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Abstract: The Internet of Things (IoT) has gained more popularity in research
because of its large-scale challenges and implementation. But security was the
main concern when witnessing the fast development in its applications and size.
It was a dreary task to independently set security systems in every IoT gadget and
upgrade them according to the newer threats. Additionally, machine learning
(ML) techniques optimally use a colossal volume of data generated by IoT
devices. Deep Learning (DL) related systems were modelled for attack detection
in IoT. But the current security systems address restricted attacks and can be uti-
lized outdated datasets for evaluations. This study develops an Artificial Algae
Optimization Algorithm with Optimal Deep Belief Network (AAA-ODBN)
Enabled Ransomware Detection in an IoT environment. The presented AAA-
ODBN technique mainly intends to recognize and categorize ransomware in
the IoT environment. The presented AAA-ODBN technique follows a three-stage
process: feature selection, classification, and parameter tuning. In the first stage,
the AAA-ODBN technique uses AAA based feature selection (AAA-FS) techni-
que to elect feature subsets. Secondly, the AAA-ODBN technique employs the
DBN model for ransomware detection. At last, the dragonfly algorithm (DFA)
is utilized for the hyperparameter tuning of the DBN technique. A sequence of
simulations is implemented to demonstrate the improved performance of the
AAA-ODBN algorithm. The experimental values indicate the significant outcome
of the AAA-ODBN model over other models.
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1 Introduction

The Internet of Things (IoT) is a gathering of small devices or gadgets equipped with several sensors to assist
an individual in executing several daily routines [1]. IoT gadgets are entrenched gadgets linked to home appliances,
vehicles, and manymore that allow such objects to exchange and connect data. Millions of IoT gadgets were in use,
continuing to multiply [2]. This might allure a challenger to mount a malevolent assault by pointing to IoT gadgets.
An adversary could alter the default identifications of these gadgets and, after utilizing such gadgets, could raise
assaults on other mechanisms [3]. A honeypot was a deception program devised to detect an attacker’s
behaviour or activity to compromise the production mechanism. A honeypot could help as a surveillance tool
and even seizure attack signs [4]. The behavioural analysis of seized signs offers valuable insights into effective
system loopholes. Though honeypots do not secure IoT systems straightly, it is employed for strengthening IDS
(Intrusion Detection System) and firewall located at the network periphery [5].

Several wide security systems were addressing IoT safety, chiefly by conventional cryptographic concepts
[6]. But, the prevailing cryptographic solutions on separate IoT gadgets were inadequate for satisfying the
complete spectrum of IoT security due to the dynamic nature of IoT networks and assaults [7]. There are
numerous features of gadgets in an IoT system like device-to-device proximity transmission, Low-power
and low-cost communications, huge deployment, Self-organization Inter-connectivity, self-healing features,
Heterogeneity, Low Latency Communication, and Requirement of Ultra-Reliable, and Dynamic variations
in the network that forms the security provision very difficult chore in IoT [8]. It raised the landscape of
threats for the invaders. The investigation community in IoT was inspecting the scope of the immense
volume of realistic data produced by IoT gadgets [9]. Then, they modelled several Deep Learning (DL) and
Machine Learning (ML) systems for IoT security by binding information from the data. Besides, DL-related
security systems could learn heterogeneous characteristics in formless data by themselves, and therefore
these were heterogeneity tolerant [10]. It is utilized for detecting the new mutated assaults from their
previous forms; thus, security systems do not require a patch on IoT gadgets.

The authors in [11] construct a two-phase mixed RF model, ransomware detection technique, and Markov
model. Firstly the author focuses on the Windows API call series pattern and constructs a Markov model for
capturing the features of ransomware. Then, the author constructs an RF-ML model for the residual data for
controlling false negative (FNR) and false positive (FPR) error rates. Baek et al. [12] developed a two-
phase hybrid malware recognition (2-MaD) technique for securing IoT devices from obscured malware in
smart city settings. The 2-MaD includes two phases of IoT malware detection. Firstly, the opcode is
extracted afterwards, acting out static analysis, and the learned data used through the Bi-LSTM model,
benign files are discovered. Next, dynamic analysis can be done on files categorized as benign in nested
virtual environments. Afterwards, extracting data on behaviour and process memory from the behaviour
log, malware is identified through a trained EfficientNet-B3 mechanism depending on the system changes.

