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Abstract: A measure of the “goodness” or efficiency of the test suite is used to
determine the proficiency of a test suite. The appropriateness of the test suite is
determined through mutation analysis. Several Finite State Machine (FSM)
mutants are produced in mutation analysis by injecting errors against hypotheses.
These mutants serve as test subjects for the test suite (TS). The effectiveness of
the test suite is proportional to the number of eliminated mutants. The most effec-
tive test suite is the one that removes the most significant number of mutants at the
optimal time. It is difficult to determine the fault detection ratio of the system.
Because it is difficult to identify the system’s potential flaws precisely. In mutation
testing, the Fault Detection Ratio (FDR) metric is currently used to express the
adequacy of a test suite. However, there are some issues with this metric. If both
test suites have the same defect detection rate, the smaller of the two tests is pre-
ferred. The test case (TC) is affected by the same issue. The smaller two test cases
with identical performance are assumed to have superior performance. Another
difficulty involves time. The performance of numerous vehicles claiming to have
a perfect mutant capture time is problematic. Our study developed three metrics to

address these issues:
FDR

TSj j ,
FDR

TCj j , and
FDR

Timej j : In this context, most used test

generation tools were examined and tested using the developed metrics. Thanks to
the metrics we have developed, the research contributes to eliminating the pro-
blems related to performance measurement by integrating the missing parameters
into the system.

Keywords: Software engineering; testing; mutation analysis; fault detection ratio;
metrics; time

1 Introduction

Software testing provides instruments for verifying that predefined requirements are met and that the
correct outputs are generated through the widespread use of software testing to eliminate potential bugs
and ensure flawless software operation [1]. Formal method-based testing is one of the active research
areas in software testing [2]. Formal methods are mathematical techniques used in computer science,
specifically software and hardware engineering, to identify, develop, and validate software and hardware
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systems. The benefit of this modeling is to detect possible problems through pre-testing and to prevent future
economic crises. In this respect, model-based methods such as FSM are widely used in critical systems such
as the defense industry, and health, air, and space technologies. Formal methods permit demonstrating that a
system or model satisfies the requirements.

Existing formal models for expressing software systems include finite state machines (FSM), Petri nets,
and the Unified Modeling Language (UML). The Finite State Machine (FSM) is a widely used mathematical
model with distinct inputs and outputs. It is primarily employed to model hardware and software systems.
Various test-creation methods for FSMs have been suggested in the literature. The well-known algorithms
are transition tour (CPP), W, Wp, UIO, UIOv, DS, HSI, H, SPY, and P [3]. Numerous studies compare
these procedures. Typically, mutation analysis is used to evaluate the quality of tests designed for FSMs
with these tools.

In software testing, mutation analysis is valuable for measuring defect detection capability and test
effectiveness in formal models. Requirements, source code, models, and software products can be subject to
mutation analysis. The software is systematically modified under certain error assumptions in mutation analysis
to generate mutants. The created mutants are frequently used to evaluate a test set. Mutants are subjected to
each test scenario in the test suite to assess their performance. Fault detection rate (FDR) is mutation analysis’s

most current and widely used metric. FDR ¼ M0

M
is the formula used to calculate the fault detection rate.

Here, M’ represents the mutant killed, whereas M represents the total number of mutants created.

Nonetheless, this metric has a few deficiencies. Although the FDR metric provides valuable information
regarding the performance of test generation methods, it falls short of indicating efficacy. To resolve these
issues, our study suggested three new metrics: “Fault detection rate per test set, fault detection rate per
test scenario, and fault detection rate per time.”

When running the test scenario, it moves from the starting point to the point where the test will be
started. Then the test is run, and finally, it returns from the endpoint to the starting point. The ways to get
to the state where the test was to begin and return to the beginning after the test generates a significant
amount of repetition. To avoid this situation, it is necessary to create fewer test cases [3]. In other words,
the length of the test case is an important parameter. From this point of view, the “average mutant killing

capacity per test scenario”
FDR

TCj j
� �

parameter has been developed to compare test quality in terms of

showing the quality of the created test scenarios because the
FDR

TCj j
� �

metric allows for ranking in terms

of mutant capture performance and scarcity of test cases.

