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Abstract: Leukemia, often called blood cancer, is a disease that primarily
affects white blood cells (WBCs), which harms a person’s tissues and plasma.
This condition may be fatal when if it is not diagnosed and recognized at
an early stage. The physical technique and lab procedures for Leukaemia
identification are considered time-consuming. It is crucial to use a quick and
unexpected way to identify different forms of Leukaemia. Timely screening
of the morphologies of immature cells is essential for reducing the severity
of the disease and reducing the number of people who require treatment.
Various deep-learning (DL) model-based segmentation and categorization
techniques have already been introduced, although they still have certain
drawbacks. In order to enhance feature extraction and classification in such
a practical way, Mayfly optimization with Generative Adversarial Network
(MayGAN) is introduced in this research. Furthermore, Generative Adver-
sarial System (GAS) is integrated with Principal Component Analysis (PCA)
in the feature-extracted model to classify the type of blood cancer in the
data. The semantic technique and morphological procedures using geometric
features are used to segment the cells that makeup Leukaemia. Acute lym-
phocytic Leukaemia (ALL), acute myelogenous Leukaemia (AML), chronic
lymphocytic Leukaemia (CLL), chronic myelogenous Leukaemia (CML),
and aberrant White Blood Cancers (WBCs) are all successfully classified
by the proposed MayGAN model. The proposed MayGAN identifies the
abnormal activity in the WBC, considering the geometric features. Compared
with the state-of-the-art methods, the proposed MayGAN achieves 99.8%
accuracy, 98.5% precision, 99.7% recall, 97.4% F1-score, and 98.5% Dice
similarity coefficient (DSC).
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1 Introduction

Leukemia (blood cancer) is brought on by radioactive contamination, environmental toxins, and
a family history of the disease [1]. Cancer was often categorized according to the type of cells and
the advancement rate. Acute Leukaemia and chronic Leukaemia are the two categories that make
up the very first type of Leukaemia assessment practitioners on how the disease progresses. The
aberrant blood cells (blood-forming cells), which cannot perform their usual tasks, proliferate in acute
Leukaemia [2]. Certain kinds of chronic Leukaemia induce the birth of insufficient cells, while others
promote the production of too many. Chronic Leukaemia, especially as opposed to acute Leukaemia,
affects developed blood cells. Lymphocytic Leukaemia and myelogenous Leukaemia comprise the
second form of Leukaemia, which the type of white blood cell would identify affected [3]. A specific
kind of marrow cell that produces lymphocytes is where lymphoblastic Leukaemia develops. Myeloid
Leukaemia affects the myeloid cells that produce clotting factors and several other types of white and
red blood cells. Acute lymphoblastic Leukaemia (ALL), acute myeloid Leukaemia (AML), chronic
lymphocytic Leukaemia (CLL), and chronic myeloid Leukaemia were the four primary forms of
Leukaemia determined by intensity level and form of tumor cells [4].

In addition to being the most prevalent type of Leukaemia in young kids, acute lymphoblastic
Leukaemia frequently affects individuals aged 65 and over. Acute myeloid Leukaemia strikes adults
than kids, and men more frequently than women. AML is regarded as the deadliest kind of Leukaemia,
with only 26.9 percent of patients surviving for five years [5]. Two-thirds of patients with chronic
lymphocytic Leukaemia are men, and the disease is more prevalent in people 55 years old and above.
Between 2007 and 2013, the five-year survival rate with CLL was 83.2% [6]. The five-year survival
rate for chronic myeloid Leukaemia mainly affects adults, is 66.9%. The National Cancer Institute
estimates that 24,500 persons in the US passed away in 2017 due to Leukaemia. 4.1% of all cancer-
related deaths in the United States are caused by Leukaemia [7].

A pathologist’s evaluation of the stem cells provides the foundation for diagnosing severe
Leukaemia, and the specialist’s expertise determines the examination results. As a result, an automatic
method for early Leukaemia diagnosis is crucial to developing a Leukaemia diagnostic system. The
primary method for diagnosing Leukaemia is minuscule blood testing [8]. The most prevalent, but not
exclusive, method of finding Leukaemia is examining blood smears. Leukemia can be diagnosed using
different methods, such as interventional radiology. Nevertheless, radiological procedures, including
interventional evacuation, biopsies, and catheter drainage, are constrained by inherited issues with
imaging modality sensitivity and radiographic image resolution [9].

Molecular Cytogenetics, Long Distance Inverse Polymerase Chain Reaction (LDI-PCR), and
Array-based Comparative Genomic Hybridization (aCGH) are further procedures that require a
significant amount of effort and time to determine the Leukaemia kinds [10]. The most popular
procedures for identifying Leukaemia subgroups are micro blood testing and bone marrow because of
how expensive and time-consuming such procedures entail. A deep learning (DL) method can assist
in distinguishing leukemia-containing blood cells from healthy tissue whenever a large training set is
provided. Medical scientists utilize the ALL-IDB Leukaemia picture repository [11] as a standard.
Another Leukaemia dataset is available online from the American Society of Hematology (ASH). In
their study, Thanh et al. [12] identified AML Leukaemia using the American Society of Hematology
(ASH) database. Another source of Leukaemia images without comments is Google, where the
pictures were gathered randomly from different websites. In their research to identify Leukaemia,
Karthikeyan et al. [13] employed microscopic photos gathered from the Internet, wherein researchers
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labeled the images independently. An identified image dataset could be the foundation for machine
learning-based Leukaemia detection.

Regrettably, such a type of neural network’s effective categorization requires considerable learning
data to recognize essential items from the entire image. However, creating a sizable training dataset
takes a long time and requires much work. Researchers recommend using image enhancement to
increase the small number of samples to overcome this issue. An overfitting issue may arise if there
need to be more image samples in the training dataset [14]. To minimize an overfitting issue, most
authors in the literature rely on the application of specific imagery manipulative tactics to artificially
boost the number of training set samples.

