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Abstract: Structural reliability is an important method to measure the safety
performance of structures under the influence of uncertain factors. Tradi-
tional structural reliability analysis methods often convert the limit state
function to the polynomial form to measure whether the structure is invalid.
The uncertain parameters mainly exist in the form of intervals. This method
requires a lot of calculation and is often difficult to achieve efficiently. In order
to solve this problem, this paper proposes an interval variable multivariate
polynomial algorithm based on Bernstein polynomials and evidence theory
to solve the structural reliability problem with cognitive uncertainty. Based on
the non-probabilistic reliability index method, the extreme value of the limit
state function is obtained using the properties of Bernstein polynomials, thus
avoiding the need for a lot of sampling to solve the reliability analysis problem.
The method is applied to numerical examples and engineering applications
such as experiments, and the results show that the method has higher com-
putational efficiency and accuracy than the traditional linear approximation
method, especially for some reliability problems with higher nonlinearity.
Moreover, this method can effectively improve the reliability of results and
reduce the cost of calculation in practical engineering problems.

Keywords: Structural reliability; uncertainty analysis; interval problem;
evidence theory; Bernstein polynomial

1 Introduction

Structural reliability is an essential tool to measure the safety performance of structures under the
influence of uncertain factors. It is necessary to judge whether the reliability of traditional limit state
calculation is reliable and the calculation cost is very high. In the existing methods, the deterministic
mathematical model with safety coefficients is often adopted to complete the structural design. A
complex deterministic model like the fractal fractional model [1] can be built by computer modeling,
but it cannot accurately describe the uncertainty in engineering problems. Stochastic extension of the
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deterministic model [2] can address the above issue; however, various assumptions are imposed to
simplify the calculation, which limits this method. To solve this problem, the method of fitting the
probability density function of uncertain variables is often adopted. However, this method requires a
lot of sampling, and the calculation cost sometimes exceeds that of the original method. Evidence
theory [3] uses an interval composed of a pair of upper and lower probability values to describe
the reliability of the problem and the uncertainty of the proposition. This interval contains the real
probability value calculated by the traditional probability method. Thus, the problem of solving
reliability is transformed into the problem of solving an interval value range [4]. Although it may
cause conflicts in the evidence combination rule, some appropriate methods can avoid this problem [5].
Evidence theory uses probability bounds to reflect confidence in the collective power set of all possible
outcomes. Evidence theory can deal with uncertain problems well in line with people’s habits of
thinking, which can reasonably describe and deal with all kinds of incomplete information, uncertain
information, unreliable information, and even conflicting information, so it is applied to various fields
[6,7]. Therefore, the motivation of this research is to find an effective, low-cost method for structural
interval reliability.

In this paper, a method to solve the reliability probability interval by using Bernstein poly-
nomials is proposed. The value range of limit state function is obtained by Bernstein polynomial
approximation, and then the reliability interval of the problem is obtained based on evidence theory
[8]. This method has higher efficiency and accuracy for implicit limit states and complex explicit
expressions [9,10].

The rest of the paper is organized as follows: Section 2 briefly reviews some specific measures
and open issues in the literature. Section 3 elaborates on our proposed method. Section 4 presents the
experiments, and Section 5 describes the results and discussion. Section 6 concludes the paper.

2 Review of Typical Uncertainty Measures

In this section, we first introduce some basic concepts of evidence theory and then summarize its
application model in structural reliability analysis. In addition, the current research status with the
structural reliability analysis is illustrated by pieces of literature.

2.1 Basic Principles of Evidence Theory
Evidence theory was first proposed and developed by Dempster and Shafer, which is also called

Dempster–Shafer theory. The Frame of Discernment (FD) is the most fundamental concept in
evidence theory [11] which is the set of all possible results that can be recognized for a particular
decision problem. The FD is similar to the sample of random variables in probability theory, which
consists of a finite number of essential elements. As an essential concept of evidence theory, the Basic
Probability Assignment (BPA) is used to describe the credibility of propositions. � is regarded as the
FD if the set function (m: 2X → [0, 1] is the power set of �) satisfies the following three properties:

m(A) ≥ 0, ∀A ∈ 2X

m(∅) = 0∑
A∈2X

m (A) = 1
(1)

Then m is called the BPA on the FD of �. For all A ∈ 2X , m(A) is called the primary credible
number of A, where the set A of m(A) ≥ 0 is called the focal element of m. The primary credible
number reflects the support of the evidence for the proposition that an element of X belongs to set A,
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or the degree to which the decision-maker has reason to believe in proposition A under this evidence,
which is similar to the probability density function in the random model [12–14]. The belief function
(Bel) and plausibility function (Pl) represent the degree of truth of proposition A. Bel(A) is the sum of
the basic credible numbers of evidence that fully support proposition A, and Pl(A) is the sum of the
basic credible numbers that fully or partially support proposition A, that is:

Bel (A) = ∑
C⊆A

m (C)

Pl (A) = ∑
C∩A�=∅

m (C)
(2)

The two measures, one upper bound and the other lower bound, form an upper and lower
probability interval to describe the uncertainty of proposition A [15,16].

