uses
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an artificial neural network (ANN) to implement the classification model. The advantages of the
neural network are that it is robust for information processing and is more conducive to handling
interference, such as noise and random disturbances generated in the production environment.
Specifically, we design a binary classification model for each CORRELATION to determine whether
an EPISODE belongs to that CORRELATION. Compared to multiclass classification, the binary
classification model is more effortless. From the view of engineering, either a new CORRELATION
emerges or an old CORRELATION is updated and does not affect the rest of the deployed model.

Figure 6: An example of the correlation mining process, in which we find the event sources correlated
with E5

Figure 7: An example of the relations between CORRELATION and EPISODE
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We present the ANN structure for reference, as shown in Fig. 8. The number of neurons in the
input layer coincides with the number of alert sources. One hidden layer uses the rectified linear
unit (ReLU) function as the activation function. The output layer has two neurons with the softmax
function as the activation function to output the binary classification result. In AlertInsight, this
network performs detection on real-time data streams online, so its responsiveness is very important.
Therefore, we analyze its time complexity as follows. Let m denote the hidden layer size; then, since the
number of neurons in the input layer coincides with the number of event types n, the time complexity
of this model is O(n × m). In practice, the number of event types and the hidden layer size are often
limited and relatively small, e.g., below 100. Therefore, the time complexity of O(n × m) is adequate
for the responsiveness requirement.

Figure 8: The structure of the ANN utilized for correlated event detection

It is worth stating that for AlertInsight, the implementation of the detector is open. In addition to
the ANN mentioned in this paper, many machine learning algorithms, such as decision trees, naive
Bayes classifiers, and random forests, can be applied. Moreover, although supervised models are
suggested, since the labels required by the model training process are generated automatically, there is
no additional cost for manual data labeling. In addition, the time range of EPISODE needs to remain
the same size during correlation mining and correlated event detection.

4 Evaluation

We evaluate AlertInsight through simulation experiments with explicit ground truths. First, we
present the designs of the experiments, including the test datasets, the baseline algorithms, and the
evaluation metrics. Then, we provide the experimental results and explain their implications.

4.1 Datasets
Many works on alert reduction cite datasets generated based on intrusion detection [4,13]. In such

datasets, alert events are mostly triggered by network attacks, and most research focuses on revealing
the patterns of attack behavior hidden in the data. However, these datasets often lack rich and objective
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multiple correlations among events, which are particularly interesting in this paper. Therefore, these
datasets are not suitable for validation in this paper.

To obtain datasets that effectively reflect the characteristics of the scenarios of interest, we develop
a simulation system to simulate modular cloud service and module failures and produce validation
datasets for empirical evaluation purposes. The simulation system can flexibly simulate diverse module
correlations according to its configuration. Each module can have a certain probability of independent
failure. This is because modules may not only fail independently but may also be implicated by their
correlated modules, leading to correlated failures. The simulation system implements a monitoring
mechanism that detects faults and generates alert events when the modules fail. We use AlertInsight to
mine the correlations from those events and then compare the mining result with the ground truth to
demonstrate the effectiveness of AlertInsight. Additionally, the simulation system provides an event
sequence for detecting correlated events. We have made the code of the simulation system open source
[10], allowing researchers and practitioners to easily use it in future studies.

In the simulation, we set 52 modules identified by the 52 characters A–Z and A′–Z′. For modules
A–Z, we set up several types of multiple correlations; therefore, in addition to their independent
failures, these correlations lead to correlated failures. The other 26 modules A′–Z′ are independent
and used as interference factors for correlation mining. Fig. 9 shows the correlations of modules A–Z.
In Fig. 9, the nodes represent modules (event sources), the connections represent the relationships
between the modules, and each connection’s direction represents its direction of influence. For
example, a connection from A to B means that B is affected by A. Two types of connections are present
in Fig. 9. One includes direct connections, such as the connection from A to B, which means that the
failure of A will directly cause a cascading failure of B. The other type of connection is an intersecting
connection at a plus node. For example, the connections from A and B converge to C, which means
that a cascading failure of C can only occur because of a joint failure of A and B. Table 2 shows the
ground truths in our experimental datasets, where multiple correlations are represented as a set Ci.