Basnet et al. [13] developed the novel DL-based ransomware detection architecture in the Supervisory
control and data acquisition (SCADA) controlled electric vehicle charging station (EVCS) with the
performance assessment of 3 DL systems, namely DNN, 1D-CNN, and LSTM-RNN. Nisa et al. [14]
developed a feature fusion system for integrating the feature extracting in pre-trained Inception-v3 and
AlexNet DNN with features accomplished through segmentation-based fractal texture analysis (SFTA) of
image expressive the malware code. In the study, the author uses a distinct pre-trained model (Inception-
V3 and AlexNet) for extracting features. The objective is to enhance the accuracy of the malware
classification since these two models have qualities and characteristics for extracting various features.

The authors in [15] designed the DL method utilized in malware recognition for detecting ransomware in an
emulation sequence. The author presents a specified RNN model to capture local event patterns from the
ransomware series utilizing the conception of the attention mechanism. Azmoodeh et al. [16] established a
DL-based algorithm for detecting Internet of Battlefield Things (IoBT) malware through the device’s
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Operational Code (OpCode) sequences. The author transmutes OpCodes as vector space and employs a deep
Eigenspace learning model for classifying benign and malicious applications. Also, the author demonstrates the
sustainability of the presented model in detecting malware and its robustness against junk code insertion attacks.

This study develops an Artificial Algae Optimization Algorithm with Optimal Deep Belief Network
(AAA-ODBN) Enabled Ransomware Detection in an IoT environment. The presented AAA-ODBN
technique mainly intends to recognize and categorize ransomware in the IoT environment. The presented
AAA-ODBN technique follows a three-stage process: feature selection, classification, and parameter
tuning. In the first stage, the AAA-ODBN technique uses AAA based feature selection (AAA-FS)
technique to elect feature subsets. Secondly, the AAA-ODBN technique employs the DBN model for
ransomware detection. At last, the dragonfly algorithm (DFA) is utilized for the hyperparameter tuning of
the DBN approach. A sequence of simulations is executed to demonstrate the improved performance of
the AAA-ODBN approach. In short, the paper’s contribution is summarized as follows.

� Develop a new AAA-ODBN model for Ransomware Detection in an IoT environment.

� Employ the AAA-FS technique to select the optimal set of features.

� Employ DFA with the DBN model for the classification process.

The rest of the paper is organized as follows. Section 2 offers the proposed model, and Section
3 provides the performance validation. Lastly, Section 4 concludes the study.

2 The Proposed Model

This study developed a novel AAA-ODBN model for ransomware detection in the IoT environment.
The presented AAA-ODBN technique mainly intends to recognize and categorize ransomware in the IoT
environment. Fig. 1 demonstrates the overall process of the AAA-ODBN approach. As shown in the
figure, the presented AAA-ODBN technique follows a three-stage process: feature selection,
classification, and parameter tuning. Initially, input data is preprocessed, and then an optimal set of
features is chosen by AAA. Moreover, the DFA-DBN model is applied to the detection process.

Figure 1: Overall process of AAA-ODBN approach
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2.1 Feature Selection Using AAA-FS Model

In the first stage, the AAA-ODBN exploited the AAA-FS technique to elect feature subsets. AAA
mimics real algae to survive by determining and moving towards a suitable platform and recreating the
upcoming generation [17]. In these subsections, they would concisely examine AAA as follows:

Population of algal colony ¼
x11 x12 x1d
x21 x22 x2d
..
. ..

