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Abstract: Smart grids and their technologies transform the traditional electric
grids to assure safe, secure, cost-effective, and reliable power transmission.
Non-linear phenomena in power systems, such as voltage collapse and oscillatory
phenomena, can be investigated by chaos theory. Recently, renewable energy
resources, such as wind turbines, and solar photovoltaic (PV) arrays, have been
widely used for electric power generation. The design of the controller for the
direct Current (DC) converter in a PV system is performed based on the linearized
model at an appropriate operating point. However, these operating points are ever-
changing in a PV system, and the design of the controller is usually accomplished
based on a low irradiance level. This study designs a fractional-order propor-
tional-integrated-derivative (FOPID) controller using deep learning (DL) with
quasi-oppositional Archimedes Optimization algorithm (FOPID-QOAOA) for
cascaded DC-DC converters in micro-grid applications. The presented FOPID-
QOAOA model is designed to enhance the overall efficiency of the cascaded
DC-DC boost converter. In addition, the proposed model develops a FOPID con-
troller using a stacked sparse autoencoder (SSAE) model to regulate the converter
output voltage. To tune the hyper-parameters related to the SSAE model, the
QOAOA is derived by the including of the quasi-oppositional based learning
(QOBL) with traditional AOA. Moreover, an objective function with the includ-
ing of the integral of time multiplied by squared error (ITSE) is considered in this
study. For validating the efficiency of the FOPID-QOAOA method, a sequence of
simulations was performed under distinct aspects. A comparative study on cas-
caded buck and boost converters is carried out to authenticate the effectiveness
and performance of the designed techniques.

Keywords: Micro-grid; deep learning; archimedes optimization algorithm; FOPID
controller; objective function

1 Introduction

Renewable energy is considered increasingly significant and predominant in distribution systems that
offer various options to electricity users either to get electricity from the chief electricity source or
framing a micro-source not just to satisfy the requirement but also to be an energy producer which
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supplies a microgrid [1]. When a microgrid is disconnected from or connected to the larger grid, it can do so
reliably and autonomously thanks to its many individual micro sources and loads [2]. The micro-source can
be divided, either as a high-frequency ac source or a dc source [3]. These two micro-source categories contain
different renewable energy applications, like reciprocating engines, solar cell modules, wind turbines, and
fuel cell stacks. Micro-grid units are delivered by several micro sources; the high step-up converters can
be utilized for increasing the output voltage of a micro source to 380–400 V for dc interfaces to a
primary electrical source via the Direct Current (DC) to alternating current (AC) inverter [4]. The fuel
cell stack, as well as the single solar cell module, were low-voltage resources, and therefore, a high step-
up voltage gain DC-DC converter was needed for regulating the voltage of DC-DC interfaces [5].

Scientific research works were widely concentrating on the use of DC-DC converters having diverse
output volt values; hence, Buck-Boost, Buck, Boost, and many other types of DC-DC converters are
suggested [6]. DC-DC converters having high voltage converting ratios contain a wide range of
applications in hydropower plants, industrial equipment, vacuum discharge lamps, including electric
vehicles, light emitting diode (LED) drivers, and renewable energy resources like wind turbines, solar
cells, and fuel cells [7]. Voltage control is established with the help of power electronic DC-DC
converters in an extensive range of applications. Making reliable and robust controllers addressing the
frequency and transient response needs becomes complex for such converters [8].

A controller focuses on producing an output voltage that stays in a defined range of current fluctuation
and load voltage step changes. With an adjustment made to the duty cycle applied to a switching gadget, DC-
DC converters can also step down or up the input voltages depending on the specification of the applied load
[9]. Numerous control techniques which generate a controlled voltage output are scrutinized with distinct
stages of efficiency in present research works. Owing to the easy Implementation of the proportional
integral and derivative (PID) controller, it was the most frequently utilized technique in the industry [10].
However, for some topologies such as the zeta converter, which was a fourth-order system, devising a
PID controller becomes complex and the model order reduction approach can be used for regulating the
converter’s ant colony optimization-related PID controller.

