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Abstract: The immune system goes through a profound transformation during
pregnancy, and certain unexpected maternal complications have been correlated
to this transition. The ability to correctly examine, diagnoses, and predict preg-
nancy-hastened diseases via the available big data is a delicate problem since
the range of information continuously increases and is scalable. Many approaches
for disease diagnosis/classification have been established with the use of data
mining concepts. However, such methods do not provide an appropriate classifi-
cation/diagnosis model. Furthermore, single learning approaches are used to cre-
ate the bulk of these systems. Classification issues may be made more accurate by
combining predictions from many different techniques. As a result, we used the
Ensembling of Neuro-Fuzzy (E-NF) method to perform a high-level classification
of medical diseases. E-NF is a layered computational model with self-learning and
self-adaptive capabilities to deal with specific problems, such as the handling of
imprecise and ambiguous data that may lead to uncertainty concerns that specifi-
cally emerge during the classification stage. Preprocessing data, Training phase,
Ensemble phase, and Testing phase make up the complete procedure for the sug-
gested task. Data preprocessing includes feature extraction and dimensionality
reduction. Besides such processes, the training phase includes the fuzzification
process of medical data. Moreover, training of input data was done using four
types of NF techniques: Fuzzy Adaptive Learning Control Network (FALCON),
Adaptive Network-based Fuzzy Inference System (ANFIS), Self Constructing
Neural Fuzzy Inference Network (SONFIN) and/Evolving Fuzzy Neural Network
(EFuNN). Later, in the ensemble phase, all the NF methods’ predicted outcomes
are integrated, and finally, the test results are evaluated in the testing phase. The
outcomes indicate that the method could predict impaired glucose tolerance, pre-
eclampsia, gestational hypertensive abnormalities, bacteriuria, and iron deficiency
anaemia better than the others. In addition, the model exposed the capability to be
utilized as an autonomous learning strategy, specifically in the early stages of
pregnancy, examinations, and clinical guidelines for disease interventions.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.036598

Article

echT PressScience

mailto:cvairavel@gmail.com
https://www.techscience.com/journal/CSSE
http://dx.doi.org/10.32604/csse.2023.036598
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.036598


Keywords: Pregnancy; disorders; ensemble; neuro-fuzzy; accuracy; diagnostics;
impaired glucose tolerance and preeclampsia; gestational hypertension
abnormalities; bacteriuria; iron deficiency anaemia

1 Introduction

Successful pregnancy depends on a series of interconnected biological changes, including placentation,
fetal immunological reactions, and metabolic stability. Rapid advancements in rising technology have
enabled accessibility to multi-omics bioinformatics that could yield more significant knowledge of
healthy and pathological conceptions when linked with health and therapeutic facts. The unification of
such diverse information via the use of cutting-edge Machine Learning (ML) techniques can allow the
prognosis of both short-range and long-range health patterns during the development stages of a fetus and
the formulation of therapies that could avoid or reduce the severity of issues.

Women’s anatomy undergoes substantial transformations throughout the maternity period, and
tragically, many maternal problems may emerge. In addition, there are several frequent but severe side
effects, including impaired glucose tolerance and preeclampsia, gestational hypertension abnormalities,
bacteriuria, and iron deficiency anaemia.

Impaired glucose tolerance: Although the haemoglobin glucose levels are raised (140 to 199 mg/dL), it
does not meet the criteria for diabetes classification. Usually, the muscular cells of pregnant women cannot
react to the hormone that has been secreted. Thus, the subject finds it difficult to utilize the glucose in their
bloodstream. A fetus’s health may be seriously harmed if the mother’s sugar regulation goes off course
throughout gestation.

Gestational Hypertensive Abnormalities: An increase in haemoglobin hypertension during gestation is
known as gestational hypertension (prenatal hypertension). As many as 3% of all pregnancies are affected by
this condition. Around 135–140 days of pregnancy, gestational hypertension is the first sign of hypertension.
Such a diagnosis usually represents the blood pressure range at systolic ≥140 mmHg/diastolic ≥90 mmHg. If
a woman’s blood pressure stays high for more than 12 weeks after giving birth, she may be diagnosed with
chronic high blood pressure. Table 1 depicts the three prominent ranges.