Figure 9: The multiple correlations in the simulation system

The abstract correlations shown in Fig. 9 have practical implications in reality. For example, to
cope with the pressure imposed on the database by many concurrent requests and provide a low-latency
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service response, an architecture containing “MySQL + Redis” is used in the persistence layer of a
cloud service. Let an event from A represents the situation in which the “Redis service is unavailable.”
An event from B represents the situation in which “MySQL service is unavailable.” An event from C
represents the situation in which the “cloud service is unavailable.” When the cache fails (the event
from A), the database takes 100% of the request pressure. Therefore, the database failure probability
increases significantly (the event from B). Subsequently (after both A and B), the cloud service is
inevitably unavailable (the event from C).

Table 2: The ground truths of the multiple correlations in the simulation system

Correlation

C1 = {A, B, C}
C2 = {D, E, F}
C3 = {G, H, I, J}
C4 = {K, L, M, N}
C5 = {O, P, Q, R}
C6 = {S, T, U, V }
C7 = {W, X, Y, Z}

According to the correlation configuration shown in Fig. 9, we generate four datasets with
different sizes, as shown in Table 3. Datasets D1–D4 possess different sizes and are generated by
the simulation system in four batches, in which the generated contents are different due to random
parameters.

Table 3: Summary of the experimental datasets

Dataset Time Number of events
Total Due to correlation

D1 1 Week 4,216 1,017
D2 2 Weeks 8,034 2.240
D3 4 Weeks 15,655 4,312
D4 8 Weeks 32,917 8,380

4.2 Baseline Algorithms
We carefully choose four baseline algorithms (shown below) and conduct comparative experi-

ments to examine the correlation mining effect of AlertInsight.

1. The J-measure [14] is an information-theoretic means of quantifying the information content
of a rule, and it is widely used to measure event correlations.

2. Pearson correlation [15] is a popular method for measuring the linear correlation between a
pair of time series.
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3. Granger causality [16] is a hypothesis-testing method for determining whether a time series
can be used to predict another.

4. Cross-correlation [17] is an evaluation method for measuring the latency and correlation of
one set of time series relative to another.

There are two main reasons for choosing these four baseline algorithms. First, to the best of
our knowledge, there are no other direct methods for calculating multiple correlations. Therefore, we
have to use these four algorithms to address pairwise correlations and further combine the pairwise
correlations to derive multiple correlations. Second, these four algorithms have been widely accepted
as fundamental methods and have been cited in many related research works. For example, Su et al. [8]
cited these algorithms to calculate the flux correlations of KPIs, and Luo et al. [15] cited these
algorithms to correlate events with time series.

4.3 Evaluation Metric and Experimental Setup
We use the F1 score to evaluate the effectiveness of correlation mining. The F1 score is a commonly

used evaluation metric for classification or clustering algorithms [18]. Its definition is shown in Eq. (1).
Combining the specificity of the problem under study in this paper, we slightly modify the calculation
parameters of the F1-score.

F1 − Score = 2 × Precision × Recall
Precision + Recall

(1)

The definitions of Precision and Recall are shown in Eqs. (2) and (3), respectively

Precision = TP/(TP + FP) (2)

Recall = T ′/(TP′ + FN) (3)

Our goal is to discover the multiple correlations shown in Table 2. Suppose that the result obtained
from correlation mining contains some sets represented as Ci

′ (i ≥ 0), where the elements of Ci
′are

correlated event sources. (1) If Ci includes Ci
′ in the ground truth, it is counted as a TP. That is, from

the perspective of the mining results, as long as a subset of the ground truth is contained in the mining
results, it can be factored into Precision. (2) If one of the Ci is equal to Ci

′ in the ground truth, it is
counted as TP′. That is, from the perspective of the ground truth, only a mining result that is exactly
equal to some ground truth can be counted in Recall. (3) For a given Ci

′, if there is no Ci that includes
it, it is counted as an FP. (4) If there exists a Ci without any Ci

′ equal to it, it is counted as an FN.