This study designs a fractional-order proportional-integrated-derivative (FOPID) controller using a
quasi-oppositional Archimedes Optimization algorithm (FOPID-QOAOA) for cascaded DC-DC
converters in microgrid applications. The presented FOPID-QOAOA model is designed to enhance the
overall efficiency of the cascaded DC-DC boost converter. In addition, the proposed model designs a
FOPID controller using a stacked sparse autoencoder (SSAE) model to regulate the converter output
voltage. To tune the hyper-parameters related to the SSAE model, the QOAOA is derived by the
including of the quasi-oppositional based learning (QOBL) with traditional AOA. Furthermore, an
objective function with the inclusion of the integral of time multiplied by squared error (ITSE) is
considered in this study. For validating the efficiency of the FOPID-QOAOA method, a sequence of
simulations was performed under distinct aspects.

2 Related Works

Patel et al. [11] present an adaptive power flow management method for a standalone hybrid renewable
energy system (HRES) that indulge load management, photovoltaic (PV) cell, and battery energy storage
(BES). A multistage FOPID (multistage FOPID) controller can be suggested in the voltage-controlled loop
of a bidirectional DC-DC converter that can be enhanced by a modified sine cosine algorithm. In [12], the
approximation of a FOPID controller can be suggested for controlling a DC-DC converter. The tuning
process and synthesis of the non-integer PID controller were explained step by step. The suggested
technique considers desired closed-loop features and sturdiness, which keeps the tuning procedure simple.
The transfer operation of the FOPID and its time domain depiction were analyzed and described.
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Tiwari et al. [13] performed modeling of a Dual Active Bridge (DAB) kind converter Generalized
Average Modelling. This kind of process considers the DC and harmonic effect of the alternative voltage.
To control, parameters of fractional order (FO) controllers, such as Tilt Integral Derivative (TID) and
FOPID were synthesized by making use of the heuristic optimizing methods, also termed genetic
algorithm (GA). The usage of fuzzy-based controllers allows more plant controllability when compared
with traditional integer order controllers. Yousef et al. [14] present a hybrid PV, wind turbine, and battery
storage system linked to a 3-stage grid. Three kinds of controllers were taken, and a comparison was
made for an HRES, like the fractional order integral control (FIC), proportional-integral (PI), and FOPI.

Djebbri et al. [15] recommend a supervision strategy based on a fractional order reference adaptive
control (FO-MRAC) model for the control of electrical power transformation in a multisource renewable
energy mechanism. Two source systems (lead-acid battery bank and PV) are considered to have a
particular zero-volt switch full-bridge isolated buck DC-DC energy converters, and the load was resistive.
The global power systems, including coupled DC-DC converters on a DC bus, were precisely modeled in
the state space field. In [16], Therefore, an improvised single-ended primary inductance converter
(SEPIC) can be suggested with a brushless DC (BLDC) motor drive. The advanced SEPIC converters
were projected with switched inductors, and their control topologies can be examined with the FOPID
controller having an ant-lion optimizer (ALO) technique.

Numerous studies have concentrated on the design of controllers for DC-DC energy converters that have
been available in the literature. Despite the machine learning (ML) and deep learning (DL) models that
existed in earlier studies, it is still needed to enhance performance. However, it remains a challenging
problem. Overfitting occurs when there are too many parameters for the given DL model, which is made
worse by the model’s gradual deepening. At the same time, different hyper parameters have a significant
impact on the effectiveness of the DL model training phase, particularly the learning rate. It is also
necessary to modify the learning rate parameter obtains better performance. Therefore, in this study,
authors employ the QOAOA technique for the hyper-parameter tuning of the SSAE model.

All of the above controller layouts for the direct Current (DC) converter in a PV system are carried out
based on the linearized model at an appropriate operating point, based on the above-mentioned study carried
out in the DC-DC converter. However, in a PV system, these operating points are constantly shifting, so the
controller is typically designed using low irradiance levels.