Preeclampsia: Among the several forms of hypertension (increased bloodstream stress) that may afflict a
pregnant woman is preeclampsia (sometimes referred to as toxaemia). Inflammation and elevated
hypertension are common symptoms of pregnant women suffering from toxaemia. In addition, gestational
hypertension and high proteinuria are found to be significant signs of preeclampsia in pregnant women.

In some cases, it may progress to eclampsia, a dangerous complication that can put both mother and
foetus at risk or, in exceptional circumstances, prove fatal. A few significant risk factors of preeclampsia
are exhibited in Fig. 1.

Table 1: Severity range of gestational hypertensive abnormalities

Systolic (mmHg) Diastolic (mmHg)

Mild ≥140–149 and/or ≥90–99

Moderate ≥150–159 ≥100–109

Severe ≥160 ≥110
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Bacteriuria: Extreme inflammation of the lining, severe cystitis, and rheumatic diseases may occur
during pregnancy, with bacteriuria infection progressing up the urinary tract. In addition, under-nutrition
and premature labor may result from the presence of bacteriuria in the urine of pregnant women. A
prevalence of pre-existing impaired glucose tolerance, past bacterial infection, elevated parity, as well as
poor socioeconomic position have all been linked with a higher incidence of bacteriuria.

Iron Deficiency Anaemia: Preterm birth seems to be more frequent in pregnancy with extreme anaemia
(12 g/dL) throughout gestation (such a scenario is possible, especially if the preterm happens before
37 gestation weeks). Anaemia caused by iron deficit during gestation is also linked with lower foetal
growth and postnatal distress in expectant mothers. The mother and the fetus’s health are severely
affected by iron deficiency anaemia during gestation; it is associated with an elevated risk of foetal morbidity.

Making presumptions, limiting diagnostic errors, and significantly enhancing the accuracy of different
diagnoses may benefit from artificial intelligence (AI) [1]. Machine Learning is a subpart of Artificial
Intelligence (AI) and has become an eminent domain in the computer science sector. Information from
diverse data sets may now be linked effectively using such approaches, making correlations among them
that previously seemed unattainable [2,3]. Because of the vast amount and complexity of medical data,
Machine Learning is acknowledged as a viable tool for diagnosing or forecasting medical consequences.

The assessment of massive data in the medical sector is a delicate matter that must be performed
accurately in order to facilitate the forecasting, identification, and investigation of disorders. Thus,
creating and using Machine Learning [4] categorization strategies that accurately and efficiently identify
conditions is critical. The increased utilization of high computational approaches in healthcare data
analytics has significantly impacted Machine Learning in the past few years. However, a multitude of
diagnostic difficulties must always be solved to help physicians properly diagnose the disorder. These
include developing assessment methods that are accurate, consistent, and efficient. Most healthcare
records are filled with inappropriate, contradictory, replicated, and missing information, which makes it
challenging to build a sound classifier system from such datasets. The accuracy of any classifier’s
predictions of disorder is indicative of the consistency of the healthcare records as well as the algorithms
that are utilized throughout the categorization phase. As a result, in order to accurately forecast and
predict disorders, classifiers must be used to assess critical medical information.

In Machine Learning and trend prediction, categorization is crucial for extracting information from
actual concerns. With the help of the dataset, a model is built to predict the feature values at various
levels of classification properly. However, due to their inherent inflexibility in dealing with more
complicated situations, ANNs (artificial neural networks) [5] and other self-contained classification
techniques cannot be expected to function consistently and provide more integrated solutions with
optimal accuracy.

Figure 1: Risk factors of preeclampsia
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Because of its massive parallelism, ANN is a computationally intensive framework capable of self-
learning and self-adaptation. However, ANN is poorly suited to deal with challenges, such as
contradictory, unclear, and imperfect information, over which inconsistency concerns may develop at any
level of categorization. Using Fuzzy Logic (FL) [6] as a solution, numerical input characteristics are
transformed into linguistic equivalents, also referred to as terms, e.g., extreme, moderate, or low risks. In
the fuzzification procedure, every feature is turned into a membership number within the range of defined
linguistic qualities. Accordingly, the data points are used to retrieve all linguistic characteristics (2 or 3-
fold the number of attribute values). Fuzzy Logic may also be used to determine the association number
(membership value) of various linguistic concepts in order to deal with the unpredictability issue. ANN is
capable of learning the pattern independently through the facts and afterwards self-adapting the
networking system appropriately. However, it is unable to comprehend the learned information from the
facts. On the other hand, Fuzzy Logic cannot evaluate information through learning strategies, yet it is
pretty good at interpreting language words. A linguistic factor is a term often used to show how much a
subject fits into a specific group.