The length of the test suite is an important performance parameter [3]. The long test suite runs slowly
during execution. On the other hand, the shorter length has a higher performance than the two test suites with
the same error detection rate. From this point of view, another metric we propose in the study and use to

compare methods is the average mutant killing capacity divided by the length of the test set
FDR

TSj j
� �

.

This metric also gives the average mutant killing capacity per pass of a test set.

With the developing technology, scaling has become essential to test extensive systems today [3].
Because in extensive systems, it may be necessary to test the entire system, compromising the detection
rate. One of the essential effects of scalability is time. However, previous studies have yet to compare
existing methods in terms of time. This study shows that many forms only work at a low scale. The
biggest reason this reality is overlooked is that no parameter expressing the duration exists. Based on this,
the time metric was developed in our study.
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In our study, first of all, relevant studies are included. Afterward, FSM tests, test development methods,
and mutation analysis are explained. Subsequently, the new metrics we developed within the scope of the
study were discussed, and the study’s limitations were included. Finally, the results and evaluations
related to the metrics we developed are given.

2 Related Work

Mutation testing is a standard evaluation technique for test suites [3]. The most significant issue with
mutation analysis is that it complicates the computation of large systems [4]. Due to this, there has been a
substantial increase in research on simplification in mutants [5]. It can be said that articles on mutant
simplification, mutant equality [6], and effective mutants are concentrated in the literature [7,8]. On the
other hand, there are also related articles in fields such as testing, the nuclear industry, the Internet of
things, and deep learning [9]. This section provides comprehensive research on effective mutants and
metrics. This is the result of our research focusing on improved mutant selection.

Kintis et al. created a new tool called iPITRV to improve the efficacy of mutation testing [10]. iPITRV
outperforms the competition by discovering 6 percent more errors than combined. This method produces the
best results overall. Wang et al. proposed using higher-order mutants to simulate complex failures [11].
Theoretically, these mutants apply to multiple failure scenarios. Experiments indicate that they can aid in
enhancing the performance of high-order mutants. Zhang et al. proposed a low-cost, simple-to-implement
method to improve the efficacy of mutation testing [12]. The proposed instrument can identify test suite
flaws and generate new test cases accordingly. Experimental results demonstrate that the tool is highly
competitive with contemporary supervised methods. Zhu et al. suggested additional research on reporting
mutation testing in experiments [13]. Sánchez et al. examined the utility of mutation testing to evaluate
and enhance performance testing [14]. Delgado-Pérez et al. investigated the viability of performing
performance mutation testing at the source code level for general-purpose programming languages [15].
Zhu et al. proposed a collection of “mutation score antipatterns” that enable software engineers to refactor
existing code or add tests to increase the mutation score [16]. When examining the studies, it is evident
that numerous efforts have been made to improve the quality of mutants. However, no research has been
conducted on defining a quality mutant.

To identify the most valuable operators, Delgado-Pérez et al. defined metrics [15]. Coverage data
reduces the number of mutants at the expense of poor performance. Rani et al. investigated Java program
operators and attempted to develop more efficient operators [17]. Examining these studies reveals that
they concentrate on identifying operators in terms of metrics.