3 System Modelling

The buck and boost converter consists of a (C) capacitor, (S) controllable switch, (L) inductor, (D) diode,
(R) resistive load, and (E) input DC supply voltage [17]. The converter can be operated in CCM and DCM
modes. Then, derive the Continuous Conduction Mode (CCM) mode directly from the Discontinuous
Conduction Mode (DCM). There are three regions for converters to operate in DCM modes. The region
is considered as the inductor current waveform and switches status in the following:

� Region 1 T1ð Þ: The power switch is ON

� Region 2 T2ð Þ: The power switch is OFF, and lL. 0

� Region 3 T3ð Þ: The power switch is OFF and IL ¼ 0

If T1 þ T2 þ T3 ¼ 1. Substitute T1 ¼ u; T2 ¼ 1� u� D; & T3 ¼ D, resulting in the averaged state
space models for the DC-DC converter:
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Fig. 1 illustrates a cascaded system using two DC-DC boost converters (step-up) or buck converters
(step-down). The initial converter is called a source converter, and the successive converter is named a
load converter. In this study, the system Maximal Power Point Tracker (MPPT) information is considered
a significant factor. The state space averaged model of the interacted converter is represented as DCM
operation mode [18]. The cascade buck converter is determined by:
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Cascade boost converter is given by:
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(4)

The equation,V01lL2; and denotes the interaction term associated with the source and load converters, li2
and V01; represent the interaction term of source and load converters, correspondingly. The interaction term
causes uncertainty in the entire system. The switching frequency, load R variation, and inductor size are the
primary determinants of whether the cascaded converter operates in DCM, CCM, or transitions between the
two modes. In DCM operation mode, determining D1 and D2 parameters are complex and can lump the term

Figure 1: Cascaded DC-DC converter
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in the uncertainty term. In the meantime, In CCM operation mode, the state space averaged model is
attainable using D1 ¼ 0 and D2 ¼ 0 in (3) and (4).

4 The Proposed Model

In this study, a new FOPID-QOAOA technique was developed for cascaded DC-DC converters in
microgrid applications. The presented FOPID-QOAOA model is designed to enhance the overall
efficiency of the cascaded DC-DC boost converter. The proposed model designs a FOPID controller
using QOAOA based SSAE model to regulate the converter output voltage.

4.1 FOPID Controller

The construction of the FOPID controller is a linear PID controller extension used in various
applications [19]. The architecture of the presented model has been demonstrated in Fig. 2. As illustrated,
the E&U signal represents the controller input and output, correspondingly. k& l refers to the integrator
and differentiator fractional orders that range from [0, 2]. Furthermore, the output mathematical
formulation and the FOPID controller transfer function are shown in the following.

FOPID sð Þ ¼ KP þ Kl

sk
þ KDs

l (5)

U sð Þ ¼ KPE sð Þ þ Kl

sk
E sð Þ þ KDs

lE sð Þ (6)

KP; KI , and KD Signify the proportional, integral, and derivative controller gain coefficients. The linear PID
controllers can be accomplished if k and l are fixed as 1. As a result, the FOPID is an extended edition of the
traditional PID controller. In contrast to the conventional PID controller, the FOPID controller encompasses two
tuneable variables that enhance the controller flexibility while improving the complication of parameter change.
The proposed controller has several benefits concerning dynamic and stability performances.

Fig. 2 depicts the workflow of the FOPIC controller. The conventional PID controller based on fractional
calculus is expanded by the fractional order PID (FOPID) controller. Proportional, integral, and derivative
(PID) controllers have been widely utilized in industry for process control for a long time. Their merits
include a straightforward design and good performance, such as little settling time and low percentage
overshoot (essential for slow industrial processes). PID controllers are of utmost importance, so ongoing
efforts are made to increase their reliability and quality. Fractional order controllers, a generalization of
traditional integer order controllers, would produce more accurate and reliable control performances in
the field of automatic control.