Throughout this work, a novel method for recognizing the four subtypes of Leukaemia (i.e.,
ALL, AML, CLL, and CML) using blood smear images is suggested. This is achieved by designing
and utilizing the tensor flow’s Convolutional Neural Network (CNN) structure. To the best of our
knowledge, this is the first investigation to address all 4 Leukaemia subcategories. The following bullet
points address the accomplishments of this work:

• Background elimination, vascular expulsion, and image augmentation automatically generate
training images by combining or applying several methodological approaches, including rota-
tions, shearing, flipping, spontaneous movement, and distortion expulsion techniques to obtain
compact elements.

• Mayfly optimization with Generative Adversarial Network (MayGAN) is used to identify
and classify features that produce positive outcomes of leukemia tumors and categories of
Leukaemia.

• Generative Adversarial Network is used in conjunction with PCA to classify the various kinds
of blood disease in the images.

This paper is organized as follows: Section 2 presents the related works of leukemia detection
using blood smear images. The proposed Mayfly optimization with Generative Adversarial Network
(MayGAN) is elaborated in Section 3. The performance of the proposed model is presented along
with a detailed comparison in Section 4. The overall conclusion for the proposed model is presented
in Section 5.

2 Related Works

The majority of modern Leukaemia identification study depends on computer vision. Typical
computer vision techniques were employed, including fixed phases comprising image preprocess-
ing, grouping, geometric screening, fragmentation, extraction of features or categorization, and
assessment.

A Fractional Black Widow-based Neural Network (FBW-NN) for the identification of AML
was described by [15]. To divide up the AML region, the Adaptive Fuzzy Entropy (AFE) has been
created. It combines the fuzzy C-mean clustering technique and the dynamic contour-based approach.
Upon separation, the statistics and image-level features are retrieved. The Fractional Black Widow
Optimization is afterward developed to improve the effectiveness of Artificial Neural Network (ANN).

The categorization of microscopic images of blood samples (lymphocyte cells) using Bayesian
Convolution Neural Networks (BCNN) without relying on humans extracting the features is demon-
strated within [16], including 260 micro pictures of both malignant and non-cancerous leucocytes in
the data collection step. The system produces the least failure rate when categorizing the photos results
of the experiments with different networking architectures.
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Employing microscope pictures from the ALL-IDB dataset, the authors in [17] presented a hybrid
model using a genetic algorithm (GA), a residual convolutional neural network (CNN), and ResNet-
50V2. Nevertheless, appropriate hyperparameters are necessary for good forecasting, and individually
adjusting those settings often presents difficulties. In order to identify the optimum hyperparameters
that ultimately result in the model with the highest overall accuracy, this research employs GA.

In [18], a single of the four kinds of Leukaemia, acute lymphoblastic Leukaemia (ALL), is
proposed as a candidate for diagnosis using a novel deep learning algorithm (DLF) centered on
a convolution neural network. Extraction of features is not necessary for the suggested method.
Moreover, it does not require any pre-training on another dataset, making it suitable for genuine
Leukaemia detecting objects.

In order to detect ALL in microscopic smear images, a novel Bayesian-based optimized convo-
lutional neural network (CNN) is presented in [19]. The architecture of the proposed CNN and its
hyperparameters are tailored to the input data using the Bayesian optimization approach to improve
the classifier’s performance. In order to find the set of network hyperparameters that minimizes an
objective error function, the Bayesian optimization technique utilizes an educated iterative search
process.

In [20], the authors developed a practical and straightforward technique for ALL detection. They
employed Efficient Net, the much more modern and comprehensive DL model, which addresses the
crucial difficulties related to extracting features. Eight Efficient Nets variants are utilized throughout
this research to extract high-level, and their class label was evaluated.

The recommended weighted ensemble model under [21] produced a balanced F1-score of 88.6%,
a symmetrical accuracy of 86.2%, and an AUC of 0.941 in the initial testing dataset utilizing the
ensemble candidates’ kappa values as their weighting. The gradients represent higher maps in the
qualitative results showing that the presented paradigm has a focused learned region. Xception, VGG-
16, DenseNet-121, Mobile Net, and InceptionResNet-V2 are examples of ensemble candidate models
that provide different granularity and dispersion learned areas for most example cases. The suggested
kappa value-based balanced ensembles could be tested in various areas of medical diagnostics because
it outperforms the task that was the focus of this paper.

In [22], the background subtraction, merging, and categorization operations are conducted by the
Hybrid Convolutional Neural Network (HCNN) with Interactive Autodidactic School (HCNN-IAS)
technique. The Leukaemia images are analyzed to identify the global and local characteristics. The
CNN self-attention thus blends both local and international aspects.

A non-invasive, convolutional neural network (CNN)-based method for performing diagnoses
using medical images is presented in [23]. The suggested approach, which consists of a CNN-based
model, employs the visual geometrical cohort from Harvard (VGG16) and an attention module called
Efficient Channel Attention (ECA) to retrieve good quality feature representations from the image
database, improving visual features and categorization outcomes. The suggested method demonstrates
how the ECA component aids in reducing anatomical commonalities among pictures of healthy
and cancerous cells. The amount and quality of training examples are also increased using various
enrichment strategies.

In [24], the authors illustrate a successful implementation of the Bayesian Recurrent Neural
Networks (BRNN)-based classification procedure to classify microscopic images of blood samples
(lymphocyte cells) without involving manual feature extractions. The model that produces the low-
est error rate when classifying the photos is the result of our experiments with various network
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architectures. Table 1 presents the overall summary of the literature for the WBC segmentation and
classification.

Table 1: Overall summary of the literature

Reference
No

Published
year

Method Advantage Disadvantage

[15] 2022 Fractional black
widow-based neural
network (FBW-NN)

Simple and quickly
computed

Application to
expanding tumor
regions was restricted.

[16] 2022 Bayesian convolution
neural networks
(BCNN)

Capable of depicting
intricate connections
between data points

Choosing the factors
that govern the intensity
of spatial interactions
can be challenging.