Another study presents an analytical and numerical analysis of a computer virus epidemic model.
Features have been validated using test cases and computer simulations [18]. In a different study, a
powerful tool has been developed for all nonlinear models of biomedical engineering problems with the
structural preservation method [19]. Akgül et al. extended the classical computer virus model to the
fractional fractal model in their study and then brought a solution to the model with the Atangana-Toufik
method [20]. In a different study, the fractional order computer epidemic model was analyzed. In this
context, a classical computer epidemic model has been extended to a fractional order model using
Atangana-Baleanu fractional differential operator in the sense of Caputo [21]. Another study investigated
the transmission dynamics of computer viruses interconnected via a global network. A numerical
simulation example applied within the scope of the study confirmed the theoretical results of the designed
technique [22]. In another study, a nonlinear delayed model was investigated to examine the dynamics of
a virus in a computer network. In this framework, many significant results have been obtained for the
stability of the model balances by using the Routh Hurwitz criterion, the Volterra Lyapunov function, and
the Lasalle invariance principle [23].
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As far as we know, no diagnosis has been made in any of the existing studies in the literature showing the
relationship between test case length, test suite length, and duration length over performance. Thanks to this
definition, the current errors of the parameters that may be faulty are eliminated, and an evaluation
opportunity that can reveal higher performance is presented. For example, the test suite and case size
must be short. But if the performance is terrible, the length evaluation is meaningless. The same is true
for the time parameter. If the performance is too low, performing the test quickly will not be meaningful.
For this reason, unlike the literature, it has been revealed that more information can be obtained about
test suites thanks to the metrics we have developed.

3 Testing Finite State Testing

FSM is a mathematical model with discrete inputs and outputs. This model is used for modeling
hardware and software systems. Some examples include text editors, compilers, synchronous sequential
circuits, microprocessors, etc. Therefore, FSM is quite a standard model in computer science and
engineering.

Test cases are test procedures that can be run successfully or unsuccessfully. Negative results should be
obtained at the end of negative test cases, and positive results should be obtained in positive test cases. The
test is considered successful if the expected test results match the results we have. The test case length
represents the total processing steps required to run the test case.

Test suite refers to a set of test cases collectively. Here, the output of one test case can be the input of
another test case. The test suite length represents the sum of the size of all test cases.

Moore and Mealy machines are the most common FSM models. A Mealy machine is defined as M
Q; �; D; d; k; q0ð Þ where Q is a set of finite states, Σ is a set of input symbols, Δ is a set of output
symbols, δ: Q × Σ › → Q is the state transition function, λ: Q × Σ › → Δ is the output function, and q0 is
the initial state.

3.1 Test Generation Methods

Finite State Machine (FSM), a formal modeling technique to represent circuits and software, has been
widely used in testing. Even though there exist several test generation methods, the current increase in the
demand for pervasive and safety-critical systems, as well as the increase in software size, calls for more
rigorous ways that can produce better test suites, particularly in terms of test suite size, test case size,
time spent for test generation, fault detection ratio and fault exposing potential.

In the literature, various methods are suggested to create test cases for FSMs. The most common are the
Chinese Postman Problem (CPP), H-Switch-Cover (HSC), UIO, H, W, HSI, P, and SPY methods. This study
examined CPP, HSC, SPY, P, HIS, and W methods. CPP and HSC methods are included in our comparison
set because they produce small test cases in transition covers. On the other hand,W, HSI, P, and SPYmethods
were included in the study because of their up-to-date and widespread use.

3.1.1 Chinese Postman Method (Transition Tour)
A Chinese mathematician first studied CCP and came out as a postman who wanted to distribute the

letters he received from the post office by stopping by all the streets in the city as quickly as possible.
After delivering the letters, the postman had to return to the post office, where he had started. Thus, this
problem is referred to as CPP in the literature. The purpose of the CCP is to find the shortest laps/tours
that pass through the edges of a given network a minimum of once. This problem is focused on non-
balanced graphs. The number of entry and exit edges on a vertex is different. The CPP method takes
place in three stages. The algorithms used in these stages are the Floyd-Warshall algorithm, the
Hungarian Method, and the Hierholzer algorithm. If the graph is balanced, an Euler cycle search
algorithm can be used to find the minimum path visiting all edges.
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For more information, see the article [24].