Figure 2: FOPID controller
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4.2 Architecture of SSAE Model

In the proposed model, the SSAE-based FOPID controller is designed to regulate the converter output
voltage. SSAE refers to the field of deep learning, and its core component is sparse auto-encoder (SAE). With
the incorporation of reconstruction errors and sparse penalty in the coding layer, SAE could efficiently
encourage the model to learn the data feature and copy the input to output. Generally, SAE is applied in
feature extraction, and the feature is employed in clustering or classification algorithm. But SAE could
not attain in-depth data features because it only has a single layer [20]. So, SSAE is projected by adding
the previous SAE’s concealed state to the next SAE’s input. The lower-level feature of the information is
continuously combined, and finally, easily identifiable higher-level feature representation can be achieved.
Autoencoder (AE), as a type of neural network, manages to copy the input to output after training. The
network seems to have the subsequent two parts: an encoder module

h ¼ f xð Þ (7)

and a decoder module

r ¼ g hð Þ (8)

For x input, the h code is attained by the f xð Þ encoding function. Likewise, the reconstruction r is
attained by the g hð Þ decoding function. The concept of AE has been a significant part of the previous
field of neural networks for a longer time. Conventionally, AE is used to decrease the dimensionality of
the feature. Because of the theoretical linkages between latent variable models and AEs, AE has recently
emerged as a leading technique in generative modeling. Various approaches are used to teach AE.
Conventionally mini-batch scaled conjugate gradient (MSCG). The proposed SAE is comprised of sparse
AE. The parameter of SAE can be attained by the greedy layer-wise training model, and the output from
the preceding AE is applied as the input of the subsequent AE. Initially, research have to take advantage
of the original input for training the initial AE, and it learns the feature presentation of the initial order
from the original input. Next, this first-order feature is utilized as the input of the following SAE for
obtaining the second-order feature. Afterward middle hidden layer, the second-order feature is entered
into the softmax classification for mapping the second-order feature to the digital label. Finally, the three
layers are integrated into an SAE, which involves one softmax classification and two hidden layers.

4.3 Design of QOAOA-Based Hyperparameter Optimization

The QOAOA is derived by the inclusion of the QOBL with traditional AOA. A new population-based
metaheuristic approach named AOA algorithm is developed. Like other population-based techniques, AOA
follows the initial stage to generate an evaluation of the population, random population as well as update
parameters in exploration and exploitation stages and termination stage.

In starting stage, every item was assumed to be arbitrarily positioned. The item is treated as the search variable
or population, and the position is generated arbitrarily within the upper and lower bounds. By assuming the item
number as the ds dimension of the search variable, the adjusted population can be produced by:

Xk ¼ rand � � Uk � Lk½ � þ Lk ; k ¼ 1 : ds (9)

In Eq. (9), Xk refers to the kth item in a population of ds items; Lk andUk denote the lower and upper limits
of the search variable, correspondingly. Here, the acceleration (Ak) volume, (Vk), and density (Dk) for every
k�th item were initialized by rk, that is a, ds dimension vector randomized within [0, 1] as follows:

Vk ¼ rk ; Dk ¼ rk and Ak ¼ rand � � Uk � Lk½ � þ Lk (10)
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Finally, the fitness function is estimated to determine the best item and its ideal value (FF) as Xk; best,
Ak;best, Dk;best, and Vk;best for optimal item k and optimal values of acceleration, density, and volume,
correspondingly calculated.

In the parameter updating |stage, the volume, and density of k�th items for the following iterations
(it + 1) are upgraded as follows:

Ditþ1
k ¼ Dit

k þ rk Dk;best � Dit
k

� �
(11)

V itþ1
k ¼ V it

k þ rk Vk;best � V it
k

� �
(12)

From the expression, Dk;best and Vk;best refers to the best values of density and volume of item k,
correspondingly; and optimal acceleration, optimal density, and optimal volume, correspondingly; rk
denotes an arbitrary number with the standard distribution. Significantly, the computation efficacy and the
ability to fall into a local optimum of population method is dependent mainly on control parameters.
Also, in AOA, two variables are determined to balance between the exploitation and exploration stage,
such as density factor (DF) and transfer operator (TO):

TO ¼ exp
it � itmax
itmax

� �
(13)

In Eq. (13), it and itmax represent the recent iteration and maximal iteration count correspondingly.
Likewise, the density-decreasing item nature as time progress is characterized as the DF to arrive at a
global optimal as follows:

DFitþ1 ¼ exp
itmzx � it

itmax

� �
� it

itmax

� �
(14)

The exploration phase is introduced a collision takes place between items. It is considered that the
collision of the item occurs for TO ≤ 0.5, and those item experiences acceleration, as upgraded by the
random material (mr):

Here, Dmr, Vmr and Amr, and Dk , Vk and Ak represent the density, volume, and acceleration of random
item or material and the k�th items, correspondingly. Now, TO ≤ 0.5 is accelerated to complete one-third of
the overall iteration count; the exploration-exploitation behaviors of AOA are altered.