. ..
.

xn1 xn2 xnd

2
6664

3
7775 (1)

Set xi ¼ xi1; xi2; � � � ; xidð Þ; i ¼ 1; 2; . . . n; while xi represents potential solution. The algal cells in an
algal colony (AC) were assumed to move towards suitable locations with numerous sources. Meanwhile,
the colony accomplishes an ideal position; the optimum solution was accomplished.

The AAA contains evolutionary, adaptation, and helical movements. The AC tries to move toward that
optimum place by developing, adapting, and moving. Note that a critical concept in AAA is the size of AC of
ith AC characterized as Si; i ¼ 1; 2; . . . ; n. Interrelated s2 to real algae, the AC will reproduce and increase to
a large size in an exact living position. Si is set to 1 at the earlier stage and transformed to the fitness value of
i-th AC, for instance, the value of the objective function. The optimum objective function f xið Þ is the high Si
is shown below.

Si ¼ size xið Þ (2)

li ¼ Si þ 4f xið Þ
Si þ 2f xið Þ (3)

Stþ1
i ¼ liS

t
i ; i ¼ 1; 2; . . . ; n (4)

From the expression, f xið Þ shows the objective function, li denotes the upgrade coefficient of Si; t
represents the existing generation.

Algae make natural movement towards the water region with adequate light and other nutrients. In
AAA, all the ACs move towards an optimum AC with the maximum size or optimum main function.
However, this motion is based on selecting 3 dissimilar algal cells and modifying their positions,
expressed as follows.

xtþ1
im ¼ xtim þ xtjm � xtim

� �
sf � wið Þp (5)

xtþ1
ik ¼ xtik þ xtjk � xtik

� �
sf � wið Þcos a (6)

xtþ1
il ¼ xtil þ xtjl � xtil

� �
sf � wið Þsin b (7)

Now, m; k, and l specify uniformly distributed arbitrary numbers within one and d; xim; xik and xil
simulate x; y; and z coordinates of ith AC, j specifies the index of neighbor AC and is accomplished by
means of tournament choice, p represents independent arbitrary values within [−1, 1], a and b show
arbitrary degree of arc amongst [0, 2p�; sf represents a shear force that exists as viscous drag, wi

characterizes friction surface area of i-th AC that is associated with the size of ACs:

wi ¼ 2pr2i (8)
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ri ¼
ffiffiffiffiffiffi
3Si
4p

3

r !
(9)

Now, ri signifies the radius of the hemisphere of ith AC, and Si denotes their size.

Generally, AC with good nutrient sources develops quickly, and unusual nutrient sources might weaken
to pass away. Similarly, in AAA, AC xi becomes larger once it moves towards the ideal position and
accomplishes potential solutions as follows:

biggest ¼ arg max size xið Þf g; i ¼ 1; 2; . . . ; n (10)

smallest ¼ arg min size xið Þf g; i ¼ 1; 2; . . . ; n (11)

smallestj ¼ biggestj; j ¼ 1; 2; . . . ; d: (12)

Now, the smallest and biggest signify AC, j signifies arbitrarily chosen algal cells.

AC suffered from starvation in unsatisfactory light and nutrients during this developing procedure. It is
the process whereby the starved AC tries to move toward the biggest colony and adapt to the situation. Once
the main function accomplishes the best value, the corresponding AC residues the starvation level not
changed. Otherwise, the starvation value increases by 1. The later motion of AC terminates, the AC has
maximal starvation value (Eq. (13)) adapted to the biggest AC with probability Ap, and it is given below:

xs ¼ arg max starvation xið Þf g; i ¼ 1; 2; . . . ; n (13)

xtþ1
sj ¼ xtsj þ biggestj � xtsj

� �
� rand1; if rand2 < Ap;

xtsj; otherwise:

(
j ¼ 1; 2; . . . ; d (14)

Now, s shows an index of AC that is maximum starvation values, and starvation xið Þ measures the
starvation level of ACs xi; j represents the index of the algal cell, rand1 and rand2 produce stochastic
values within [0,1], Ap symbolizes adaptation probability that defines adaptation occurs or not, Ap

specifies constant usually fixed amongst 0.3 and 0.7.