3.1.2 W Method
Let a given FSM be minimal and complete. W-set defines a string s (input sequences that distinguishes

every two different states) such thatO qi; sð Þ ¼ O qj; sð Þ. A distinguishable (characterization) W-set always
exists for each complete reduced FSM. The test generation method consists of two phases:

i) Characterization Sequence For Each Pair of States which provides O qi; sð Þ ¼ O qj; sð Þ
ii) Creating Transition Cover Set which contains strings that are used to excite an FSM to ensure the

coverage of all transitions.

For more information, see the article [25].

3.1.3 HSI Method
W method works only in completely-specified and deterministic FSMs. This is a limiting situation in

many ways. The first method which is developed to overcome this is the HSI method. This method also
works in partially-specified, nondeterministic FSMs. Our experiments have shown that the HSI method
has a high performance in terms of runtime. Therefore, it also works well in terms of scalability.
However, it has low performance in the fault detection ratio. In the worst case, the HSI method has the
same test suite size as the W method.

For more information, see the article [26].

3.1.4 SPY Method
This method can be used in entirely and partially-specified FSMs, such as the HSI method. SPYaims to

reduce test suite size. While creating the test suite, it does not create new branches. In the SPY method, these
operations are calculated on the fly.

As presented later, our experiments show that the SPY method provides a 40% smaller test pack than
the W and HSI methods. Besides, fewer test cases, as well as more prolonged test cases, are also
possible. In most cases, SPY has a better error detection rate than the W and HSI methods. In contrast,
the SPY method requires a longer time and more space to create test suites than traditional methods,
making it unusable for large FSMs.

It can be referred to the article [27] for more information.

3.1.5 P Method
P method creates an n-complete test suite, meaning it is complete for all implementations with at most n

states. The n-complete test suite guarantees to find all faulty implementations in FSMs with a bounded
number of states. When creating an n-complete test suite, the P method uses user-defined test suites. P
method handles most of the calculations on-the-fly.

The P method works in two steps. In the first step, test suites are created that can distinguish between
states. In the second step, test cases are checked using the necessary rules for the n-complete test suite. Test
cases suitable for this situation are added to the test suite.

According to the experiments, the test suite size of P is less than the traditional methods. However, the P
method, like SPY, cannot produce results in relatively larger FSMs due to the lack of time and space.

It can be referred to the article [28] for more information.

3.1.6 HSC Method
HSC is a method based on the classic Switch Cover, which specifies that all transition pair criteria should

be executed at a minimum once. One of the main features of Switch Cover is that it first converts FSM to the
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dual graph. The converted graph is balanced. After converting FSM to a dual graph, the Eulerian Cycle
algorithm ensures that all edges are visited precisely once. The critical point of the HSC method is the
usage of the Hierholzer algorithm as the Eulerian Cycle algorithm. The complexity of the Hierholzer
algorithm is linear time.

It can be referred to the article [29] for more information.

3.1.7 Mutation Analysis
In mutation analysis, it is assumed that minor program modifications are sufficient to introduce complex

errors [30]. The original model is systematically modified during mutation testing based on incorrect
assumptions. These error assumptions represent potential programming errors. The mutant operators are
aware of the erroneous beliefs that allow the mutants to mutate. According to Fabbri and Li [31], the
following are potential mutation operators for FSMs: State-missing, State-extra, transition-missing,
transition-extra, and Output-changed. The most prevalent application of mutation is measuring the
effectiveness of test suites [12]. The mutant is destroyed if a test suite can differentiate a mutant from the
original program. If it cannot determine, the mutant is considered to be alive. A mutant must be identical
to the original program, or the test set must be insufficient to kill it for survival.

Mutation analysis establishes the sufficiency of a test set. These mutants are used to test the test set. The
effectiveness of the tests is proportional to the total number of mutants eliminated. The most efficient test
suite is the one that removes the most significant number of mutants at the optimal time. In practice,
however, measuring the error detection rate of a system is complex. Because it is difficult to identify the

system’s potential flaws precisely. FDR ¼ M0

M
is the formula for determining the sufficiency of a test

set. Where M represents the total number of mutants and M’ represents the number of mutants identified
in the test set.