The exploitation phase is projected once the item, is not subject to collision, viz., TO > 0.5, and thus the
acceleration of k�th items is upgraded by the density, volume, and acceleration:

Aitþ1
k ¼ Dk;best þ Vk;bestAk;best

Ditþ1
k V itþ1

k

(15)

In the transformation stage, the percentage of step changes that every item gains in the exploitation and
exploration stages are modeled within the interval of [L, U] as follows:

Aitþ1
k normð Þ ¼ U

Aitþ1
k � Amin

Amax � Amin

� �
þ L (16)

The upper and lower normalization ranges were fixed as 0.1 and 0.9, correspondingly. The item is generally
in an exploration stage if Aitþ1

k normð Þ is a higher value, and represents a location distant from the global optimal; or
else, they are in the exploitation stage. As iteration progresses, Aitþ1

k normð Þ span from higher to lower values and
ensures that the searching space moves to the global optimal. The location of the k�th objects for the
following iteration t + 1 is upgraded by Eq. (17) when TO ≤ 0.5 otherwise, use Eq. (18) when TO ≥ 0.5:
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X itþ1
k ¼ X it

k þ K1rkA
itþ1
k normð ÞDF

itþ1 TXbest � X it
k

� �
; TO � 0:5 (17)

X itþ1
k ¼ X it

k;best þ FkK2rkA
itþ1
k normð ÞDF

itþ1 TXbest � X it
k

� �
; TO . 0:5 (18)

Fk ¼ þ1 if P ¼ 2rk � K4ð Þ � 0:5
�1 if P ¼ 2rk � K4ð Þ. 0:5

�
(19)

where, T ¼ K3TO is directly proportional to TO ranges from [0:3K3, 1]; F was the flag utilized for changing
the direction of movement of an item; K1 and K2 are constant equivalents to 2 and 6, correspondingly; also,
K3 and K4 are constants fixed to 2 and 0.5, correspondingly, for engineering optimizing issues, the values are
fixed as 1 and 4 for standard optimization function. Lastly, the optimal global item and the fitness values are
confirmed by calculating a FF. When the iteration count obtains the maximal, it ¼ itmax, then the optimization
method is completed.

Algorithm 1: Pseudo code of AOA

Procedure AOA N ; T ; c1 and c2ð Þ
Set N objects with their density (D), volume (V), and acceleration �ð Þ.
Assess the score for every object.

Decide the best object OBestð Þ with its best density DBestð Þ, best volume VBestð Þ, and best acceleration �Bestð Þ.
t ¼ 1

while t � T do

for every object i do

Alter volume and density

Alter transfer co-efficient Tcð Þ and density scalar dsð Þ
if Tc � 0:5 after

Alter acceleration �ið Þ.
Normalize acceleration �ið Þ
Fine-tune position

Else

Alter acceleration.

Alter flagging control F

Fine-tune position

end if

Calculate the score of every object.

end for

Decide the best object OBestð Þ with its best density DBestð Þ, optimal volume VlBestð Þ and best acceleration
�Bestð Þ:
Set t ¼ t þ 1

end while

return best object with its quality

end process
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To increase the effectiveness of AOA approach, the QOAOA model is derived from the concept of
QOBL. QO-assisted learning mechanism allows one to achieve a solution candidate with the considering
of the current population alongside quasi-opposite population. The random population initialized by the
AOA approach, is replaced with a quasi-opposite number. Furthermore, it is guaranteed that the quasi-
opposite number is near the opposite point to the solution. Here, the QOAOA procedure is derived from
the QOBL-based population, initialization method. For an opposite number in D-dimensional area, for
real numbers like x x1; x2; . . . ; xDð Þ based on xi 2 albi ; b

lb
i

� �
, the quasi-opposite number xqo is defined by:

xqoi ¼ rand
albi þ bubi

2
; xoi

� �
i ¼ 1; 2; 3; . . . ; Dð Þ (20)