2.2 Structural Reliability Analysis Based on Evidence Theory
Evidence theory uses an interval composed of a pair of upper and lower probability values to

describe the reliability of the problem. This interval contains the true probability value P calculated
by the traditional probability method. With the increased uncertain variable information, the upper
probability Pl(A), lower probability Bel(A) and P will approach the same value [17]. For a single
evidence variable, the above method can be used to convert the variable into an interval variable. For
the case of multiple independent evidence variables, the Cartesian product method should be used to
combine all evidence variables.

For a two-dimensional limit state equation g(a, b), a ∈ A and b ∈ B are two independent evidence
variables. The reliability domain of the structure is defined as follows:

G = {g : g(a, b) ≥ g0} , (a, b) ∈ dk, dk = [ai, bj] ⊂ D (3)

D = A × B = {
dk = [ai, bj], ai ∈ A, bj ∈ B

}
(4)

where g0 is the allowable response value, D is the Cartesian product of A and B, and ai, bj, dk are the
focal elements of A, B and D respectively. Multiple independent evidence variables are combined by
the Cartesian product and shown as a multi-dimensional cube structure in geometry.

Based on the combination of BPA and reliability domain G, the reliability measures Bel(G) and
Pl(G) of the structure can be calculated. These two measures will contain the probability reliability
value R = P {g(a, b) ≥ g0} under complete information:

Bel(G) ≤ R ≤ Pl(G) (5)

Bel(G) and Pl(G) are obtained from Eq. (2), where set A is replaced by G, and C becomes the
focal element of the n-dimensional FD:

Bel (G) = ∑
dk⊆G

md (dk)

Pl (G) = ∑
dk∩G �=∅

md (dk)
(6)

The term md(dk) represents two joint BPAs. It can be seen that dk ⊆ G or dk ∩G �= ∅ is a necessary
determiner when calculating Bel(G) and Pl(G); dk ⊆ G means that the focal element is entirely within
the reliability domain, while dk ∩ G �= ∅ indicates that the focal element is completely or partially
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within the reliability domain. To judge accurately, it is necessary to calculate the extreme value of the
limit state equation g on each focal element dk:

[gmin, gmax] =
[

min
X∈dk

g (X) , max
X∈dk

g (X)

]
(7)

If both gmin − g0 and gmax − g0 are positive, it indicates dk ⊆ G, and BPA is included in Bel(G)

and Pl(G). If both gmin − g0 and gmax − g0 are negative, BPA is included in neither Bel(G) nor Pl(G). If
gmin − g0 is negative but gmax − g0 is positive, it indicates dk ∩ G �= ∅, and BPA is only included in Pl(G).
By performing the above analysis on all focal elements, Bel(G) and Pl(G) can finally be obtained.

2.3 Related Works
In recent years, reliability research based on evidence theory has become a hot spot in the

reliability research of high-tech equipment. The combination method proposed by Yang et al. [18]
and Jiang et al. [19] considers multiple dimensions when fusing conflict evidence. However, there is
still a problem that the consideration is not comprehensive or the probability subtraction method is
used to measure the consistency of evidence at the decision-making level. In response to this problem,
many experts and scholars have improved the evidence combination rules by modifying the evidence
combination rules [20] and the actual evidence [21,22], respectively. However, the method of modifying
the evidence combination rules fails to preserve the exchange laws and association law of the classical
Dempster combination rules, which is not convenient for complex combination operations. Most
of the previous methods to modify the actual evidence only consider the consistency of evidence at
the reliability level. In contrast, the reliability evaluation depends on the probability distribution of
indicators, so there is a lack of consistent measurement of evidence at the decision-making level. In
literature [23], the conflict degree of evidence at the decision-making level is measured by the sum
of the absolute values of the difference between the evidence and the Pignistic probability values
of the same focal element, to define the correction weight of each evidence. However, the results of
the consistency measurement between evidence by this method are often affected by the probability
interval segmentation and are not accurate enough.