For the baseline algorithms, since the thresholds (from 0 to 1) for the J-measure, Pearson
correlation, and cross-correlation are usually determined based on actual requirements for Precision
and Recall, we apply the precision-recall curve to select the best F1-score. For correlation mining,
all algorithms use consistent sampling methods and the same sampling length of 900 s (including
the vector length in the cross-correlation, Granger causality, and Pearson correlation methods; the
tumbling window size in the J-measure method; and the episode length in AlertInsight). For correlated
event detection, we use the ANN structure shown in Fig. 8, which is a backpropagation neural network
with three layers. The number of neurons in the input layer coincides with the number of alert sources.
The hidden layer utilizes the rectified linear unit (ReLU) function as the activation function, and the
number of neurons in the hidden layer is 32. The output layer has two neurons with the softmax
function as the activation function to output the binary classification result.
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For fairness of comparison, we have conducted each experiment 10 times to avoid bias from
randomization. All the experiments were conducted on a server with an Intel(R) Core(TM) i5-8250U
CPU @ 1.6 GHz, 1.80 GHz, 16 GB RAM, and Windows 11. All the programs were coded with Java
8, and the artificial neural network for correlated event detection was implemented based on Eclipse
Deeplearning4j [19].

4.4 Results and Observations
4.4.1 The Overall Correlation Mining Performance

Discovering correlations is one of the crucial steps of the full process. We first present the best F1-
scores obtained by the five tested correlation mining methods on datasets D1–D4 in Fig. 10. Overall,
AlertInsight significantly outperforms the other four algorithms. Low precision values are observed
for the remaining four algorithms, mainly due to their misidentification of correlations. This leads
to suboptimal F1 scores, which are more pronounced for the granger causality and cross-correlation
algorithms. In contrast, high and balanced recall and precision scores are obtained using AlertInsight,
so it can meet the application requirements of the problem studied in this paper.

Datasets D1–D4 are different sizes and are generated by the simulation system in four batches,
in which the generated contents are different due to random parameters. However, since every batch
uses a homogeneous simulation configuration for the same mining algorithm, switching among the
D1–D4 datasets does not produce evident differences.

4.4.2 The Efficiency of Correlation Mining

In addition to its mining results, the algorithm’s efficiency is important for a correlation mining
algorithm. Especially in the era of big data, the amount of available event data is increasing. Moreover,
AlertInsight’s mining algorithm is a sampling-based calculation process. In practice, we always tend to
input as large a sample as possible to ensure results with higher recall rates. Therefore, it is necessary
to further examine the efficiency of correlation mining. We use four datasets with exponentially
increasing sizes, D1 (size = 4,216), D2 (size = 8,034), D3 (size = 15,655), and D4 (size = 32,917),
to test the running time of the correlation mining process of AlertInsight.

Fig. 11 shows the experimental results. As seen in the figure, the running time of AlertInsight’s
mining algorithm does not increase rapidly with the exponential increase in the input size. We analyze
the main reasons for these results as follows. From the process described in Algorithm 1, the main
factor affecting the number of iterations of the mining algorithm is the number of event sources. In
our experiments, although the input sizes increase, the number of event sources in the input remains
constant. The above fact is why, in this experiment, although the input size grows exponentially, the
running time exhibits almost only linear growth. The approximately linear growth seen in Fig. 11
is mainly due to the increased I/O overhead of loading and traversing data from the disk with the
expanded input scale.