Mutation testing is a valuable technique. On the other hand, many mutants in a large model can present
time and space constraints. The analysis must be conducted within reasonable time and space to avoid this
issue. To accomplish this, techniques for reducing the number of mutants are utilized.

4 Novel Metrics

In this article, six basic metrics are examined. Three of these are the metrics we recommend in this study
(fault detection ratio/test scenario length, fault detection ratio/test suite length, and fault detection ratio/test
time). The other three are metrics from traditional methods (test case length, test suite length, and fault
detection ratio), which we prefer because they’re widely used to compare with the metrics we’ve developed.

For example, test case length, test suite length, and duration alone don’t make sense in traditional
metrics. Because the test scenario, test suite length, or test time may be short, it may not catch any
mutant. In such a case, the test scenario, test set, or time does not give a meaningful result. Using these
metrics with FDR reveals an effect related to its performance. This way, how much the metrics affect the
performance can be easily seen.

If the test suite, test case, and test time are normalized between 0 and 1, the performance formula
will be:

Performance ¼ FDR

TSj j þ TCj j þ TIMEj j
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5 Threats to Validity

There can be four threats to checking the study’s validity [32]: Conclusion, construct, and internal and
external threats.

The study aims to compare FSM test generation methods in terms of time, killed mutants per test case,
killed mutants per transitions, and other parameters. Evaluation results prove that this goal has been achieved.

Conclusion threat is mitigated by generating a possibly significant number of FSMs and concluding
upon the averages. Regarding construct validity, the results are compared concerning the literature’s most
common and adopted metrics. In the evaluations, the graph method often used in comparison studies is
preferred to mitigate construct threats. To ensure the study’s internal validity, we utilized the same tool
used in our previous works. Moreover, the methodology and the tool are tested by comparing the results
of our tool and the existing tools.

For example, all methods have been compared to verify their performance. Hence, it ensured internal
validity by realizing the study’s purpose.

FSMs are randomly generated to ensure the external validity of the study. 1500 FSMs are created.
According to the literature, the quantity is sufficient for such a work made FSM [2,32]. This shows that
the study can be generalized.

Although random FSMs were created, tests were made through many methods, tests were carried out by
creating many mutants, and an attempt was made to select a sample as large as possible; it should be noted
that our study reflects the results of a specific model.

Finding FDR can take time. For this reason, when a quick evaluation is desired, it may be necessary to
use test time alone and test case and test suite length. However, such approaches will have a more significant
potential for error.

6 Results

The metrics we recommend in this study are compared with traditional metrics such as Test Case Size
(TCS), Test Suite Size (TSS), and Fault Detection Ratio (FDR) through HSC, CPP, SPY, P, HSI, and W
methods. Random FSMs with varying numbers of states, inputs, outputs, and transitions were generated
to compare the metrics. The error detection rate was evaluated using the mutation test. When comparing
the scalability metric, the ISCAS’95 benchmark dataset is used.

Real-time systems can be tested thanks to Timed Automata. The metrics we developed can also be used
for Timed Automata. The performance of the technique is not different from FSM. Therefore, using metrics
in FSM or Timed Automata will produce the same results [27,28].

Performance metrics are calculated to compare the methods. To this end, the following five standard
metrics are considered: Test Case Size (|TC|), Test Suite Size (|TS|), Fault Detection Ratio (FDR), FDR/|
TC|, FDR/|TS|, and FDR/|TIME|.