3 Methodology

In this method, the value range of the limit state function is obtained by Bernstein polynomial
approximation, and then the reliability interval of the problem is obtained based on evidence theory.
As seen from the above section, the key to reliability analysis of evidence theory is to solve the extreme
value of the limit state function on each focal element [24]. There are two forms of limit state function
for structural reliability analysis under cognitive uncertainty, namely, explicit limit state function and
implicit limit state function. The explicit limit state function is divided into polynomial expressions and
complex expressions. For complex expressions and implicit expressions, the response surface method
is first used to establish the polynomial response surface approximation.

3.1 Response Surface Methodology
In this paper, the quadratic response surface method without cross terms is adopted. It approxi-

mates the actual limit state function g(x) in the following form:

g (x) ≈ G (x) = a +
n∑

i=1

bixi +
n∑

i=1

cix2
i (8)
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where x = [x1, x2, . . . , xn]T is an uncertain variable and a,bi, ci(i = 1, . . . , n) are 2n + 1 unknown
coefficients to be determined, which can be obtained by fitting some test points. In this method,
the first test point is taken as the mean point xμ = [μ1, μ2, . . . , μn]T of uncertain variables, and the
remaining 2n test points are taken as the maximum and minimum values of each uncertain variable.
From this (2n + 1)th test point, the (2n + 1)th unknown coefficient can be obtained. Then the quadratic
approximate limit state function without cross terms can be obtained.

3.2 Bernstein Polynomials for Extreme Values
After obtaining the approximate limit state function, the reliability analysis is transformed into the

solution of the range of polynomials. Traditional optimization methods are complex in solving multi-
dimensional and high-order problems, and there are optimal local problems. In this paper, a method
based on Bernstein polynomials is proposed to obtain the value range of the limit state function. By
using the properties of Bernstein polynomials [25], it is possible to solve Bernstein coefficients instead
of finding the range directly.

Bernstein polynomials have the following properties for a given multivariate polynomial:

h (u) =
∑
0≤i≤n

aiui (9)

where i = [i1, i2, . . . , is], ui = ui1
1 · ui2

2 · . . . · uis
s and n = [n1, n2, . . . , ns], represent the highest values of each

variable. If u1 ∈ [0, 1] , u2 ∈ [0, 1] , · · · , us ∈ [0, 1] is satisfied, the original polynomial can be expanded
into Bernstein polynomial form:

h (u) =
∑
0≤i≤n

bi (D, g) Bn
i (u) (10)

and

min (bi (D, g)) ≤ h (u) ≤ max (bi (D, g)) (11)

Among

Bn
i (u) = Bn1

i1
(u1) · Bn2

i2
(u2) · . . . . . . Bns

is
(us) , (12)

Bnk
ik

(uk) =
(

nk

ik

)
(1 − uk)

nk−ik uk
ik (13)

is called the ith Bernstein term, and

bi (D, g) =
∑

j≤i

s∏
k=1

(
ik

jk

)
(

nk

jk

)aj (14)

is called the term’s Bernstein coefficient, where aj corresponds to ai in the original polynomial one-to-

one. Considering that
(

i
j

)
is the probability of simply extracting j elements from i elements, the key to

calculating the Bernstein coefficient is the coefficient ai in the original polynomial.

Expanding the approximate polynomial of the limit state function into a Bernstein polynomial,
the value range of the limit state function is obtained from the properties of the Bernstein polynomial
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coefficients: min (bi (D, g)) ≤ h (u) ≤ max (bi (D, g)). The evidence theory is used to complete the
reliability analysis.

3.3 Algorithm Design
Based on the above contents, the specific algorithm for interval reliability analysis based on

Bernstein polynomials and evidence theory can be obtained, as shown in Fig. 1.

Figure 1: Algorithm flow chart
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4 Example

4.1 Numerical Examples
For the composite beam shown in Fig. 2, the elastic modulus of the beam is E, the length, width,

and height are L (mm), A (mm) and B (mm) respectively, and the elastic modulus of the aluminum
plate on the lower surface of the beam is Ea, and the width and height of the effective section are C
(mm) and D (mm) respectively. Six external vertical forces P1, P2, P3, P4, P5 and P6 are applied to six
different positions of the beam, L1, L2, L3, L4, L5 and L6 respectively. The limit state function is defined
as the difference between the allowable stress and the maximum stress:

Y = g(x) = S − σmax(x) (15)