It is also worth stating that the outlier detection step shown in line 10 of Algorithm 1 affects the
efficiency. In the implementation of this paper, we use the LOF algorithm [12], an O(n2) algorithm. In
summary, two main factors affect the time consumption of the AlertInsight correlation mining process:
(1) the number of event sources and (2) the efficiency of the outlier detector. Therefore, during the
application of AlertInsight, it is feasible to improve the running efficiency by filtering out irrelevant
event sources and choosing efficient outlier detection algorithms.
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Figure 10: Comparison of the best scores of each tested correlation mining algorithm. (a) F1-score. (b)
Precision. (c) Recall
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Figure 11: Comparison of the running times required for datasets of different sizes. The unit of the
running time is in milliseconds

4.4.3 The Effectiveness of Correlated Event Detection

The ultimate goal of mining event correlation knowledge is to detect and degrade redundant
event instances. After correlation mining, we propose a correlated event detection model employing a
neural network, as described in Subsection 3.3. Next, we experimentally demonstrate the effect of the
detection model.

We conduct the test using data spanning four weeks in dataset D3. The testing process is
divided into the following three steps. Step 1: Use the first two weeks of the data to minimize the
event correlations. Step 2: Train the online detection model based on the obtained event correlation
knowledge. Step 3: Use the last two weeks of the data to test the detection model built in Step 2 and
verify the effectiveness of correlated event detection and aggregation. Table 4 shows the correlations
obtained in step 1. There is an incorrect C3

′, and the correct C7 = {W , X , Y , Z} is not obtained.

Table 4: The results of correlation mining. Each row corresponds to multiple correlations obtained by
mining

Correlation Number of episodes

C1
′ = {A, B, C} 131

C2
′ = {D, E, F} 198

C3
′ = {I′, T, Y } 89

C4
′ = {G, H, J} 110

C5
′ = {G, H, I} 89

C6
′ = {G, H, I, J} 76

C7
′ = {K, L, M} 93

C8
′ = {L, M, N} 85

C9
′ = {K, L, M, N} 77

C10
′ = {O, P, R} 104

C11
′ = {P, Q, R} 97

C12
′ = {O, P, Q, R} 112

C13
′ = {S, T, U, V } 146
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In addition to providing the multiple correlations obtained, Table 4 also gives the numbers of
episode instances labeled during the mining process that contain the corresponding correlations. We
use these labeled episodes to train a binary classification model for each correlation by following the
model design described in Section 3.3. Because C3

′ results from misidentification, except for C3
′, we

train the corresponding detection models for the remaining 12 correlations. For each model, we divide
the labeled episodes into two parts by week: the first week is used for training, and the second week is
used for validation. Table 5 shows the training results of the models, demonstrating that the technical
route proposed by AlertInsight for correlated event detection is feasible.

Table 5: The effectiveness of correlated event detection models. Each row shows the training and testing
results of a binary classification model. Each row corresponds to an ANN-based binary classification
model for identifying whether the given episodes contain the corresponding correlations.

Model F1-score Precision Recall

Model-C1
′ 0.97 0.96 0.98

Model-C2
′ 0.96 0.94 0.97

Model-C4
′ 0.92 0.93 0.92

Model-C5
′ 0.92 0.91 0.92

Model-C6
′ 0.88 0.89 0.87

Model-C7
′ 0.93 0.94 0.93

Model-C8
′ 0.93 0.93 0.94

Model-C9
′ 0.93 0.97 0.89

Model-C10
′ 0.90 0.91 0.89

Model-C11
′ 0.89 0.91 0.87

Model-C12
′ 0.92 0.95 0.90

Model-C13
′ 0.92 0.91 0.92

Utilizing the detection model demonstrated in Table 5, we test the effectiveness of correlated event
detection and aggregation on the last two weeks of data in dataset D3. The test is executed as follows.
All episodes in which the event source emerges are traversed for each event source. The time range of the
episodes is consistent with that of correlation mining. Then the models in Table 5 are used for detection
for each episode. If an episode is detected as containing some correlation, then the correlated events
are aggregated into a single high-level event. There are a total of 8093 original events in the two weeks
of testing data, of which 2240 events occur under the influence of correlations. After detection and
aggregation, we have correctly obtained 867 high-level events, covering 2178 original events triggered
by correlations. Seventy-three misidentified episodes do not correlate, and 62 episodes with some
correlation are missed. Suppose using the F1-score to measure the effect of this test, precision = 0.92,
recall = 0.93, and F1-score = 0.93.