During the presented method, the fitness function (FF) utilized for balancing betwixt the classifier
accuracy (maximal) and the count of particular features from all the solutions (minimal) attained with the
particular feature, Eq. (10) symbolizes the FF for calculating the solution.

Fitness ¼ acR Dð Þ þ b
Rj j
Cj j (15)

At this time, cR Dð Þ implies the classifier error rate of providing classifications (K-nearest neighbor
(KNN) classifier). Rj j stands for the cardinality of a particular set, and Cj j refers to the entire feature
count from the data, a; and b depict the 2 variables equivalent to the impact of subset length and
classifier quality. ∈ [1,0] and b ¼ 1� a:

2.2 Ransomware Detection Using DBN

The AAA-ODBN technique employs the DBNmodel for ransomware detection at this stage. DBN is the
base model because it shows improved efficiency in lower speed regulation conditions in pretraining [18].

(1) RBM: DBN is a multi-layer NN comprising a sequence of stacked RBMs. The architecture of RMB
is a bipartite graph, viz., nodes in the layer aren’t interconnected, whereby the initial layer is the input node
Vv, and the next layer is the hidden node Vh, its state space with 0; 1f g or real number R. W c indicates the
weight connection coefficient matrices of Vv and Vh:
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Every node could take distinct states. Also, the state of these models is defined once the state of every
node is defined and represents the degree to which the method takes the state; furthermore, the model was
estimated using the energy function. Fig. 2 illustrates the framework of the DBN technique.

Figure 2: Structure of DBN

The energy function is determined by Eq. (16) once the state space of Vv is 0; 1f g:
E v; hð Þ ¼ �

X
i;j
viWij hj �

X
iEvisibile

ajvj �
X

jEhidden
bjhj (16)

(2) K-step Contrastive Divergence Methodology (k-CDM): the default Gibbs sampling RBM training
model is more ineffective since the k-CDM training method is used. There exist 2 one-step models,
“binary to binary” and “Gaussian to Gaussian”. The CD-1 (binary-to-binary) is given below:

Loss ¼
X

ðv� pv0 Þ2 (17)

Next, based on ðhjvÞ, if ph > rand 0; 1ð Þ, afterward h ¼ 1, then, h ¼ 0. The recreated information is
returned while the computation is completed, and pðvjhÞ is defined by computation:

ph ¼ sigmoid v �W þ bð Þ
pv0 ¼ sigmoid h �W cT þ að Þ
ph0 ¼ sigmoid pv0 �W þ bð Þ

8<
: (18)

The calculation of We; Dae, and Dbe are:

DWe ¼ vT � ph � pTv ; ph0
� �

=n
Dae ¼ � v� pv0ð Þ=n
Dbe ¼ � ph � ph0ð Þ=n

8<
: (19)

Next, Weþ1; aeþ1, and beþ1 is evaluated:

Weþ1 ¼ We þ mDWe�1 þ rDWe � dWe

ae¼1 ¼ ae þ m � Dae�1 þ r � Dae
be¼1 ¼ be þ m � Dbe�1 þ r � Dbe

8<
: (20)

In CD-1 (Gaussian to Gaussian), the energy function was re-determined by:

E v; hð Þ ¼ �
X

i;j

vi
ri

hj
rj
Wij þ

X
iEvisible

ðai � viÞ2
2r2i

þ
X

jEhidden

ðbj � hjÞ2
2r2j

(21)
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When the K-step is set to one-step, afterwards ri ¼ 1; rj ¼ 1 and the Eq. (18) in the procedure is
different too:

ph � N v �W þ a; rð Þ; h ¼ v �W þ a
pv0 � N h �WT þ b; rð Þ; v0 ¼ h �WT þ b
ph0 � N v0 �W þ a; rð Þ; h0 ¼ v0 �W þ a

8<
: (22)

While Eq. (19) changed to:

DWe ¼ vT � h� v
0T � ph0

� �
=n

Dae ¼ � v� v0ð Þ=n
Dbe ¼ � h� h0ð Þ=n

8<
: (23)

(3) Building DBN : the DBN method is constructed by connecting the RBM layer. Furthermore, the
HDBN method would be constructed afterwards, resolving the hybrid data fusion problem.