A rule-based architecture implies that training the classifier takes a longer duration. Moreover, framing
the appropriate rules for predicting the objective outcome is also critical. The Neuro-Fuzzy framework (NF)
[7] is a hybridized concept that combines the benefits of both FL and ANN to deal with the difficulties of
uncertainties and imperfect data input. Broadly speaking, NF processes include any combo of fuzzy
reasoning and neural rationale approaches. According to [8], the various combinations of these strategies
fall under the broad categories that were depicted in Fig. 2. Among such varieties, few NF strategies are
found to be effective, which were evident through their consequential attainment of desired outcomes.
They are FALCON, SONFIN, and EFuNN are examples of blended systems that combine the advantages
of ANNs and FLs.

Accurate evaluation of pregnancy-induced disorders might be challenging for any physician since a
large number of variables must be considered. As a matter of fact, creating technologies for the
automated and precise identification of diseases caused by pregnancy might be beneficial to physicians in
reaching decisions about such disorders/diseases. Since ensemble learning approaches, also known as
“combined task forces” of classifiers in the process of classification and prediction, may enhance the

Figure 2: Different types of hybridized NF

2162 CSSE, 2023, vol.46, no.2



precision of traditional predictive approaches, a novel model is employed in this research that performs the
ensembles of suitable hybridized NFs to boost the prognostic accuracy of pregnancy-induced disorder
detection systems. With the capacity to represent very complicated correlations among reported variables
(features) and processed predictors, E-NF has become popular for predicting the future of pregnancies.
However, the overwhelming proportion of past research has concentrated on modeling strategies that
combine single or multiple data sources, including therapeutic and generated statistical information from
additional sources. This study explored two groups of datasets for data analytics: the Apollo-University
of Cambridge Repository [9] and the Preeclampsia datasets from BioGPS [10].

This study builds, trains, and enhances a learning platform, including managing a vast quantity of
observations, developing a learning strategy, and testing. Subsequently, the test findings are reviewed in
the testing stage after incorporating them into the ensemble process using the entire NF approaches.

2 Background

A crucial risk is involved while examining various machine learning algorithms for classifying problems
of any kind. It’s significant to mention, however, that such a choice is highly reliant on the dataset’s
dimensionality and complexity, as well as various features. Since cause and effect can’t be proven using
ML, it can only present potential possibilities for determinism. Moreover, only a limited number of
models can be used to solve specific issues. It was found that [11] constructed a decision-making
framework that employed two classes of decision: one for indicating preterm labor and the alternative one
for showing an irregularly delayed pregnancy. Likewise, a study from [12] employed e-health information
to forecast premature births. In order to categorize the severity of preterm delivery, both positive, as well
as negative categories were used.

Research on both hypertensive as well as preeclampsia problems has been conducted, with multiple
trials specifically focusing on both conditions [13]. 11.5 per cent of the research falls under this group.
Research on preeclampsia usually emphasizes its early detection. However, hypertension diseases are
studied for a variety of reasons, including screening and early detection, mortality correlation, and
adverse effects on pregnancy and foetal development. Most of the research in this domain focused on
categorization (88.9%), but the other studies (11.1%) suggested decision guidance platforms, mobile apps,
and an e-health infrastructure. Around 44.4% used information via medical databases.

Sensors were used to collect real-time data (blood pressure readings) in approximately 22.2% of the
research. Around 11.1% of the investigations acquired data through perinatal staged questionnaires and
smartphone utilization. Survey information was utilized in 16.6% of the research, while healthcare-
associated electronics were used in 11.1% of the investigations. In 11.1 percent of the study, experts’
experience was consulted. Existing research employed facts from previous medical archives and
questionnaires. Feature extraction processes were discussed in 22% of analyzed research findings, with
three prominent studies reporting on the functioning of incomplete information from which parametric
estimation procedures were utilized by [14] single-chained attribution of weighted mean was
implemented by [15] and outcome with the mean significance of records was adapted.