All these performance metrics are measured against varying state, input, and output numbers. To this
end, we use the following three configurations for each metric:

1. Input is variable, the output is 10-valued, and the state is 10-valued

2. Output is variable, input is 10-valued, and the state is 10-valued

3. State is variable, input is 10-valued, the output is 10-valued

FSMs are randomly generated by a built-in tool called fsm-gen-fsm [2]. fsm-gen-fsm allows the
definition of parameters such as the number of inputs, the number of outputs, and the number of
transitions. Each FSM is produced five times, and the mean values of outcomes are calculated. This

CSSE, 2023, vol.46, no.2 2081



procedure is repeated 300 times. In other words, 1500 FSMs are created in total. According to similar studies,
this amount seems sufficient and cannot be considered a serious threat to validity. Similarly, the random
generation of values eliminates another validation threat. FSMs are reduced, deterministic, and connected.

We exploit mutation analysis to measure the effectiveness, i.e., the fault detection ratios of different test
suites. In mutation analysis, several mutants of FSM are generated against some fault hypotheses. For
example, according to the missing transition fault hypothesis, a mutant FSM can be obtained by
removing an arbitrary transition from the original FSM. If we limit the number of missing transitions to
some number k, one can generate k *number of transition mutants. Mutation analysis can therefore be a
costly operation. In our experiments, the number of mutants generated for each FSM is approximately
20,000. We implemented the following mutation operators: (i) Change Initial State, (ii) Missing
transition, (iii) Input-Exchanged (Avoiding Non-Determinism), (iv) Origin-Exchanged (avoiding non-
determinism), (v) Extra transition, and (vi) Extra State (ES).

All the experiments are performed on an Ubuntu/GCC system with Intel Core i7, Nvidia Geforce
940 mx, and 16 GB of RAM.

6.1 Test Metrics in FSM Testing

6.1.1 Fault Detection Ratio (FDR)
The fault detection ratio comparison of methods as per the graph reveals the same character

concerning the state, input, and output. In this study, fault detection ratio is another parameter that we
attach importance to when comparing methods. Looking at Fig. 1, it is seen that the CPP method has a
lower fault detection ratio compared to other methods. In other words, the performance of the CPP
method in terms of fault detection ratio is lower than other methods. On the other hand, the
performance of different methods is close.

However, interpreting using only FDR does not give accurate results because many factors affect

performance. For example, |TC|, |TS|,
FDR

TCj j,
FDR

TSj j ,
FDR

TIMEj j, parameters are not included in the FDR

parameter. Only when these parameters are checked holistically can the actual quality of the test set be
understood.

Figure 1: Fault detection ratio (FDR) comparison of methods. The figure shows how the FDR changes
when the State, Input, and Output values of the State FSM increase
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6.1.2 Test Case Size vs.
FDR

TCj j
When the

FDR

TCj j metric we developed is compared with the traditional |TC| metric, it is seen that the

results are very different from each other. For example, the values of the HSI method are high in Fig. 2
but low in the Fig. 3. The W method shows a similar picture. On the other hand, the CPP method
presents the opposite view. This is because CPP creates one test case, and its FDR is close to 70%. Input
and output graphs can also be characterized similarly to the state graph.

As can be seen from all the graphs, it is seen in the test case size graphs, the HSC and CPP methods will
have high values in the Fig. 3. The remarkable thing here is that this difference between the other methods in
the test case size is not found in Fig. 3. This shows us that the FDR values of the Wand HSI methods, which
have significant values in Fig. 2, are small. This is also not preferred. It is not possible to do this analysis with
traditional metrics.

Figure 2: Test suite size (|TC|) comparison of methods. The figure shows how the |TC| changes when the
State, Input, and Output values of the State FSM increase

Figure 3:
FDR

TCj j . The figure shows how the
FDR

TCj j changes when the state, Input, and output values of the

state FSM increase
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6.1.3 Test Suite Size vs.
FDR

TSj j
When the

FDR

TSj j metric we developed is compared with the traditional |TS| metric, it is seen that the results

are very different from each other. For example, since the CPP method consists of a single test case and has an

FDR of 70%, it stands out as the most performance method according to the
FDR

TSj j metric we developed in

Fig. 5. In addition, although the distributions of other forms are very different according to the |TS| metric

(Fig. 4), they have very close values according to the
FDR

TSj j metric. This allows us to comment on FDR. For

example, it is possible to conclude that the P and SPY methods with low values have high FDRs.