2.3 Parameter Tuning Using DFA

Finally, the DFA is utilized for the hyperparameter tuning of the DBN model. Dragonfly has unique
swarming behaviours that encompass migration (dynamic swarm) and hunting (static swarm) [19].
Static swarming has major features such as local movement and fast evolution in the flying direction. In
static swarming, the dragonfly hunts for food while flying back and forth in a smaller group, whereas in
dynamic swarming, the dragonfly moves in one direction over a longer distance. Such behaviours are
comparable to the 2 stages of optimization using metaheuristics, such as exploration and exploitation,
correspondingly.

In DFA, five major aspects exist to update the location of dragonflies in a swarm: distraction, separation,
alignment, cohesion, and attraction.

The separation Si indicates the collision avoidance from one another in the neighbour range and is
evaluated by Eq. (24),

Si ¼
XN

k¼1
X � Xk (24)

In Eq. (24), X indicates the existing location, Xk indicates the location of k-th neighbouring individuals,
and N indicates the number of neighbours.

The alignment Aj is while the individual matches the velocity of another neighbour and is shown as
follows.

Aj ¼
PN

K¼1 Vk

N
(25)

In Eq. (25), Vk characterizes the velocity of k-th neighbouring individuals.

The cohesionCj refers to the tendency of an individual towards the centre and is evaluated by Eq. (26)

Cj ¼
PN

K¼1 Xk

N
� X (26)

The attraction Fj towards the source of food is evaluated as follows

Fi ¼ Xþ � X (27)

In Eq. (27), Xþ indicates the location of food sources.
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The distraction Ei from the enemy is shown as follows

Ei ¼ X� � X (28)

In Eq. (28), X� indicates the enemy location.

The swarm behaviour of dragonflies is a grouping of those factors. For upgrading the location of the
dragonfly, 2 vectors, step DXð Þ and location (X), are taken into account. The step vector illustrates the
direction of movement as follows.

DXtþ1 ¼ sSi þ aAi þ cCj þ fFi þ eEi

� �þ wDXt (29)

In Eq. (29), s; a, and c indicate the separation, alignment, and cohesion weights, whereas f and e show
the food and enemy factors correspondingly. w denotes the inertial weight, and t indicates the present
iteration.

Afterwards, the computation of the step vector, the location vector is evaluated by Eq. (30),

Xtþ1 ¼ Xt þ DXtþ1 (30)

For exploration, searching space can be performed by a random walk (Levy Ilight) and is evaluated
using Eq. (31).

Levy xð Þ ¼ 0:01� r1 � r

jr2j
1
b

(31)

Now, r1 and r2 indicate the arbitrary number within 0 and 1; b indicates the constant as follows

r ¼
� 1þ bð Þ � sin

pb
2

� �

�
1þ b
2

� �
� b� 2

b� 1

2

� �
0
BB@

1
CCA

1=b

(32)

where � xð Þ ¼ x� 1ð Þ!:
The location of the dragonfly is upgraded as follows.

Xtþ1 ¼ Xt þ Levy dð Þ � Xt (33)

Now, d indicates the dimension of the location vector.

3 Results and Discussion

This section assesses the experimental validation of the AAA-ODBN approach utilizing a dataset [20],
as depicted in Table 1. IoT-23 is a new network traffic dataset from the Internet of Things (IoT) devices. It has
20 malware captures executed in IoT devices and 3 captures for benign IoT device traffic.