[17] 2022 Genetic algorithm (GA)
and residual
convolutional neural
network (CNN)

Its quickness and ease
of use enable it to
handle big datasets.

Susceptible to
differences in frequency
and brightness.

[18] 2022 Convolution neural
network

Geometrical
modifications can take
place spontaneously.

Costlier computations.

[19] 2022 Bayesian-based
optimized convolutional
neural network (CNN)

Takes away the
spectroscopic feature’s
unpredictability.

The system may
support convergence to
the incorrect
boundaries if they are
supposed to represent.

[20] 2022 Efficient Net, Greater consistency Over-segmentation or
perforations could be
caused by interference
or stimulant.

[21] 2021 Ensemble candidate
models

Costlier computations. Application to
increasing tumor
regions is restricted.

[22] 2021 Hybrid convolutional
neural network with
interactive autodidactic
school (HCNN-IAS)

Allows for various levels
of information refining

Impact of a whole
capacity

(Continued)
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Table 1: Continued
Reference
No

Published
year

Method Advantage Disadvantage

[23] 2021 Efficient channel
attention (ECA) with
the visual geometry
group from oxford
(VGG16)

Fluidity and
stretchability

Large volumes of data
are needed for training

[24] 2021 Bayesian convolution
neural networks
(BCNN)

Quick calculation Without regard to
distortion or connection

This research aimed to concentrate on constructing the appropriate leukemia detection in blood
smears. To improve the performance of leukemia, detection digital image processing classification
is considered an advancement for diagnosing diseases. Leukemia is diagnosed with blood smears
collected from the bone marrow.

3 Materials and Methods

Initially, the blood smear image dataset is given for preprocessing using the histogram method
[25–28]. The noise-filtered images are given to Mayfly optimization-based feature extraction method
for efficient feature extraction. Finally, Generative Adversarial Network is constructed for classifica-
tion. Fig. 1 shows the block diagram for leukemia classification.

Figure 1: Block diagram for leukemia classification

3.1 Dataset Description
The blood smear dataset was created using Leishman-stained images captured using an OLYM-

PUS CX51 microscope and saved in the JPEG format at a resolution of 1600×1200 [14]. Acute
lymphoblastic Leukaemia (ALL), acute myeloid Leukaemia (AML), chronic lymphocytic Leukaemia
(CLL), and chronic myelogenous Leukaemia make up our dataset’s four classes (CML). This paper
considered 307 randomly selected AML class photos to resolve the class unbalancing issue. The
datasets are separated for classification into 70:30 training and testing sets, which meant that this
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paper used 70% of the random photos for training and 30% of the random images for testing. Table 2
shows the dataset description.

Table 2: Dataset description

Types Training Testing No. of samples

Acute lymphoblastic leukaemia (ALL) 203 81 294
Acute myeloid leukaemia (AML) 229 94 301
Chronic lymphocytic leukemia (CLL) 216 89 304
Chronic myelogenous leukemia (CML) 217 35 301

Initially, the images are given to the adversarial network which helps to calculate the discriminator
rate for every image. Moreover, it finds aggregation loss for all sets of images. The calculated loss is
given to the Kantorovich parallelism concept for finding overall loss. If the loss is calculated, check for
an optimal solution using the mating concept. After this, Cartesian distance is calculated to finalize
the local and global best factors. Fig. 2 shows the flowchart of the proposed method.

Figure 2: Flowchart of the proposed method

3.2 Preprocessing of Blood Smear Images
Images of blood Leukaemia are blurry, and the impacts of undesirable noise, such as the

illumination of the microscopes that affects the clarity of the images obtained, could lead to erroneous
diagnoses [29,30]. An image preprocessing method, including approaches, is required to remedy this
problem. The data will be first transformed from red, green, and blue (RGB) to Hue Saturation Value
(HSV) color format. Relative to RGB, this lessens the association between both the color channels and
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makes it possible to work with the 3 H, S, and V regions independently. The HSV color space includes
color data in the H and S regions.

In contrast, the V portion pertains to the intensity and reflects how humans perceive luminance.
Then, in order to equalize the gray value of pixel intensity, the well-known histogram-based technique
is employed on the V zone. The impacts of various lighting conditions throughout various classifica-
tion capture sessions are minimized via histogram equalization, resulting in roughly similar intensity
across all data. Fig. 3 shows the preprocessed blood smear image.

Figure 3: Preprocessed blood smear image

i. The brightness spectrum of the pixel is increased from the former target from 0 to 255 using the
histogram equalization technique. A wider variety of intensities as well as a stronger contrast
can be seen in the improved image as a result.

ii. Hist. Eq. + Gaussian blur—one such filter lowers noise and extraneous details that can
confuse the computational model; its filtering kernel size was successfully adjusted to 5 × 5
sizes.

iii. Hist. Eq. + bilateral filter—this filter preserves borders and removes specific distortion and
extraneous details that may confuse the neural network. The filter’s experimental measure-
ment parameters are as follows: diameter = 5, σ color = σ space = 75.

iv. Adaptive masking—Before applying binary thresholding, researchers initially determined the
images’ highest (max) and lowest (min) luminance. This cutoff was then stated. After that,
morphologic closure was applied. By doing this, the adaptable filter is created, and following
bitwise operations, the original image’s dilatation gets removed.

v. Adaptive masking + hist. eq. + Gaussian blur—This technique combines Stochastic blur,
histogram equalization, and dynamic masking.

th = min + 0.9. (max − min) (1)

The process of continuously combining many low-resolution points of view (POVs) to create
a higher-resolution image is called super-resolution [31–36]. The original assessment of the high-
resolution image, f 1(0), inside this Irani and Peleg concept of a super-resolution algorithm can be
derived from the average of the input images scanned and relocated to a similar stationary frame:

f1(0) = 1
K

∑K

k=1
T−1

k (gk ↑ s) (2)