Only minimal studies were used for feature selection techniques [16]. Of all studies in this category,
22.2% proposed usable systems. The research work from [17] presented a complete IDSS for
preeclampsia prediction and maternal care alongside three different applications for each role (A smart
tablet/smartphone app for subjects and healthcare practitioners, as well as a web app for healthcare
professionals and a standalone installer (desktop) for supervisors). The research work from [18]
developed a mobile application which was used to report for preeclampsia prediction and home
monitoring. Research from [19] proposed a mobile application to monitor the health status of pregnant
women suffering from hypertensive disorders. Both patients and healthcare professionals could use the
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mobile application. An e-health system proposed in [20] for hypertension detection could also be used via a
web application by healthcare professionals. In all mentioned studies, BPsensing devices were used by
pregnant women. Table 2 represents some recent ML-based pregnancy complication predictive models
using e-medical images and records.

3 Methodology

Data preprocessing, training with several hybridized NF techniques with extracted features, ensemble
stage (stacking), and ultimately testing are all addressed in this discussion section in depth.

3.1 Preprocessing

As an initial step for data preparation, we employed PCA-based feature extraction concerning
dimensionality reduction factors. Such a process enables the preparatory phase to better explore the

Table 2: ML-Based pregnancy complication predictive models using e-medical images and records

References Focus Sample
size (n)

ML techniques Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

AUC

[21] High & low-
risk
gestational
diabetes
mellitus

>550,000 Decision tree with
gradient
augmentation

– – – 0.85

[12] Austere
neonatal
mortality

100 SVM, generalized
additive model

75.0 81.8 80.6 0.85

[18] Failure risk 9888 Random forest and
gradient
incrementalmachines

– – – 0.79

[14] Preeclampsia 1006 Stochastic gradient 97.0 – 60.3 –

[11] Born alive &
miscarria-ge

952813 ANN – 94.1 80.4 90.1

[22] Premature
delivery

1547677 Decision tree 81.0 – – 0.68

[23] Large and
adequate for
gestational
age

30705 NN and gradient
incrementalmachines

81.3 – – 0.74

[24] Gestational
age &
premature
prediction

1450 RF & binary-logistic
regression

– – 98.0 0.86

[25] Live & still
births

15263 Random forest,
logistic regression

88.0 55.0 88.0 0.88

[26] Live & still
births

149 XGBoost 99.7 94.3 40.5 0.84

2164 CSSE, 2023, vol.46, no.2



complexities of the pregnancy-induced hypertension prediction issue, especially at significant risk instances.
This study’s prediction model was built using Python as well as the scikit-learn module. Table 3 represents
the vital feature components of the datasets.

3.2 Dimensionality Reduction Using PCA

A high combination of multiple variables may result in a massive amount of higher dimensional feature
space; making each data point in the dimensional space (records) a tiny and disproportionate sampling.
Systematic dimensionality reduction can be accomplished with the help of the linear algebraic approach,
and one such optimal technique is principal component analysis (PCA). The “curse of dimensionality”
[28] may significantly influence the effectiveness of ML algorithms when applied to large datasets with a
large number of primary features (input). PCA is utilized to determine the most influential characteristics
for training the model to solve this problem. It removes all the unrepresentative features that aren’t
essential to the concept and retains crucial and distinct features. Using PCA, we could normalize the
critical characteristics from the imprecise and uncertain features obtained from the source datasets. The
entire process is highlighted in four steps, they are

Table 3: Vital feature components of the datasets

Vital attributes Reference range

Blood pressure <120/80 mm Hg.

Proteiuria 47 to 186 mg/day

Thrombocytopenia Mild: 100,000–150,000/μL
Moderate: 50,000–100,000/μL
Severe: < 50,000/μL.

Magnesium 1.5–2.2 mg/dL

Creatinine 0.4–0.8 mg/dL

Phosphate 2.5–4.6 mg/dL

Uric acid 2.4–4.9 mg/dL

Potassium 3.3–5.0 mEq/L

Sodium 131.8–137.4 mEq/L

Chloride 97–109 mEq/L

Blood urea nitrogen (BUN) 3–13 mg/dL

Albumin 2.6–4.5 g/dL

Calcium 8.2–10.6 mg/dL

Other vital attributes

Nulliparity Pregestational diabetes

Thrombophilia Systemic lupus erythematosus

Antiphospholipid syndrome Multi-fetal Gestational

Pregnancy BMI > 30 Maternal age: <35

Obstructive sleep apnea Oxidative stress

Data from [27]
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i) A Covariance Matrix is an initial step in determining the correlations among various features.
ii) In the second step, the eigenvalues and eigenvectors of the Matrices are derived using eigen

decomposition or transformation matrix.
iii) The third step uses eigenvectors to transform the information into principal components.
iv) In the end, Eigenvalues are used to quantify the relevance of these associations and maintain the

most relevant primary components.