It is likely that the very efficient candidate solution is derived from the QOAOA approach, and it
accomplishes the better solution candidate. The quasi-opposite position could increase the initial
population quality and make the search technique fast by finding the powerful region in the search space.

4.4 Objective Function

In this study, the FOPID-QOAOA technique derives an objective function with the inclusion of the
integral of time multiplied by squared error (ITSE) is taken into account. The objective function has a
considerable effect on the performance of the presented DC-DC converters and the optimum tuning of the
controller coefficient [21]. A closed-loop control system’s effectiveness is assessed by a performance
index acquired from the error signals. The system parameter is attuned under optimal control to decrease
these indexes. As a result, the aim of creating a robust controller is to improve response by diminishing
time-domain features. To accomplish optimum controller parameters, the objective function must be
determined in such a way that the dynamic system responses have the minimum amount of undershoot
and overshoot possibility and lower settling time.

In this work, the integral of absolute error can be determined as evaluation functions, the integral of time
multiplied by squared error (ITSE) is determined by the integral of squared error (ISE), the objective
function, and the integral of time multiplied by absolute error (ITAE). The mathematical expression of
objective and evaluation functions are given below:

JITSE ¼
Z tsim

0
te2 tð Þdt (21)

JISE ¼
Z tsim

0
e2 tð Þdt (22)

JITAE ¼
Z tsim

0
t e tð Þj jdt (23)

JIAE ¼
Z tsim

0
je tð Þjdt (24)

5 Performance Validation

To verify the efficiency of FOPID and PID controllers, the cascaded DC-DC boost converter control
structure is simulated in version 2019b of MATLAB/Simulink software on an intel-corei7/16GB
DDR3 personal computer. In different circumstances and scenarios, the FOPID controller’s performance
is compared to the PID controller.
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Table 1 and Fig. 3 show the output voltage attained by the proposed model in case-1. This study
simulates the proposed cascaded boost converter at a 50% duty cycle (D = 0.5). This case aims to
examine the DC-DC output voltage using FOPID and PID controllers. In this scenario, the input voltage
is 20 volts, and the output voltage should be 80 volts.

Table 2 and Fig. 4 provide the voltage output offered by the FOPID-QOAOA model on two controllers
under case 1. The results implied that the FOPID-QOAOA model has effectively designed the controller
under all aspects. For instance, with time duration of 0.005 s, the output voltage of FOPID and PID
controllers are 54.722 and 41.648 V, respectively. Also, with a time duration of 0.015 s, the output
voltage of FOPID and PID controllers are 81.173 and 78.437 V, correspondingly. Furthermore, with time
duration of 0.035, the output voltage of FOPID and PID controllers are 81.653 and 81.653 V,

Table 1: Output voltage of FOPID-QOAOA methodology on case-1

Time (sec) Voltage (V)

0.000 0.000

0.001 17.920

0.005 87.900

0.010 94.794

0.015 91.692

0.020 87.900

0.025 87.900

0.030 87.900

0.035 87.900

0.040 87.900

0.045 87.900

0.050 87.900

Figure 3: Output voltage attained by FOPID-QOAOA model on case 1
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correspondingly. Furthermore, with time duration of 0.050 s, the output voltage of FOPID and PID
controllers are 81.653 and 81.653 V, correspondingly.

Table 3 and Fig. 5 provide the voltage output offered by the FOPID-QOAOA model on two controllers
under case 2. The results implied that the FOPID-QOAOA model has efficiently designed the controller
under all aspects. For the sample, with a time duration of 0.005 s, the output voltage of FOPID and PID
controllers are 78.965 and 62.051 V, correspondingly. Also, with a time duration of 0.015 s, the output
voltage of FOPID and PID controllers are 83.119 and 86.086 V, correspondingly. Furthermore, with a
time duration of 0.035 s, the output voltage of FOPID and PID controllers are 83.415 and 84.009 V,
correspondingly. Moreover, with a time duration of 0.050 s, the output voltage of FOPID and PID
controllers are 83.415 and 84.009 V, correspondingly.