It can also be determined from this experiment that although the detection model is supervised,
the labels required for model training are made automatically, so no additional workload is required
for manual data labeling. In addition, the advantage of the binary classification model is that, from
the perspective of engineering, either a new CORRELATION emerges or an old CORRELATION is
updated and does not affect other models deployed online.
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5 Related Work

5.1 Correlation and Causality Mining
The discovery of correlations and causality has been a hot topic in data mining. Techniques based

on support and confidence frameworks have been well developed. For example, Datta et al. [20] intro-
duced a new algorithm for mining frequent patterns based on support and dissociation and, after that,
generating association rules based on confidence and correlation. Compared with correlation mining,
causality mining is more valuable, but it is also more challenging. Nogueira et al. [6] summarized
several causal discoveries and inference methodologies. Nogueira et al. [7] presented a cross-sectional
view of the causal discovery domain, emphasizing the machine learning/data mining area.

In recent years, correlation and causality mining has received much attention in IT operations
and maintenance, where a large amount of machine data is generated. Discovering the mechanisms
contained in these data is the key to accelerating intelligent operations and maintenance work.
Correlation and causality knowledge can be used to predict system statuses, locate the root causes of
failures, analyze the scopes of abnormal influences, etc. For example, Su et al. [8] proposed CoFlux, an
unsupervised approach, to automatically determine whether two key performance indicators (KPIs)
are correlated by fluctuations, in what temporal order they fluctuate, and whether they fluctuate in
the same direction. Saha et al. [21] used state-of-the-art (SoTA) neural natural language processing
(NLP) techniques to extract targeted information and construct a structured causal knowledge graph
to build an incident causation analysis (ICA) engine for the artificial intelligence operations (AIOps)
of cloud services. Zhang et al. [22] proposed CloudPin, a root cause localization framework employing
a multidimensional algorithm with three submodels for prediction deviation, anomaly amplitude, and
shape similarity. Otomo et al. [9] focused on the burstiness and causality of log time series data to
extract meaningful information for troubleshooting. Zhang et al. [23] proposed a root cause analysis
framework called CloudRCA, which uses heterogeneous multisource data, including KPIs, logs, and
topologies. CloudRCA employs a knowledge-informed hierarchical Bayesian network (KHBN) model
to infer root causes with high accuracy and efficiency.

Most of the above works use correlation or causality analysis for anomaly prediction and fault
location. This paper aims to aggregate redundant alert events. We believe that the key to event
aggregation is finding correlated events. However, unlike previous research on correlation mining, we
propose a new approach focusing on multiple correlations. Moreover, we propose a correlated event
detector with an applied correlation mining method for online alert reduction.

5.2 Alert Reduction
In many fields, the redundancy of massive alert events needs to be eliminated to effectively respond

to incidents and control risks. For example, in industrial processes, many complex interconnections
are present among the various types of devices. Therefore, it is easy to trigger alert flooding once
some disturbances occur. In recent years, many works have studied the alert flooding problem in the
industrial field. For instance, Lucke et al. [24] reviewed the SoTA methods in alert data analysis. They
suggested a time series method for online industrial alert flood classification based on an industrial
case study. Guo et al. [25] proposed an alert flood sequence alignment (AFSA) method to reveal the
similarities between alert floods. Niyazmand et al. [26] proposed a modified PrefixSpan sequential
pattern recognition algorithm to find alert patterns in different alert floods.

For network and information security, alert aggregation is also important. For instance,
Landauer et al. [4] introduced similarity measures and merging strategies for arbitrary semistructured
alerts and alert groups. Based on those metrics and techniques, proposed an incremental procedure
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for generating abstract alert patterns that enable the continuous classification of incoming alerts.
Sun et al. [27] introduced different approaches to intrusion detection system (IDS) alert aggre-
gation and proposed an improved frequent pattern growth (FP-growth) algorithm for this task.
Werner et al. [13] developed a novel CLEAR system that continually learns to aggregate alerts in
near-real time for intrusion detection.