As can be seen, the ranking of P, SPY, HSI, and Waccording to the metric
FDR

TSj j
� �

is consistent with the

literature [3]. This shows that the metric
FDR

TSj j
� �

we developed shows successful results.

Figure 4: Test suite size (|TS|) comparison of methods. The figure shows how the |TS| changes when the
state, input, and output values of the state FSM increase

Figure 5:
FDR

TSj j . The figure shows how the
FDR

TSj j changes when the state, input, and output values of the state

FSM increase
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6.1.4
FDR

TIMEj j
FSMs from the Collection of Digital Design Benchmarks1 (ISCAS’ 95) site were used as a real

experimental validation. Using these FSMs, methods have been evaluated in terms of time complexity.
Here it is seen that the time complexity of the P method is considerably higher than the other methods.
On the other hand, the method with the least time complexity is the HSI method.

The FSM files in Table 1 were created by selecting the appropriate ones (reduced, deterministic) among
hundreds of FSMs in ISCAS’95 Benchmarks. The majority of the files chosen consist of small FSMs. In
experiments, it has been seen that the methods we have covered in this study do not work in larger FSMs.

As can be seen in Table 1, it turns out that many methods only work or give results for a very long time in
an FSM with approximately 20 states. Although the FSMs in Table 1 do not have high state and transition
values, they are very slow. To our knowledge, this has not been reported in any previous study. This is

because traditional metrics do not have a metric such as
FDR

TIMEj j.

6.2 The Averages of the Methods

Table 2 contains the averages of the methods compared in terms of state values. In terms of state values,

although FDR values are low, the rate of FDR per test case
FDR

TCj j
� �

of the CPP method is the highest. The

same applies to the FDR rate
FDR

TSj j
� �

per test suite. On the other hand, the lowest efficiency in terms of
FDR

TCj j
and

FDR

TSj j belongs to the W method.

Table 1: The methods’working time (min) compared in terms of state and transition values (ISCAS’95). “-”
indicates that it is not finished

State Transition HSC CPP SPY P HSI W

bbtas.kiss2 6 24 0.56 0.16 0 31.33 0 0.16

dk14.kiss2 7 56 1.66 0.16 0.01 72.18 0 0.21

dk15.kiss2 4 32 1.16 0.16 0 8.63 0 0.11

dk16.kiss2 27 108 2.32 0.16 0.11 – 0.11 0.26

dk17.kiss2 8 32 0.26 0.11 0 7.48 0 0.16

dk27.kiss2 7 14 0.66 0.16 0.01 0.66 0.02 0.22

dk512.kiss2 15 30 0.16 0.16 0.66 – 0.03 0.27

ex4.kiss2 14 448 0.21 0.26 2.21 – 0.22 2.61

ex6.kiss2 8 248 0.22 0.16 0.86 – 0.04 0.87

s1.kiss2 20 5120 – 248.1 281.15 – 0.51 26.83

s386.kiss2 12 1664 – – 21.66 170.5 0.16 11.45

shiftreg.kiss2 8 16 0.21 0.21 0 1.52 0.01 0.21

1 https://ddd.fit.cvut.cz/prj/Benchmarks
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Table 3 contains the averages of the methods compared in terms of input values. In terms of input values,

although FDR values are low, the rate of mutant killing per test case
FDR

TCj j
� �

of the CPP method is still the

highest. The same applies to the mutant kill rate
FDR

TSj j
� �

per test suite. According to the average input

values, the lowest efficiency in
FDR

TCj j and
FDR

TSj j belongs to the W method.