Whereas ↑ s is the upsampling function from the low-resolution to the predominance, T−1
k is the

geometrical translation to a single frame of reference, and gk is one of the K captures. If the acquisition
system was sufficiently characterized, it would be possible to extract the low-resolution measured data
gk from the “actual” image f . The procedure might involve moving the image to the kth point of view,
distorting it to compensate for the system’s different resolutions, down sampling it to that frequency,
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then introducing noise. The low-resolution data is modeled for a specific approximation of the
image, f (n)

g(n)

k = (
Tk

(
f (n)

) ∗ h
) ↓ s (3)

whereas s ↓ is the down-sampling operators that combines the pixels to the lower resolution, and ∗h
is the blurring operator with the gaussian h. The phrase “noise” is dropped. Tk is the kth acquisition’s
initial geometric transformation from the standard reference frame. The imager and the object have
often moved physically from their initial positions. The discrepancy between both the limited data gk
and the expression g˜(n)k, which indicates what low-resolution data would have looked like had the
estimate, f (n), been accurate, is used to correct the prior estimate of the high-resolution picture, f (n),
in order to get a better estimate of the image f. The very next high-resolution estimation cycle f (n + 1)
is as follows.

f (n+1) = f (n) + 1
K

∑K

k=1
T−1

k (((gk − g (̃n)k))) (4)

Here, the disparities between gk and g˜(n)k are totaled over K captures, relocated to a prevalent
frame of reference, T −1 k up sampled to create the reduced super-resolution number of pixels, s. ∗p
is a sharpened particle in a sign. The list of symbols are provided in Table 3.

Table 3: List of symbols and definition

Definition Symbol

Hue saturation value HSV
Low-resolution data f (n)

Down-sampling operators s ↓
High-resolution estimation cycle f (n + 1)
Overall average value μ
Kullback-Leibler KL
Gradient penalty GP

3.3 Optimization of Features
To comprehend the background of the previous investigations and research, the optimization

technique employed in the suggested is discussed, in detail, in this section. The behavioral traits of
mayflies could inspire Mayfly optimization. It is specifically connected to the mating ritual. This
optimization algorithm makes the premise that mayflies emerge out of eggs; it forms the following
as well as the healthiest mayflies, such are those that exhibit the traits of long life. Every mayfly’s
location in the search area is taken into account by the system as a partial solution to the issue. The
following is a presentation of the mayfly algorithm method. The first phase of the mayfly technique is
a randomized community of different pairs of mayflies, such as female and male. The initialization of
mayflies in the developed framework is considered with the weight matrix. Each mayfly has dispersed
arbitrarily in the search area, known as the candidate solution, and contains a d-dimensional vector.
The formulation is as continues to follow:

X = (X1, X2, . . . XD) (5)
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Furthermore, the location variability of the mayfly movement is indicated by the following
symbols:

c = (V1, V2, . . . Vd) (6)

Somewhat on basis of the objective function, the dimensional vector is calculated. Each mayfly
possesses a dynamic relationship between its social and personal flight traits. Each mayfly in the
method modifies its course based on its current best possible position, and mayfly features could
obtain the ideal position. Fig. 4 shows the feature extracted leukemia blood smear image.

Figure 4: Feature extracted leukemia blood smear image

3.4 Dimension Reduction Using Principal Component Analysis (PCA)
The quantity of every feature’s variation is decreased during the model development process. Data

collection frequently does not correspond to the same magnitude order and has various measurement
units. Data with considerable variation will ultimately impact the assessment results. Before utilizing
PCA for selecting features, data must be normalized to reduce the mistake produced by the discrepancy
between information indicators and minimize the impact of too significant dimensional differences
among indications. The two most popular standardization techniques are Z-score normalization and
Min Max normalization. Correspondingly, information could be normalized via min-max normaliza-
tion to the intervals [0, 1] & [1, 1].

[0, 1] normalization:

X[0,1] = X − Xmin

Xmax − Xmin

(7)

[−1, 1] normalization:

X[−1,1] = X − μ

Xmax − Xmin

(8)

Z-score normalization:

Xz = X − μ

σ
(9)

While X is the initial information sample, Xmax is the original sample data’s max value Xmin is
its lowest value, μ stands for the initial sample data’s overall average, and σ indicates the initial
sample data’s confidence interval. PCA simplifies the scale as an unsupervised machine learning



CSSE, 2023, vol.46, no.2 2049

dimensionality reduction method through the association among multi-dimensional data groupings.
Based on the idea of reducing data redundancy, it can totally remove variable limitations, streamline
the database schema, make data collection easier to use, and lower algorithm computation costs. The
following steps represent the phases of the Data modeling for extracting features as follow:

Step 1: Enter the initial random sample matrices X in the first step.

X =
x11 x12 . . . . x1n

x21 x22 . . . . x2n

xm1 xm2 . . . . xmn

(10)

Step 2: Create a component for each category, then count the average of every feature. Add the
new centralized data after deducting the approximate value from the source data;

Step 3: Make a covariance matrices calculation:

D (X) = 1
n

XXT (11)

Step 4: Use the exponential deconstruction technique to calculate the autocorrelation matrix’s
eigen λ and principal component q.

Step 5: Choose the most significant k eigenvalues after sorting them between big too small. The
eigenvalues matrix Q would then be formed using the matching k eigenvectors in column indexes;

Step 6: Get the data matrix Y = QX of the final feature reduction by multiplying the set of statistics
m ∗ n by the eigenvalues of the n-dimensional eigenvalues.

The collective contribution rate of the principal component analysis often needed to be greater
than 85% as the foundation for selecting the number k of attributes.