In this approach, an enlarged feature space is represented as a feature matrix |M| with ‘n’ observations
and ‘m’ attributes. Computations are formulated to determine the mean value of each feature in the sample.
Next, reducing factors (subtraction) removes every feature from the calculated mean. The subsequent step is
to determine the correlation/covariance matrix. Thus, the eigenvectors and their associative eigenvalues are
estimated using the computed correlation matrix. Finally, an eigen-decomposition is applied to the extracted
data to determine the PCA, as seen in Eqs. (1) and (2).

ê ¼ hjMj � jMjTin�m (1)

T ¼ jMj � ê (2)

The eigenvector ê has columns of ‘e’ that indicate principal components, organized structure according
to their eigenvalues (η). The extracted features are formed by sorting the principal components largely
dependent on their eigenvalues and are ordered in a decreasing mode that is relevant to their
corresponding eigenvector. The êC matrix is chosen from which the primary ‘c’ entries of the matrix êC
are included to complete the procedure. In this matrix, the initial ‘c’ primary features play an essential
role in the model’s construction. The PCA explanatory component determines the estimate of ‘c’. The
stated elements establish the relevance of every primary variable (G) attributable to the approach. Because
of this, it is vital to remove the less relevant G’s from the approach, which will make the procedure much
more stable and further mitigate the computational complexity. In the end, the transposed matrix (Tc)
containing the most important properties is derived using Eq. (3).

Tc ¼ êr � jMj (3)

This Tc matrix comprises the reduced and normalized features that are remarkably significant in the
contribution of crucial network operations. All the extracted normalized features are fed into the NF
systems to predict pregnancy-induced illnesses.

4 Parallel Training of Input Data

A hybrid NF system is a fuzzy-based neural network that employs a training and learning technique that
relies on multi-variate parameters or is influenced by the ANN theory (centred on inference optimization) to
evaluate its variables (intuitionistic fuzzy and its inference) via the analysis of trends observed. One way to
understand an NF system is as a collective compilation of fuzzy rules and sequential training of the evolved
model. Such a method may either be built entirely via mapping input-output data points or can be proceeded
with using a comprehensive assessment through prior information, as fuzzy rules do. Fusion of FL control
with NN yields a more straightforward system to understand and recognize the objective outcome from
observed patterns. In this research, some prominent hybridized NF systems are considered to train and
predict pregnancy-induced disorders. They are ANFIS, EFuNN, FALCON, and SONFIN. The following
subsection elaborates on the core mechanism of all those considered NF systems.
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4.1 ANFIS

ANFIS [29] implements a Takagi-Sugeno Fuzzy Inference Mechanism (FIM) that comprises five layers.
To begin with the first layer, the input feature vectors are mapped to the corresponding MF (membership
function) to obtain a membership value. The second layer represents the first-level hidden layer, where
the predecessors of the regulations (predefined rules) are determined using the operative segment T-norm.
The rule intensities are then fine-tuned in the next hidden layer, which is preceded by its next-level
hidden layer, where the subsequent effects of the regulations are computed. Finally, the last layer
determines the overall outcome by summing up all the incoming processed information. Using a
backpropagation training strategy and the least-squares approach, ANFIS determines the source MF
features. The recurrent trained model comprises two elements for each phase. To begin, the input
sequences are transmitted, and subsequent variables are determined using the recursive least square
approach, whereas the features of the antecedents are deemed immutable. Iterative training algorithms
such as backpropagation have been used to fine-tune the variables of the assumptions, but their outcomes
are left unchanged. The overall outcome in ANFIS can be stated as a continuous function of the
subsequent components. It is also feasible to rewrite the result (f) as,

f ¼ x:ŵ1ð Þi1 þ y:ŵ1ð Þj1 þ x:ŵ1ð Þk1 � � � x:ŵnð Þin þ y:ŵ1ð Þjn þ x:ŵ1ð Þkn½ � (4)

Thus, Eq. (4) exhibits a linear relationship with the following sequential variables (i1, j1, k1….. in, jn, kn).