The confusion matrices provided by the AAA-ODBNmodel under distinct TR and TS dataset is given in
Fig. 3. With 80% of TR data, the AAA-ODBN approach has categorized 360 samples into M-1, 341 samples
into M-2, 343 samples into M-3, 351 samples into M-4, 366 samples into M-5, 360 samples into M-6,
342 samples into M-7, 369 samples into M-8, and 372 samples into B. Simultaneously, with 20% of TS
data, the AAA-ODBN system has categorized 91 samples into M-1, 99 samples into M-2, 99 samples
into M-3, 93 samples into M-4, 82 samples into M-5, 94 samples into M-6, 67 samples into M-7, 75
samples into M-8, and 88 samples into B. Concurrently, with 70% of TR data, the AAA-ODBN
technique has categorized 278 samples into M-1, 287 samples into M-2, 292 samples into M-3,
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308 samples into M-4, 280 samples into M-5, 298 samples into M-6, 283 samples into M-7, 308 samples into
M-8, and 318 samples into B. Finally, with 30% of TS data, the AAA-ODBN methodology has categorized
116 samples into M-1, 1230 samples into M-2, 123 samples into M-3, 122 samples into M-4, 124 samples
into M-5, 128 samples into M-6, 140 samples into M-7, 132 samples into M-8, and 144 samples into B.

Table 2 provides an overall result analysis of the AAA-ODBN model on 80% of TR data and 20% of TS
data.

Fig. 4 illustrates a brief ransomware detection outcome of the AAA-ODBN approach on 80% of TR
data. These results ensured that the AAA-ODBN model has improved under all classes. For the sample,
in the M-1 class, the AAA-ODBN technique has an accessible accuy of 97.53%, precn of 88.24%, sensy
of 89.78%, specy of 98.50%, and Fscore of 89%. Also, in M-2 class, the AAA-ODBN approach has
obtainable accuy of 97.47%, precn of 87.89%, sensy of 88.57%, specy of 98.54%, and Fscore of 88.23%.
Besides, in M-3 class, the AAA-ODBN system has offered accuy of 97.44%, precn of 88.86%, sensy of
87.50%, specy of 98.66%, and Fscore of 88.17%. Moreover, in M-4 class, the AAA-ODBN algorithm has
obtainable accuy of 97.69%, precn of 89.77%, sensy of 89.09%, specy of 98.75%, and Fscore of 89.43%.

Fig. 5 depicts a brief ransomware detection result of the AAA-ODBN technique on 20% of TS data.
These outcomes ensured that the AAA-ODBN technique had demonstrated enhanced results under all
classes. For sample, in the M-1 class, the AAA-ODBN methodology has an accessible accuy of 97.22%,
precn of 84.26%, sensy of 91.92%, specy of 97.88%, and Fscore of 87.92%. Besides, on M-2 class, the
AAA-ODBN methodology has obtainable accuy of 96.89%, precn of 89.19%, sensy of 86.09%, specy of
98.47%, and Fscore of 87.61%. Besides, in M-3 class, the AAA-ODBN technique has an accessible accuy
of 97.44%, precn of 87.61%, sensy of 91.67%, specy of 98.23%, and Fscore of 89.59%. Finally, in M-
4 class, the AAA-ODBN technique has presented accuy of 98.11%, precn of 95.88%, sensy of 87.74%,
specy of 99.50%, and Fscore of 91.63%.

Table 3 provides an overall result investigation of the AAA-ODBN technique on 70% of TR data and
30% of TS data. Fig. 6 showcases a detailed ransomware detection outcome of the AAA-ODBN technique
on 70% of TR data. These outcomes indicated that the AAA-ODBN approach had enhanced outcomes in all
classes. For sample, in the M-1 class, the AAA-ODBN system has an existing accuy of 96.29%, precn of
86.88%, sensy of 78.75%, specy of 98.50%, and Fscore of 82.62%. Moreover, in M-2 class, the AAA-
ODBN model has offered accuy of 96.38%, precn of 84.91%, sensy of 82%, specy of 98.18%, and Fscore

Table 1: Dataset details

Label Description No. of samples

M-1 CC 500

M-2 FileDownload 500

M-3 HeartBeat 500

M-4 PartofHorizontalPortScan 500

M-5 Torii 500

M-6 Okiru 500

M-7 Mirai 500

M-8 DDos 500

B Benign 500

Total number of samples 4500
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of 83.43%. Besides, in M-3 class, the AAA-ODBN technique has presented accuy of 96.19%, precn of
82.02%, sensy of 83.91%, specy of 97.72%, and Fscore of 82.95%. Ay last, in M-4 class, the AAA-ODBN
system has offered accuy of 96.35%, precn of 83.70%, sensy of 84.85%, specy of 97.85%, and Fscore of
84.27%.