3.5 Proposed Mayfly Optimization with Generative Adversarial Network (MayGAN) for
Classification

Considering the famously unstable nature of GAN training, a deep convolutional GAN (dcGAN)
architecture is chosen as the foundation model. The GAN generation, G, from an input of a high-
dimensional Gaussian noise vector generates a 64 × 64 grayscale image. D discriminator generates an
adversarial (genuine) rating for the image based on the binary cross-entropy criteria. In contrast, L is
the deficit value, x is the networking output relative to the input, and the score is calculated throughout
all samples, j Formula (12):

L (x, c) = −x (c) + log
(∑

j
exj

)
(12)

LdcGANgen = Ladvesarialpz (13)

LdcGANdis
= Ladvesarialpz + Ladvesarialpdata

(14)

The generator’s default loss function is the adversarial loss about the created data distribution,
pz (Formula (13)). According to Formula (14), the discriminator’s aggregation error function is the
sum of the adversarial losses for both produced pz and actual pdata picture samples. In essence,
generative modeling seeks to maximize the similarity between the “pseudo” distribution of data
that the generation trains to select over, pg, and the actual data population p r. Nevertheless, this
optimization technique is frequently practically challenging because of issues like divergences and
fading away contours inside the impartial function in relation to the network’s parameters, which can
occur whenever an accurate sampling unit does not meet the assistance of pr pr if one attempts to do
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this using famous distribution disparity metrics, like the Kullback-Leibler (KL) deviation, which is
typically used to train GANs. The Wasserstein separation, which is briefly detailed, was suggested as
a remedy for these issues and is a crucial part of the model’s error function.

W
(
pr, pg

) = infy∈π(pr,pg)E(x,y)∼γ [||x − y||] (15)

where its a set of all probabilities, their distributions are pr, pg, is denoted by γ . This solution is naturally
theoretically unsolvable, but the Kantorovich-Rubinstein parallelism can be used to derive a more
useful variant of it, which gives

W
(
pr, pg

) = supf ∈FEx∼pr [f (x)] − Ex′∼pg [f (x′)] (16)

whereas F the set of all 1-Lipschitz products is denoted by F. Realistically, the min-max functional
form will change to become when employing W

(
pr, pg

)
as the euclidean distance for developing a

GAN.

min
G

max
D∈F

Ex∼pr [D (x)] − Ex′∼pg [D (x′)] (17)

It is significant to remember that the discriminator D is restricted to be 1-Lipschitz, which could
be understood as requiring that the “slope” of D about its system parameters in high dimensionality
not be any larger than 1. This paper use MayGAN in our model, a better iteration of the GAN that
substitutes the 1-Lipschitz restriction with a gradient regularization term to implement it.

ρEx∼pr (||∇xD (x)|| − 1)
2 (18)

It would be identical to the optimization problem, where x is a continuous parameter and
endpoints are chosen between pr and pg along a horizontal path. By penalizing the magnitude of the
slope of D concerning its input, this additional term enforces the above mentioned restriction in a way
that improves retraining efficiency. Once the sum of each failure element has been calculated, one may
express the complete loss function for the model, Ltotal, thus.

Ltotal = ∝mask Lmask+ ∝FOV LFOV + ∝GAN LWGAN,G + LWGAN,D + ρLWGAN−GP (19)

Wherever:

• Lmask is the sum of the L1 (Manhattan) distances here between the detection area of the
underlying data and the grim forecast for the mask area.

• LFOV is the sum of the L1 distances between the coarser forecast for the unmasked portion of
the picture and the ground movement truth.

• LWGAN−GP is the extra gradient penalty (GP) terms for both discriminators. L LWGAN , G, and
LWGAN , represent the WGAN losses between the global and local discriminators and the two-
stage generation, respectively.

Fig. 5 shows the classification of blood smear images. Regions of either 256 × 256 or 512 × 512
pixels in size were randomly selected throughout the training phase. Then, a square-shaped mask with
predetermined side lengths ranging from 13 to 125 pixels was applied to each patch. The patch of view’s
field was randomly selected for the mask application. The patch cropping procedure was carried out
by thresholding non-zero pixels within the randomly selected patch to ensure the overlap of the patches
with blood tissue. Therefore, the likelihood of a certain enhancing the learning v can be increased by
modifying the network’s weights and biases to decrease the power of a specific variable while increasing
the energy of all the others. The right combination of bias and weighted functionality can effectively
classify a situation. The suggested mayfly optimization-driven GAN is described in more detail in
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the following section. The network model’s output is listed based on the discrepancies between the
expected and actual confidence intervals. It is determined using the mean square error measurement.
The training data is maintained by achieving the precise output up until the mistake is minimized. The
following are the details of the program’s optimal solution:

ε = 1
N

∑N

n=1

(
Pa (Cm) − Pp (Cm)

)∧
2 (20)

Figure 5: Classification of blood smear images

Therefore, Pa (Cm) denotes the expected result while Pp(Cm). Denotes the correct performance.
The optimization algorithm chooses the minimized error function to achieve the ideal network model.
The proposed method used the mayfly algorithm to choose the best GAN learning rate by lowering
the error measure. The following equations definition of the optimal solution is provided:

fx = min (ε) (21)

To determine the ideal location for the mating season, the mayfly must estimate the distance.
Using the following Cartesian distance formula, the spacing of mayflies is calculated.

∣∣∣∣Xi − Xj

∣∣∣∣ =
√∑N

J=1

(
Xij − X ′

ij

)2
(22)

Whereas Xij can be characterized as a present mayfly component, and X′
ij can be connected to local

and global best. The greatest mayfly also constantly modifies its speed, as shown by the notation:

V T+1
ij = V T

ij + D ∗ R

Whereas D is referred to as the nuptial dance factor, and R is referred to as a stochastic
process. The mayfly algorithm and GAN function are employed to increase the accuracy of erroneous
categorization. Algorithm 1 defines the proposed May GAN for leukemia classification.
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Algorithm 1: Proposed May GAN for leukemia classification
initialization of mayflies, X
Adopting location variability location variability

For
If y < 1, then follow Z-score normalization

Else
Follow Min Max normalization

Obtain the covariance matrices
Adopt the exponential deconstruction technique
Generate loss of discriminator and generator function L (x, c)

W
(
pr, pg

) = infy∈π(pr ,pg)E(x,y)∼γ [||x − y||]
Compute Kantorovich-Rubinstein parallelism

W
(
pr, pg

) = supf ∈FEx∼pr [f (x)] − Ex′∼pg [f (x′)]
If W

(
pr, pg

)
> total number of images

Compute Ltotal

Else
Obtain optimal solution

Compute the Cartesian distance
Classify the Leukaemia class

4 Result and Discussion

4.1 Performance Metrics
For analysis, accuracy, precision, recall, and F1-score, were selected as the parameters. The

proposed MayGAN is compared with three standard methods: Fractional Black Widow-based Neural
Networks (FBW-NN), Bayesian Convolution Neural Networks (BCNN), and Efficient Net based on
these parameters.