4.2 FALCON

The five-layered construction of the FALCON is proposed by [30]. Every output has a pair of linguistic
endpoints attached to it. The first one is used for the patterns, while the latter one is utilized to represent the
actual outcome. The dimensional input vectors are mapped to the relative MF in the first-level hidden layer.
The predecessors of the regulations (rules) are defined in the next-level layer (second), which is then
preceded by the consequents described in the next layer (third). FALCON makes use of a training engine
that is a hybrid comprised of unlabeled data to establish the initial MFs and preliminary inference system.
Similarly, a training strategy is entirely centred on learning rate to optimize and alter the eventual
parametric values of each MF to generate the objective output. Finally, these learning procedures are used
in conjunction with one another to provide the required outcome. The following Eq. (5) provides the final
outcome of FALCON using a defuzzification process in which wpq denotes the input of the pth linguistic
result (O) from its qth input.

f Op

� � ¼
X

p
wpq � Op; (5)

where wpq ¼ Xpq

4.3 EFuNN

Only during the training process all the neurons are evolved and involved in training procedures of the
Evolving Fuzzy Neural Network (EFuNN) [31,32]. Here, data from the first layer is sent to the second layer,
which determines levels of the appropriateness of predetermined MF. Further, the layer at the third level
incorporates fuzzy rule-based neurons, which express hypotheses of unprocessed-processed information
as a relationship to hyper-spheres drawn from the fuzzified input-output space dimensions. Using a
hybrid training approach, each rule-based neuron that is specified with two vector fields of weight matrix
is tuned. The fourth layer measures the degree of sensitivity between the output MF and the input data.
Finally, the defuzzification process and attainment of crisp outcomes are performed at the fifth layer.
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4.4 SONFIN

The hybrid concept of SONFIN implements an improved Takagi-Sugeno FIM. The input vector is
segmented in a participatory way, employing a positioned grouping approach in the preliminary section
of the procedure [33]. A singular, unique value is determined using a clustering algorithm that is
allocated initially to each defined rule for the purpose of identifying its form throughout the subsequent
phase of the workflow. Several vital parameters (input variables) are introduced progressively as a
supplementary process in the learning process. Thus, it can generate a linear model of independent factors
for every rule, which is determined by projection-based correlated measures. The subsequent variables are
optimized using the least square method or recurrent minimal space methods, and the primary variable
factors are effectively corrected using the backpropagation algorithm. The outcome layer, which performs
the defuzzification process, integrates the previous layer’s output (recommended) and produces the
ultimate resultant, the following computation exhibited in Eq. (6).

f m
prev
i

� � ¼
X

i
½mi� (6)

5 Ensembles of NF

Using the ensemble paradigm, a set of hybridized NF models is trained, and the outcome of every model
is processed to obtain a final prediction on pregnancy-induced disorders. Recursively learning the prediction
variance of the preceding model is the premise of the proposed stacking ensemble concept. Multiple versions
of existing models and predictive features can be combined using the stacking method instead of boosting,
bagging, or other homogenous ensemble procedures. Unlike the heterogeneous voting-based ensemble
approach, the stacking ensemble strategy allows the meta-learner to acquire knowledge and retrain the
evolved meta-model from the base layer. Thus, the stackable ensemble approach has superior
performance to others.

As demonstrated in Fig. 3, the stackable ensemble training process has a two-tiered layout. The first tier
comprises the multiple base predictors (ANIFIS, EFuNN, FALCON, and SONFIN), where the training
process is accomplished using a normalized input feature. Thus, each model possesses a set of predictive
datasets for a varying range of trials. The second tier incorporates the outcome of the first tier and tends
to form a new dataset for training the meta-model. Predictive results on pregnancy-induced disorders are
generated using the newly evolved dataset. Table 4 represents the procedural steps of E-NF.

Figure 3: Architecture of E-NF
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6 Performance Evaluation

This section demonstrates the efficacy of four NF models and the sequential E-NF in predicting
pregnancy-related diseases by making use of two healthcare data resources. BioGPS [10] and Apollo-
University of Cambridge Repository [9] was used for the experimental purpose. Extraction of features
and dimensionality reductions has been performed upon those healthcare records before they are made
usable. Python 3.6.5 is used to implement the considered predictive methods. System characteristics
include an Intel I7-[Core i7-3520M CPU] with a processor speed of 3.60 GHz as well as 8 GB of
memory. The essential hyper-parameters are considered to evaluate this research’s outcomes. A learning
rate of 0.002 has been configured for each model. The overall count of accessible features determines the
involvement of input neurons which can be used to process data from the dataset. Moreover, a dataset’s
target class count specifies the overall neurons count in the output section. Finally, the process halting
criterion of the proposed system is determined by the number of iterations they have executed (1000 epochs).