Some works have taken broader perspectives regarding the technologies, methods, and systems
related to alert reduction. For example, Zong et al. [28] studied the critical alert mining problem and
developed an approximation algorithm that could obtain a near-optimal critical alert set in quadratic
time; they also proposed pruning techniques to improve the runtime performance of the algorithm.
Namaki et al. [29] proposed Kronos, a framework and system that automatically extracts highly
dynamic knowledge for complex event analysis from cyber-physical systems. Kronos can capture
events with an anomaly-based event model and integrate various events by correlating them with their
temporal associations in real time based on heterogeneous, continuous cyber-physical measurement
data streams. Solmaz et al. [30] described a rule mining and root cause analysis solution for alert
event correlations and analyses, including a dynamic index for matching active alerts, an algorithm
for generating candidate alert rules, a sliding window-based approach for saving system resources,
and a graph-based solution for identifying root causes.

In this paper, we examine an approach for coping with alert flooding in the running environments
of complex cloud services. Modern cloud services usually consist of many subsystem modules with
complex interconnections, which hide behind an enormous number of discrete alert events. Therefore,
this paper reports a new alert reduction approach driven by multiple correlation mining, different from
previous research.

6 Conclusion and Future Work

We now summarize the main findings of our work and discuss some possible directions for future
research.

6.1 Conclusion and Discussion
This paper targets the problem of alert noise reduction for complex cloud systems. We propose

AlertInsight, a framework for alert event correlation and aggregation, which focuses on the multiple
correlations among the events. In AlertInsight, we have proposed a method for multiple correlation
mining based on historical episode scanning, which greatly decreases the computational complexity.
Moreover, we design a model employing correlation knowledge to detect the correlated events in the
event sequence. Experiments are conducted to test the effectiveness of AlertInsight. The experimental
results (precision = 0.92, recall = 0.93, and F1-score = 0.93) demonstrate the performance of
AlertInsight for the recognition of multiple correlated alerts. The experimental results demonstrate
that AlertInsight could satisfy the practical requirements, and we have released the source code of the
events simulation system for researchers and practitioners to use in their future studies [10].

In addition, we wish to discuss some important assumptions and limitations of this paper, as
follows. First, Fig. 5 illustrates the architecture of AlertInsight, the explorer and detector of which
are discussed in detail in this paper. The other components, including the event database as well as
the correlations and episodes, are not discussed in detail because they are not within the scope of
the main topic of this paper. We simply assume that the events database, and the correlations and
episodes, are well governed. However, ensuring this assumption holds may require much professional
data governance effort. Second, for correlation mining, we assume the repetitiveness of correlated
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events. On this basis, we design a method for efficient multiple correlation discovery by exploiting
the repetitive traces exhibited by most correlated events in contrast to random events. However, the
limitation of this method is that it is difficult to cover cases of rare events. In reality, a small number of
rare events may also be implicated in some correlations. It will be difficult to make correct judgments
using the presented identification method based on repetitive phenomena for such events. Further
work will be needed to design additional mechanisms to address this problem.

6.2 Future Work
In future work, in addition to the data quality issues mentioned above, based on multiple

correlation mining, there is some valuable extension of the current work that deserves attention. (1)
From the practice perspective, the accuracy of correlation knowledge and alert reduction are both
critical. Although AlertInsight can automate the whole process, to improve the application effects,
adding a human-in-the-loop design [31] to AlertInsight could enhance its correlation mining and
alert reduction accuracies by receiving feedback from human experts, such as supplementing the
correlations involving rare events. (2) Based on correlation knowledge, besides alert reduction, more
research topics, such as “critical event identification” and “event influence analysis,” would also be
meaningful. “Critical event identification” aims to find a set of events in a given event sequence S
such that the number of events potentially triggered by them is maximized. It will help in determining
key control points for complex cloud services. “Event influence analysis,” which aims to reason from
a given small set of events based on multiple correlations to obtain a set of successor events with the
highest probability, is a reverse view of the former topic. It will help administrators proactively respond
to incidents and control risk propagation.
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