The accuracy shows the model’s capacity to make a general forecast. blood cancer can be predicted
as being present or absent using true positive (TP) and true negative (TN) results. False positive (FP)
and false negative (FN) represent the model’s inaccurate forecasts.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (23)

Precision-The proportion of good sampling points determines the precision rate. Instead, preci-
sion is the percentage of accurate estimation techniques when blood cancer is present.

Precision = TP/(TP + FP) (24)

Since a test could be repeated, the recall calculation does not consider ambiguous test findings,
and ambiguous samples should all be deleted from analysis, recalls pertain to the information that can
be collected to precisely identify blood cancer in a dataset.

recall = TP/(TP + FN) (25)

F1-score–To assess the performance of the forecast, the F1-score is used. This represents the
weighted sum of precision and recall. The highest bargain is 1, and the poorest value is 0. F1-score is
determined without taking TNs into account.
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Dice similarity coefficient (DSC)-The segmentation performance measures and bottom truth
value are used to assess the location. The formula shows the value derived for the

DSC = 2TP
(FP + 2TP + FN)

(26)

whereas TP signifies true positive, TN refers to true negative, FN states the false negative, and FP
refers to false positive.

4.2 Simulation Results
The malignancies in blood smear images were classified using the suggested MayGAN. The

nucleus is collected for calculating the blood smear based on the extracted textural features during the
classification process. The generated testing and training are assessed for the extracted features through
immune cell identification. According to the observed criteria, evaluate the accuracy is 99.6%, and the
accuracy score is 100%. PYTHON is used as the network simulator. Table 4 shows the performance
matrices for MayGAN. Furthermore, Table 5 shows the analysis of accuracy.

Table 4: Performance matrices for MayGAN

Accuracy Precision Recall

Mean % S. D Mean % S. D Mean % S. D

ALL 97.6 0.14 98.2 0.19 97.6 0.92
AML 98.2 0.67 98.7 1.25 98.5 0.34
CLL 97.3 1.21 99.1 0.24 99.3 1.14
CML 99.2 0.87 97.3 1.45 99.1 1.12

Table 5: Analysis of accuracy

Number of images FBW-NN BCNN EfficientNet MayGAN

10 87.4 86.3 87.6 99
20 86.3 86 85 98.9
30 88.1 85.4 87.6 99.2
40 87.2 85 88 99.1
50 88 86 88.3 99

Table 4 and Fig. 6 exhibit the accuracy correlation between the prevailing FBW-NN, BCNN,
Efficient Net, and the proffered MayGAN methodology. The prevailing FBW-NN, BCNN, and
Efficient Net methodologies attained an accuracy of 88.5%, 86.5%, and 87.5%, accordingly. In
correlation, the proffered MayGAN methodology attained 99.8% accuracy, which remains 10.76%,
13.3%, and 12.3% finer than FBW-NN, BCNN, and Efficient Net methodologies accordingly.
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Figure 6: Analysis of mean and standard deviation

Table 5 and Fig. 7 show that the prevailing FBW-NN, BCNN, and EfficientNet methodologies
attained an accuracy of 88.5%, 86.5%, and 87.5%, accordingly. In correlation, the proffered MayGAN
methodology attained 99.8% accuracy, remaining 10.76%, 13.3%, and 12.3% finer than FBW-NN,
BCNN, and EfficientNet methodologies. The prevailing FBW-NN, BCNN, and EfficientNet method-
ologies attained a precision of 84.2%, 87.4%, and 87.3%, accordingly. In correlation, the proffered
MayGAN methodology attained 98.5% precision which remains 14.3%, 11.1%, and 11.3% finer than
FBW-NN, BCNN, and EfficientNet methodologies.

Figure 7: Analysis of accuracy

The prevailing FBW-NN, BCNN, and EfficientNet methodologies attained a recall of 91.1%,
83.2%, and 89.4%, accordingly. In correlation, the proffered MayGAN methodology attained 99.7%
recall, which remains 8.6%, 16.5%, and 10.5% finer than FBW-NN, BCNN, and EfficientNet
methodologies.

The prevailing FBW-NN, BCNN, and EfficientNet methodologies attained an F1-score of 93.2%,
85.6%, and 87.5%, accordingly. In correlation, the proffered MayGAN methodology attained a 97.4%
F1-score that remains 4.3%, 12.2%, and 10.1% finer than FBW-NN, BCNN, and EfficientNet method-
ologies, accordingly. The prevailing FBW-NN, BCNN, and EfficientNet methodologies attained a
DSC of 91.2%, 87.4%, and 98.6%, accordingly. In correlation, the proffered MayGAN methodology
attained 98.5% DSC, remains 7.3%, 11.1%, and 0.1% finer than FBW-NN, BCNN, and EfficientNet
methodologies. Table 6 shows the overall comparative analysis.

Table 6: Overall comparative analysis

Parameters FBW-NN BCNN EfficientNet MayGAN

Accuracy (%) 88.5 86.5 87.5 99.8
Precision (%) 84.2 87.4 87.3 98.5

(Continued)
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Table 6: Continued
Parameters FBW-NN BCNN EfficientNet MayGAN

Recall (%) 91.1 83.2 89.4 99.7
F1-score (%) 93.2 85.6 87.5 97.4
DSC (%) 91.2 87.4 98.6 98.5

Fig. 8 indicates that the suggested MayGAN achieves 99.85% of accuracy, 98.5% of precision,
99.7% of recall, 97.4% of F1-score, and 98.5% of DSC.