Table 2: Voltage output analysis of FOPID-QOAOA approach with distinct times under case 1

Voltage (V)

Time (sec) FOPID controller PID controller

0.000 0.000 0.000

0.005 54.722 41.648

0.010 77.221 62.323

0.015 81.173 78.437

0.020 81.653 81.653

0.025 81.653 81.653

0.030 81.653 81.653

0.035 81.653 81.653

0.040 81.653 81.653

0.045 81.653 81.653

0.050 81.653 81.653

Figure 4: Voltage output analysis of FOPID-QOAOA method under case 1
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Table 4 and Fig. 6 offer the voltage output provided by the FOPID-QOAOA approach on two controllers
under case 3. The results show that the FOPID-QOAOA model has efficiently developed the controller in
every aspect. For example, with a time duration of 0.005 s, the output voltage of FOPID and PID
controllers are 77.486 and 64.171 V, correspondingly. As well, with time duration of 0.015 s, the output
voltage of FOPID and PID controllers are 87.546 and 88.434 V, correspondingly. Furthermore, with a
time duration of 0.035 s, the output voltage of FOPID and PID controllers are 87.546 and 94.648 V,
correspondingly. Moreover, with time duration of 0.050 s, the output voltage of FOPID and PID
controllers are 89.914 and 86.067 V, correspondingly.

Table 3: Voltage output analysis of FOPID-QOAOA approach with distinct times under case 2

Voltage (V)

Time (sec) FOPID controller PID controller

0.000 0.000 0.000

0.005 78.965 62.051

0.010 81.338 78.074

0.015 83.119 86.086

0.020 83.415 84.009

0.025 83.415 84.009

0.030 83.415 84.009

0.035 83.415 84.009

0.040 83.415 84.009

0.045 83.415 84.009

0.050 83.415 84.009

Figure 5: Voltage output analysis of FOPID-QOAOA approach under case 2
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The time domain characteristics obtained by the FOPID-QOAOA model under PID and FOPID
controller are given in Table 5. The results implied that the FOPID-QOAOA model has accomplished
effectual time domain values under distinct aspects. For example, under ITSE, the FOPID-QOAOA
model has offered an overshoot of 86.14 and 86.21 under FOPID and PID controllers correspondingly.
Finally, under ISE, the FOPID-QOAOA model has offered an overshoot of 85.38 and 88.75 under
FOPID and PID controllers correspondingly. Furthermore, under ITAE, the FOPID-QOAOA model has
offered overshoots of 87.75 and 89.50 under FOPID and PID controllers correspondingly.
Simultaneously, under IAE, the FOPID-QOAOA model has provided overshoot of 87.69 and 92.11 under
FOPID and PID controllers correspondingly.

Table 4: Voltage output analysis of FOPID-QOAOA approach with distinct times under case 3

Voltage (V)