Figure 3: Confusion matrices of AAA-ODBN approach (a) 80% of TR dataset, (b) 20% of TS dataset,
(c) 70% of TR dataset, and (d) 30% of TS dataset
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Table 2: Result analysis of AAA-ODBN approach with distinct measures under 80:20 of TR and TS data

Labels Accuracy Precision Sensitivity Specificity F-score

Training phase (80%)

M-1 97.53 88.24 89.78 98.50 89.00

M-2 97.47 87.89 88.57 98.54 88.23

M-3 97.44 88.86 87.50 98.66 88.17

M-4 97.69 89.77 89.09 98.75 89.43

M-5 97.89 91.73 89.49 98.97 90.59

M-6 97.58 87.59 90.91 98.41 89.22

M-7 96.83 87.24 84.24 98.43 85.71

M-8 97.64 88.92 90.44 98.56 89.67

B 97.92 90.73 90.95 98.81 90.84

Average 97.56 89.00 89.00 98.63 88.99

Testing phase (20%)

M-1 97.22 84.26 91.92 97.88 87.92

M-2 96.89 89.19 86.09 98.47 87.61

M-3 97.44 87.61 91.67 98.23 89.59

M-4 98.11 95.88 87.74 99.50 91.63

M-5 96.89 81.19 90.11 97.65 85.42

M-6 97.33 87.04 90.38 98.24 88.68

M-7 96.00 88.16 71.28 98.88 78.82

M-8 97.33 91.46 81.52 99.13 86.21

B 97.89 84.62 96.70 98.02 90.26

Average 97.23 87.71 87.49 98.45 87.35

Figure 4: Average analysis of AAA-ODBN algorithm under 80% of TR data
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Figure 5: Average analysis of AAA-ODBN algorithm under 20% of TS data

Table 3: Result analysis of AAA-ODBN approach with distinct measures under 70:30 of TR and TS data

Labels Accuracy Precision Sensitivity Specificity F-Score

Training phase (70%)

M-1 96.29 86.88 78.75 98.50 82.62

M-2 96.38 84.91 82.00 98.18 83.43

M-3 96.19 82.02 83.91 97.72 82.95

M-4 96.35 83.70 84.85 97.85 84.27

M-5 95.84 82.35 79.77 97.86 81.04

M-6 96.19 80.98 85.63 97.50 83.24

M-7 96.89 86.28 84.23 98.40 85.24

M-8 97.11 87.01 87.25 98.36 87.13

B 97.14 84.13 91.38 97.86 87.60

Average 96.49 84.25 84.20 98.02 84.17

Testing phase (30%)