Figure 8: Proposed method comparison with existing methods

5 Conclusions

Leukemia is a type of blood cancer that generally affect children and adults. The type of cancer and
the extent of its dissemination throughout the body affect Leukaemia treatment. Infected patients need
to receive the proper care and heal immediately, and the disease must be identified as soon as feasible.
This research created an automatic diagnosis tool for four classes. Utilizing the suggested methods,
the dataset was preprocessed to reduce noise and blurriness and improve image quality. This work
discovered that the output photos had already been segmented during preprocessing. The strategy
is valid and avoids the need for image segmentation. In order to provide help with effective feature
extraction and classification, Mayfly optimization with Generative Adversarial Network (MayGAN)
is introduced in this research. In addition, Generative Adversarial System is integrated with Principal
Component Analysis (PCA) in the feature-extracted model to classify the type of blood cancer in
the data. As a result, it is found that the proposed MayGAN achieves 99.8% of accuracy, 98.5% of
precision, 99.7% of recall, 97.4% of F1-score, and 98.5% of DSC.

The suggested approach will be used in everyday life after being confirmed with significant data,
assisting doctors and patients in making the earliest possible illness diagnoses. Whenever two or more
stains are contacting, this suggested technique has some restrictions because these are considered one
item. Therefore, future research hopes to expand our present analysis to include unstained blood smear
images and enhance the sub-classification of each leukemic type based on the course of the malignancy.

Acknowledgement: The author would like to thank the Deanship of Scientific Research at Umm Al-
Qura University for supporting this work by Grant Code: (22UQU4281768DSR01).

Funding Statement: This research is funded by the Deanship of Scientific Research at Umm Al-Qura
University, Grant Code: 22UQU4281768DSR01.



2056 CSSE, 2023, vol.46, no.2

Conflicts of Interest: The authors declare they have no conflicts of interest to report regarding the
present study.

References
[1] T. TTP, G. N. Pham, J. H. Park, K. S. Moon, S. H. Lee et al., “Acute leukemia classification using

convolution neural network in clinical decision support system,” in 6th Int. Conf. on Advanced Information
Technologies and Applications (ICAITA 2017), Sydney, Australia, pp. 49–53, 2017.

[2] L. Perez and J. Wang, “The effectiveness of data augmentation in image classification using deep learning,”
arXiv, 2017.

[3] C. N. Vasconcelos and B. N. Vasconcelos, “Convolutional neural network committees for melanoma
classification with classical and expert knowledge-based image transforms data augmentation,” arXiv,
2017.

[4] S. Kansal, S. Purwar and R. K. Tripathi, “Trade-off between mean brightness and contrast in histogram
equalization technique for image enhancement,” in 2017 IEEE Int. Conf. on Signal and Image Processing
Applications (ICSIPA), Kuching, Malaysia, pp. 195–198, 2017.

[5] R. D. Labati, V. Piuri and F. Scotti, “All-IDB: The acute lymphoblastic leukemia image database for image
processing,” in 18th IEEE Int. Conf. on Image Processing, Brussels, Belgium, pp. 2045–2048, 2011.

[6] C. Reta, L. Altamirano, J. A. Gonzalez, R. Diaz-Hernandez, H. Peregrina et al., “Segmentation and
classification of bone marrow cells images using contextual information for medical diagnosis of acute
leukemias,” PLOS ONE, vol. 10, no. 7, pp. 1–18, 2015.

[7] F. Kazemi, T. A. Najafabadi and B. N. Araabi, “Automatic recognition of acute myelogenous leukemia
in blood microscopic images using k-means clustering and support vector machine,” Journal of Medical
Signals & Sensors, vol. 6, no. 3, pp. 183–193, 2016.

[8] S. Mohapatra, D. Patra and S. Satpathi, “Image analysis of blood microscopic images for acute leukemia
detection,” in Proc. of the 2010 Int. Conf. on Industrial Electronics, Control and Robotics, Rourkela, India,
pp. 215–219, 2010.

[9] K. M. Garrett, F. A. Hoffer, F. G. Behm, K. W. Gow, M. M. Hudson et al., “Interventional radiology
techniques for the diagnosis of lymphoma or leukemia,” Pediatric Radiol, vol. 32, no. 9, pp. 653–662, 2002.

[10] Y. Alotaibi, M. Malik, H. Khan, A. Batool, S. Islam et al., “Suggestion mining from opinionated text of
big social media data,” Computers, Materials & Continua, vol. 68, no. 3, pp. 3323–3338, 2021.

[11] R. D. Labati, V. Piuri and F. Scotti, “ALL-IDB: The acute lymphoblastic leukemia image database for image
processing,” in Proc. of the 2011 IEEE Int. Conf. on Image Processing (ICIP 2011), Brussels, Belgium, pp.
2045–2048, 2011.

[12] T. T. P. Thanh, V. Caleb, A. Sukhrob, L. Suk-Hwan and K. Ki-Ryong, “Leukemia blood cell image classi-
fication using convolutional neural network,” International Journal of Computer Theory and Engineering,
vol. 10, no. 2, pp. 54–58, 2018.

[13] T. Karthikeyan and N. Poornima, “Microscopic image segmentation using fuzzy c means for leukemia
diagnosis,” International Journal of Advanced Research in Science, Engineering and Technology, vol. 4, no.
1, pp. 3136–3142, 2017.

[14] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan and H. Adeli, “Deep convolutional neural network for the
automated detection and diagnosis of seizure using eeg signals,” Computers in Biology and Medicine, vol.
100, pp. 270–278, 2018.

[15] V. J. Ramya and S. Lakshmi, “Acute myelogenous leukemia detection using optimal neural network based
on fractional black-widow model,” Signal, Image and Video Processing, vol. 16, no. 1, pp. 229–238, 2022.