Table 4 contains the averages of the methods compared in terms of output values. In terms of output

values, although the FDR values are low, the rate of mutant killing per test case
FDR

TCj j
� �

of the CPP

method is still the highest. The same is true for the CPP method’s rate of mutant killing per test suite
FDR

TSj j
� �

. On the other hand, according to the average output values, the lowest efficiency in terms of

FDR

TCj j belongs to the W method. According to the average output values, the lowest efficiency in
FDR

TSj j
belongs to the HSC method.

Table 2: The averages of the methods compared in terms of state values

TCS TSS FDR FDR/|TS| FDR/|TC|

HSC 1,68 600,79 0,94 11998,84 42,63

CPP 1,00 45,07 0,76 20216,82 271,10

SPY 34,29 289,61 0,94 495,17 58,53

P 26,75 232,68 0,94 634,28 71,96

HSI 43,96 338,32 0,93 381,55 49,48

W 68,50 565,86 0,95 249,88 30,66

Total 29,36 345,39 0,91 5662,76 87,39

Table 3: The averages of the methods compared in terms of input values

TCS TSS FDR FDR/|TS| FDR/|TC|

HSC 1,75 363,25 0,93 555,13 4,43

CPP 1,00 18,25 0,59 847,63 40,26

SPY 9,13 55,38 0,85 95,23 15,38

P 8,13 49,00 0,85 110,37 17,45

HSI 11,63 64,25 0,84 72,49 12,98

W 13,38 80,13 0,88 67,76 11,07

Total 7,50 105,04 0,82 291,43 16,93
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7 Conclusions

Three new metrics named
FDR

TSj j ,
FDR

TCj j, and
FDR

TIMEj j have been developed to eliminate the deficiencies of

the Fault Detection Ratio (FDR), test case size, and test suite size metrics, which are the most widely used
metrics to determine the quality of the test suites.

To validate our generated metrics, randomly generated FSMs and ISCAS’ 95 Benchmarks data, which
are FSM data from the real world, were used. Thus, our advanced metrics have been tested using random and
real-world data. CPP, HSC, W, HSI, P, and SPY methods were used to create the FSM test set. Initially,
traditional metrics such as test case size, test suite size, and error detection rate (FDR) were applied to the
test sets created by these tools. The metrics developed within the scope of the study were then used for
identical test sets made with the same tools.

Ultimately, with the metrics we developed, it has been shown that it is possible to observe results that
cannot be detected using traditional metrics. Thanks to the metrics we have developed, the existing errors of
the parameters that may be faulty are eliminated, and an evaluation opportunity that can reveal higher
performance is offered. For example, the test suite and case size must be short. But if the performance is
terrible, the length evaluation is meaningless. The same is true for the time parameter. If the performance is
too low, performing the test quickly will not be meaningful. For this reason, unlike the literature, it has
been revealed that more information can be obtained about test suites thanks to the metrics we have developed.

Model-based methods such as FSM are widely used in critical systems such as the defense industry, and
health, air, and space technologies. In this respect, the importance of our study is that it presents practical test set
evaluation parameters to prevent future economic problems by detecting possible problems through pre-testing.

Considering real-time systems, Timed Automata are frequently preferred modeling methods. The
metrics we developed within the scope of this study can also be used in Timed Automata as they have
the same logic as FSMs. Therefore, using metrics in FSM or Timed Automata will produce the same results.

As a result, our study is expected to contribute to the relevant literature on obtaining quality test suites
thanks to three new parameters. In future studies, it is considered that these metrics will be tested with other
modeling methods.
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Table 4: The averages of the methods compared in terms of output values

TCS TSS FDR KMTS KMT

HSC 1,72 319,72 0,96 750,97 12,24

CPP 1,00 20,17 0,73 1125,33 63,34

SPY 8,33 45,72 0,90 191,99 35,10

P 7,56 41,89 0,90 198,02 36,18

HSI 9,94 51,06 0,89 159,13 31,19

W 12,83 67,78 0,92 127,98 24,67

Total 6,90 91,06 0,88 425,57 33,78
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