Fig. 4a shows the accuracy of various NF predictions, where the E-NF (96.84%) exhibits around 9.85%
more predictive accuracy than other models. Other NF models like ANIFIS, EFuNN, FALCON, SONFIN
reported 87.08%, 87.38%, 89.00%, 87.54%, respectively. It is also evident that the performance of E-NF
is consistent regardless of the increment of epochs. In contrast, the performance degrades for other
models as the epoch increases eventually, which is evident from the outcome displayed in Table 5.
Fig. 4b exhibits the superiority of proposed models in the prediction process compared to the existing
model, which is discussed in Section 2 elaborately.

The suggested model’s functionality is assessed and compared to other hybridized NF strategies using
data analytics. Furthermore, it clarifies the kind of data and its relevance in light of various modeling
schemes. The two considered datasets are compared using the parametric test. When using ML,
overfitting is a prevalent concern. It can emerge at any moment in different contexts. A decrease in error
does not influence the effectiveness of the proposed model anymore, especially during the optimization
process, which contributes to the collinearity of the training sample. Predominately, NF uses
backpropagation mechanisms to reduce the error gap between observed and predicted results. Input
feature vectors that aren’t necessary are removed with the inclusion of the dimensional reduction
approach via PCA.

Table 4: Procedural steps of E-NF

Input: ÎD ¼ x̂i; ŷif g //feature vectors
P̂1; � � � P̂4

� � qi //base prediction with outcomes
Output: PPIO

M //predictive pattern on pregnancy-induced disorders

1:∀ai where, i = 1,2,3,4
2: zri ! T ÎD

� �
//train base predictors-tier 1

3: End ∀
4: Î

0
D ¼ [f g //generate new dataset

5: ∀ j ¼ 1; 2; � � �m;
6: ∀ [i]
7: X̂

0
i ¼ zM sð Þ; //train fM for prediction purposes in the sample, s

8: End ∀
9: Î

0
D ¼ Î

0
D [ X̂

0
1; X̂

0
2; � � � ; X̂

0
i

� �
; Ŷ

0
i

� �
//new dataset

10: End∀
11: z

0
M ! T Î

0
D

� �
//train meta-model-tier 2

12: Outcome: PPIO
M
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We utilized the Receiver Operating Characteristic (ROC) plot to compare several prediction models and
the E-NF approach. In addition, the findings indicated that the AUC (Area Under Curve) of all ROC-
measured techniques is over 0.95 on average. As seen in Fig. 5, AUC values are shown for (a) ANFIS,
(b) EFuNN, (c) E-NF, (d) SONFIN, and (e) FALCON. Employing 7-cross validation, the AUC is
obtained for all prediction models after 250 epochs. Three layers of feed-forward neural backpropagation
are used in each NF approach.

Furthermore, the three-layered NF-based models and E-NF were trained using the robust
backpropagation learning approach. Because each technique employs input feature vectors modified by
PCA with dimensionality reduction capabilities, the results show that there are only negligible variations
in predicting accuracy between each model except E-NF, which shows a significant difference. The
associated consequential benefit of PCA-based dimensionality reduction has been the model’s ability to
forecast pregnancy-related disorders accurately. So, the results of this research show that E-NF is better
than ANFIS, EFuNN, FALCON, and SONFIN.
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Figure 4: (a) Analysis of model’s predictive accuracy among various NF, (b) analysis of model’s predictive
accuracy with existing models