[16] M. E. Billah and F. Javed, “Bayesian convolutional neural network-based models for diagnosis of blood
cancer,” Applied Artificial Intelligence, vol. 36, no. 1, pp. 1–22, 2022.



CSSE, 2023, vol.46, no.2 2057

[17] L. F. Rodrigues, A. R. Backes, B. A. N. Travençolo and G. M. B. de Oliveira, “Optimizing a deep residual
neural network with genetic algorithm for acute lymphoblastic leukemia classification,” Journal of Digital
Imaging, vol. 35, no. 3, pp. 623–637, 2022.

[18] S. Chand and V. P. Vishwakarma, “A novel deep learning framework (dlf) for classification of acute
lymphoblastic leukemia,” Multimedia Tools and Applications, vol. 81, no. 26, pp. 37243–37262, 2022.

[19] G. Atteia, A. A. Alhussan and N. A. Samee, “BO-ALLCNN: Bayesian-based optimized cnn for acute
lymphoblastic leukemia detection in microscopic blood smear images,” Sensors, vol. 22, no. 15, pp. 5520,
2022.

[20] D. Baby, S. Juliet and M. M. Anishin Raj, “An efficient lymphocytic leukemia detection based on
efficientnets and ensemble voting classifier,” International Journal of Imaging Systems and Technology,
pp. 1–8, 2022.

[21] C. Mondal, M. Hasan, M. Jawad, A. Dutta, M. Islam et al., “Acute lymphoblastic leukemia detection
from microscopic images using weighted ensemble of convolutional neural networks,”arXiv preprint arXiv:
2105.03995, 2021.

[22] F. S. K. Sakthiraj, “Autonomous leukemia detection scheme based on hybrid convolutional neural network
model using learning algorithm,” Wireless Personal Communications, vol. 126, no. 2, pp. 2191–2206, 2022.

[23] M. Z. Ullah, Y. Zheng, J. Song, S. Aslam, C. Xu et al., “An attention-based convolutional neural network
for acute lymphoblastic leukemia classification,” Applied Sciences, vol. 11, no. 22, pp. 10662, 2021.

[24] Z. Jiang, Z. Dong, L. Wang and W. Jiang, “Method for diagnosis of acute lymphoblastic leukemia based
on vit-cnn ensemble model,” Computational Intelligence and Neuroscience, vol. 2021, no. 9, pp. 1–12, 2021.

[25] M. Ghaderzadeh, F. Asadi, A. Hosseini, D. Bashash, H. Abolghasemi et al., “Machine learning in detection
and classification of leukemia using smear blood images: A systematic review,” Scientific Programming, vol.
2021, no. 5, pp. 1–14, 2021.

[26] Y. Alotaibi and A. F. Subahi, “New goal-oriented requirements extraction framework for e-health services:
A case study of diagnostic testing during the COVID-19 outbreak,” Business Process Management Journal,
vol. 28, no. 1, pp. 273–292, 2022.

[27] J. Jayapradha, M. Prakash, Y. Alotaibi, O. I. Khalaf and S. A. Alghamdi, “Heap bucketization anonymity—
An efficient privacy-preserving data publishing model for multiple sensitive attributes,” IEEE Access, vol.
10, pp. 28773–28791, 2022.

[28] Y. Alotaibi, “A new meta-heuristics data clustering algorithm based on tabu search and adaptive search
memory,” Symmetry, vol. 14, no. 3, pp. 623, 2022.

[29] K. Lakshmanna, N. Subramani, Y. Alotaibi, S. Alghamdi, O. I. Khalaf et al., “Improved metaheuristic-
driven energy-aware cluster-based routing scheme for IoT-assisted wireless sensor networks,”Sustainability,
vol. 14, no. 13, pp. 7712, 2022.

[30] S. S. Rawat, S. Alghamdi, G. Kumar, Y. Alotaibi, O. I. Khalaf et al., “Infrared small target detection based
on partial sum minimization and total variation,” Mathematics, vol. 10, no. 4, pp. 671, 2022.

[31] M. Abdel-Fattah, O. Al-marhbi, M. Almatrafi, M. Babaseel, M. Alasmari et al., “Sero-prevalence of
hepatitis B virus infections among blood banking donors in Makkah city, Saudi Arabia: An institutional-
based cross-sectional study,” Journal of Umm Al-Qura University for Medical Sciences, vol. 6, no. 2, pp.
4–7, 2020.

[32] A. A. Malibari, M. Obayya, M. K. Nour, A. S. Mehanna, M. Ahmed Hamza et al., “Gaussian optimized
deep learning-based belief classification model for breast cancer detection,” Computers, Materials &
Continua, vol. 73, no. 2, pp. 4123–4138, 2022.

[33] N. Dilshad, A. Ullah, J. Kim and J. Seo, “LocateUAV: Unmanned aerial vehicle location estimation via
contextual analysis in an IoT environment,” IEEE Internet of Things Journal, vol. 99, pp. 1, 2022.

[34] M. Usman, T. Saeed, F. Akram, H. Malaikah and A. Akbar, “Unmanned aerial vehicle for laser based
biomedical sensor development and examination of device trajectory,” Sensors, vol. 22, no. 9, pp. 3413,
2022.



2058 CSSE, 2023, vol.46, no.2

[35] U. Masud, F. Jeribi, M. Alhameed, F. Akram, A. Tahir et al., “Two-mode biomedical sensor build-up:
Characterization of optical amplifier,” Computers, Materials & Continua, vol. 70, no. 3, pp. 5487–5489,
2022.

[36] U. Masud, F. Jeribi, M. Alhameed, A. Tahir, Q. Javaid et al., “Traffic congestion avoidance system using
foreground estimation and cascade classifier,” IEEE Access, vol. 8, pp. 178859–178869, 2020.


	MayGAN: Mayfly Optimization with Generative Adversarial Network-Based Deep Learning Method to Classify Leukemia Form Blood Smear Images
	1 Introduction
	2 Related Works
	3 Materials and Methods
	4 Result and Discussion
	5 Conclusions