M-1 95.78 81.69 78.91 97.84 80.28

M-2 96.30 84.25 82.00 98.08 83.11

M-3 95.70 80.92 80.92 97.58 80.92

M-4 97.33 85.31 89.05 98.27 87.14

M-5 96.96 88.57 83.22 98.67 85.81

M-6 95.56 78.05 84.21 96.99 81.01

M-7 97.26 91.50 85.37 98.90 88.33

M-8 97.78 89.80 89.80 98.75 89.80

B 98.00 88.34 94.74 98.41 91.43

Average 96.74 85.38 85.36 98.17 85.31
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Fig. 7 defines a brief ransomware detection outcome of the AAA-ODBN methodology on 30% of TS
data. These outcomes ensured that the AAA-ODBN technique had outperformed improved outcomes
under all classes. For sample, in the M-1 class, the AAA-ODBN model has obtainable accuy of 95.78%,
precn of 81.69%, sensy of 78.91%, specy of 97.84%, and Fscore of 80.28%. Also, in M-2 class, the AAA-
ODBN system has obtainable accuy of 96.30%, precn of 84.25%, sensy of 82%, specy of 98.08%, and
Fscore of 83.11%. Besides, in M-3 class, the AAA-ODBN technique has presented accuy of 95.70%, precn
of 80.92%, sensy of 80.92%, specy of 97.58%, and Fscore of 80.92%. Eventually, in M-4 class, the AAA-
ODBN approach has an accessible accuy of 87.33%, precn of 85.31%, sensy of 89.05%, specy of 98.27%,
and Fscore of 87.14%.

The training accuracy (TRA) and validation accuracy (VLA) acquired by the AAA-ODBN approach
under the test dataset is displayed in Fig. 8. The experimental result outperformed that the AAA-ODBN
method has reached enhanced values of TRA and VLA. In specific, the VLA looked that superior to TRA.

Figure 6: Average analysis of AAA-ODBN algorithm under 70% of TR data

Figure 7: Average analysis of AAA-ODBN algorithm under 30% of TS data
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The training loss (TRL) and validation loss (VLL) realized by the AAA-ODBN methodology under the
test dataset are shown in Fig. 9. The experimental result stated that the AAA-ODBN approach had decreased
values of TRL and VLL. In certain, the VLL is lesser than TRL.

Figure 8: TRA and VLA analysis of AAA-ODBN algorithm

Figure 9: TRL and VLL analysis of AAA-ODBN algorithm
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An obvious precision-recall investigation of the AAA-ODBN methodology under the test dataset is
depicted in Fig. 10. The figure states that the AAA-ODBN technique has improved precision-recall
values under distinct class value labels.

A detailed ROC analysis of the AAA-ODBN system under the test dataset is displayed in Fig. 11. The
outcome exhibited by the AAA-ODBN technique demonstrated its ability to classify various class labels.

Figure 10: Precision-recall analysis of AAA-ODBN algorithm

Figure 11: ROC curve analysis of AAA-ODBN algorithm
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At last, a comparison analysis of the AAA-ODBN approach with existing methodologies in terms of
accuy is shown in Table 4 and Fig. 12 [21]. The obtaine0d values indicate that the LSTM-BRNN model
has attained a minimal accuy of 76.40%. In addition, the LSTM-BNN and CNN models have obtained
slightly improved accuy values of 83.30% and 88.58%, respectively. Next, the CNN-LSTM, SGD, and
DRNN models have reached a reasonable accuy of 96.27%, 95.34%, and 94.67%, respectively.
Eventually, the projected AAA-ODBN technique has shown an enhanced accuy of 97.56%. These results
assured the better performance of the AAA-ODBN technique over other DL models.

4 Conclusion

In this study, a novel AAA-ODBN technique has been developed for ransomware detection in the IoT
environment. The presented AAA-ODBN technique mainly intends to recognize and categorize ransomware
in the IoT environment. The presented AAA-ODBN technique follows a three-stage process: feature
selection, classification, and parameter tuning. In the first stage, the AAA-ODBN exploited the AAA-FS
technique to elect feature subsets. Secondly, the AAA-ODBN technique employs the DBN model for
ransomware detection. At last, the DFA is utilized for the hyperparameter tuning of the DBN approach. A
sequence of simulations is executed to demonstrate the improved performance of the AAA-ODBN
system. The experimental values indicate the significant outcomes of the AAA-ODBN model over other

Table 4: Comparative analysis of AAA-ODBN technique with existing methodologies

Methods Accuracy (%)

AAA-ODBN 97.56

LSTM-BRNN 73.40

LSTM-BNN 83.30

CNN model 88.58

CNN-LSTM 96.27

SGD model 95.34

DRNN model 94.67

Figure 12: Comparative analysis of AAA-ODBN approach with existing methodologies
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models. As a part of the future scope, feature reduction approaches can improve the outcome of the AAA-
ODBN model.
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