Table 5: Accuracy evaluation of various models

No. of epoch ANFIS EFuNN FALCON SONFIN E-NF

200 89.12 ± 1.81 90.24 ± 2.16 83.12 ± 2.10 91.42 ± 1.26 97.34 ± 1.21

400 87.15 ± 2.17 85.14 ± 1.09 87.43 ± 3.42 93.38 ± 2.09 98.13 ± 1.03

600 82.62 ± 2.08 88.17 ± 2.21 89.17 ± 2.15 89.41 ± 3.17 93.42 ± 1.46

800 90.12 ± 1.34 89.16 ± 3.12 92.14 ± 1.35 82.17 ± 4.38 97.18 ± 0.98

1000 86.43 ± 2.16 84.21 ± 2.11 93.15 ± 1.05 81.34 ± 2.89 98.16 ± 0.88
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The statistical and analytical report of the proposed model is exhibited in Table 6. The outcome has been
assessed against five commonly occurring disorders during the gestation period. The p-value of the entire
concerned model’s prediction process is found to be more acceptable (p = <0.00001) since the outcome is
significant at 0.05. As the gestation week increases, the likelihood of prevalence of disorders increases,
but prediction varies among the considered models, which are evident for Pre-eclampsia and Bacteriuria.
Moreover, Fig. 6 illustrates the average training and testing error of E-NF in predicting all five disorders
is 0.03156% and 0.04142%, respectively, which is significantly lower than 0.05. Thus, an optimal
outcome is produced even if the sampling rate and the number of epochs are increased.
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Figure 5: RoC of (a) ANFIS, (b) EFuNN, (c) E-NF, (d) SONFIN, and (e) FALCON
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Table 6: Analytical evaluation of hybridized NFs and E-NF

Testing error 0.049 0.031 0.026 0.05 0.051 0.049

Training error 0.037 0.027 0.016 0.039 0.039 0.037

Gestation
weeks

Methods Impaired
Glucose
Tolerance

Preeclampsia Gestational
hypertension
abnormalities

Bacteriuria Iron
deficiency
anaemia

p-value

18 ANFIS ✓
(n = 46)

✗ ✗ ✓
(n = 44)

✗ <0.00001

EFuNN ✓
(n = 49)

✗ ✗ ✓
(n = 47)

✗ <0.00001

FALCON ✓
(n = 52)

✗ ✗ ✓
(n = 42)

✗ <0.00001

SONFIN ✓
(n = 44)

✗ ✗ ✓
(n = 45)

✗ <0.00001

E-NF ✓
(n = 45)

✗ ✗ ✓
(n = 49)

✓
(n = 6)

<0.00001

24 ANFIS ✓
(n = 63)

✗ ✓
(n = 53)

✓
(n = 66)

✗ <0.00001

EFuNN ✓
(n = 85)

✗ ✓
(n = 62)

✓
(n = 94)

✗ <0.00001

FALCON ✓
(n = 66)

✗ ✓
(n = 57)

✓
(n = 97)

✓
(n=3)

<0.00001

SONFIN ✓
(n = 79)

✗ ✓
(n = 60)

✓
(n = 102)

✗ <0.00001

E-NF ✓
(n = 68)

✗ ✓
(n = 68)

✓
(n = 105)

✗ <0.00001

30 ANFIS ✓
(n = 143)

✓
(n = 12)

✓
(n = 133)

✓
(n = 213)

✓
(n = 53)

<0.00001

EFuNN ✓
(n = 168)

✓
(n = 22)

✓
(n = 127)

✓
(n = 198)

✓
(n = 35)

<0.00001

FALCON ✓
(n = 152)

✓
(n = 08)

✓
(n = 126)

✓
(n = 184)

✓
(n = 63)

<0.00001

SONFIN ✓
(n = 140)

✓
(n = 17)

✓
(n = 128)

✓
(n = 179)

✓
(n = 44)

<0.00001

E-NF ✓
(n = 155)

✓
(n = 20)

✓
(n = 127)

✓
(n = 188)

✓
(n = 42)

<0.00001

Significance level: 0.05; ✓-Presence; ✗-Absence
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7 Conclusion and Future Research

The Ensemble NF model for predicting pregnancy-induced illnesses is presented in this paper, where the
input characteristics are normalized using a PCA to address inaccurate and ambiguous input data. The
fuzzification process in NF models (FALCON, EFuNN, SONFIN, and ANFIS) ensures decision support
beyond uncertain facts. Still, it increases the model’s complexity since it takes longer to train each model
due to the extension of the fuzzy space. The neural network uses these fuzzified values to improve the
learning and training process. This model’s flaw is in the fuzzification procedure, which does not use
target-labeled attributes and relies on neural networking to handle the discrepancy. The results show that
the E-NF approach accurately predicted impaired glucose tolerance, preeclampsia, gestational
hypertension, bacteriuria, and iron deficiency anaemia.

Moreover, the proposed model maintains the minimal average training (0.0325) and testing error
(0.0427). As a self-learning technique, the model can be used in the prenatal period, diagnostics, and
medical recommendations for disorder interventions as well. In future work, we plan to incorporate
security measures on the eve of storing and accessing the predictive results via handheld devices.
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