Time (sec) FOPID controller PID controller

0.000 0.000 0.000

0.005 77.486 64.171

0.010 83.108 81.629

0.015 87.546 88.434

0.020 87.251 86.067

0.025 87.251 84.292

0.030 87.251 85.475

0.035 87.546 94.648

0.040 90.801 88.730

0.045 90.505 85.179

0.050 89.914 86.067

Figure 6: Voltage output analysis of FOPID-QOAOA approach under case 3
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Fig. 7 provides a detailed comparative total harmonic distortion (THD) inspection of the FOPID-QOAOA
model with existing models such as perturb and observe (P&O), particle swarm optimization, multi-objective
PSO (MPSO), ant colony optimization (ACO), grey wolf optimization (GWO), and cuckoo search optimization
(CSO) algorithms. The figure implied that FOPID-QOAOA model had shown effectual outcomes with
minimum THD values. For example, with case 1, the FOPID-QOAOA model has obtained lower THD of
38.12, whereas, the P&O, PSO, MPSO, ACO, GWO, and CSO models have resulted in increased THD of
40.48%, 47.51%, 47.27%, 47.06%, 46.63%, and 45.78% respectively. Simultaneously, with case 2, the
FOPID-QOAOA approach has attained a lower THD of 33.72, whereas the P&O, PSO, MPSO, ACO,
GWO, and CSO models have resulted in an increased THD of 42.06%, 46.36%, 45.48%, 45.13%, 44.76%,
and 42.39% correspondingly. Meanwhile, with case 3, the FOPID-QOAOA model has obtained lower THD
of 30.38 whereas the P&O, PSO, MPSO, ACO, GWO, and CSO models have resulted in increased THD of
41.38%, 35.05%, 34.43%, 31.14%, 33.78%, and 32.32% correspondingly.

Table 5: Time domain characteristics analysis of the FOPID-QOAOA approach

Time-domain characteristics Controllers

FOPID PID

Overshoot ITSE 86.14 86.21

ISE 85.38 88.75

ITAE 87.75 89.50

IAE 87.69 92.11

Settling time ITSE 0.0059 0.0175

ISE 0.0112 0.0163

ITAE 0.0175 0.0184

IAE 0.0144 0.0303

rise time ITSE 0.0087 0.0011

ISE 0.0030 0.0030

ITAE 0.0012 0.0020

IAE 0.0025 0.0026

Figure 7: THD analysis of FOPID-QOAOA approach with existing methodologies
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A detailed voltage profile (Vp) examination of the FOPID-QOAOAmodel with recent models is made in
Fig. 8. The results represented the betterment of the FOPID-QOAOA model with increasing values of Vp.
For example, with case 1, the FOPID-QOAOA method has improved Vp of 29.35 V whereas the P&O,
PSO, MPSO, ACO, GWO, and CSO models have gained reduced Vp of 25.15, 26.3, 27.16, 27.43, 27.84,
and 28.10 V correspondingly. Additionally, with case 2, the FOPID-QOAOA method has improved Vp of
30.68 V while the P&O, PSO, MPSO, ACO, GWO, and CSO models have gained reduced Vp of 24.64,
25.52, 27.57, 27.79, 28.18, and 28.25 V correspondingly. Last, with case 3, the FOPID-QOAOA model
has improved Vp of 29.87 V while the P&O, PSO, MPSO, ACO, GWO, and CSO models approaches
have gained reduced Vp of 24.6, 26.84, 26.91, 27.07, 27.55, and 27.94 V correspondingly. From the
detailed fallouts and discussion, it is ensured that the FOPID-QOAOA model has shown effectual
performance in all aspects.

6 Conclusion

In this article, a new FOPID-QOAOA algorithm was devised for cascaded DC-DC converters in
microgrid applications. The presented FOPID-QOAOA model is designed to enhance the overall
efficiency of the cascaded DC-DC boost converter. In addition, the proposed model designs a FOPID
controller using SSAE model to regulate the converter output voltage. To tune the hyperparameters
related to the SSAE model, the QOAOA is utilized in this study. Moreover, an objective function with
the inclusion of ITSE is considered in this study. For validating the efficiency of the FOPID-QOAOA
method, a sequence of simulations was performed under distinct aspects. Comparative simulations were
performed on cascaded buck and boost converters to validate the efficiency and performance of the
devised algorithms. The FOPID-QOAOA method has improved Vp of 29.35 V whereas the P&O, PSO,
MPSO, ACO, GWO, and CSO models have gained reduced Vp of 25.15, 26.3, 27.16, 27.43, 27.84, and
28.10 V correspondingly. In future, the presented model can be extended to predict the sub-harmonic
instabilities. Besides, the switching regulator control parameters like amplitude of the ramp modulator or
controller gain can be adjusted based on the operating point to avoid jeopardizing the effect of the
instability issues, which can be adjusted depending on the maximum irradiance level.
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Figure 8: Voltage profile analysis of FOPID-QOAOA approach with existing methodologies
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