D
C

A

B

M-M cross section

1L

2L

3L

4L

5L

6L

L

1P 2P 3P 4P 5P 6P

2O1O
M

M

Figure 2: Composite beam diagram

Among them, S is the allowable stress, and σmax(x) represents the maximum stress and its
expression is:

σmax(x) = max{σk(x) : k = 1, . . . , 6} (16)

The stress σk(x) applied to the cross section at Pk can be expressed as follows:

σ1 (x) = [L1

∑6

i=1 Pi(L − Li)/L]Ymax(x)

W(x)
(17)

σk (x) = [Lk

∑6

i=1 Pi(L − Li)/L − ∑k−1

i=1 Pi(Lk − Li)]Ymax(x)

W(x)
, k = (2, . . . , 6) (18)

where Pi represents the external vertical force applied to the corresponding position of the beam, Li is
the length of the beam at this position, and

Ymax (x) = 0.5AB2 + DC(B + D)Ea/Ew

AB + DCEa/Ew

(19)

W (x) = AB3

12
+ AB

[
Ymax (x) − B

2

]2

+ CD3Ea

12Ew

+ CDEa

Ew

[
D
2

+ B − Ymax (x)

]2

(20)

The values of the 15 fixed parameters in the model are: L1 = 200 mm, L2 = 400 mm, L3 =
600 mm, L4 = 800 mm, L5 = 1000 mm, L6 = 1200 mm, L = 1400 mm, P1 = P2 = P3 = P4 =
P5 = P6 = 15 kN, Ea = 70 GPa and Ew = 8.75 GPa. Assume that variables A, B, C and D all obey
normal distribution with mean values μA = 100 mm, μB = 200 mm, μC = 80mm and μD = 20 mm
and standard deviations σA = 1 mm, σB = 2 mm, σC = 0.8 mm and σD = 0.2 mm. The BPA of each
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variable is obtained through the probability model. Tables 1–3 show the BPA of each variable divided
into four segments, eight segments and sixteen segments, respectively.

Table 1: Four intervals for A, B, C and D

A/mm B/mm C/mm D/mm

Interval BPA Interval BPA Interval BPA Interval BPA

[95.0, 97.5] 0.62% [190, 195] 0.62% [78, 79] 0.62% [19.50, 19.75] 0.62%
[97.5, 100] 49.38% [195, 200] 49.38% [79, 80] 49.38% [19.75, 20.00] 49.38%
[100, 102.5] 49.38% [200, 205] 49.38% [80, 81] 49.38% [20.00, 20.25] 49.38%
[102.5, 105] 0.62% [205, 210] 0.62% [81, 82] 0.62% [20.25, 20.50] 0.62%

Table 2: Eight intervals for A, B, C and D

A/mm B/mm C/mm D/mm

Interval BPA Interval BPA Interval BPA Interval BPA

[95.0, 96.25] 0.1% [190, 192.5] 0.1% [78, 78.5] 0.1% [19.50, 19.625] 0.1%
[96.25, 97.5] 0.61% [192.5, 195] 0.61% [78.5, 79] 0.61% [19.625, 19.75] 0.61%
[97.5, 98.75] 9.94% [195, 197.5] 9.94% [79, 79.5] 9.94% [19.75, 19.875] 9.94%
[98.75, 100] 39.44% [197.5, 200] 39.44% [79.5, 80] 39.44% [19.875, 20.00] 39.44%
[100, 101.25] 39.44% [200, 202.5] 39.44% [80, 80.5] 39.44% [20.00, 20.125] 39.44%
[101.25, 102.5] 9.94% [202.5, 205] 9.94% [80.5, 81] 9.94% [20.125, 20.25] 9.94%
[102.5, 103.75] 0.61% [205, 207.5] 0.61% [81, 81.5] 0.61% [20.25, 20.375] 0.61%
[103.75, 105] 0.1% [207.5, 210] 0.1% [81.5, 82] 0.1% [20.375, 20.50] 0.1%

Table 3: Sixteen intervals for A, B, C and D

A/mm B/mm C/mm D/mm
Interval BPA Interval BPA Interval BPA Interval BPA

[95.0, 95.625] 0.00% [190, 191.25] 0.00% [78, 78.25] 0.00% [19.50, 19.56] 0.00%
[95.625, 96.25] 0.01% [191.25, 192.5] 0.01% [78.25, 78.5] 0.01% [19.56, 19.625] 0.01%
[96.25, 96.875] 0.08% [192.5, 193.75] 0.08% [78.5, 78.75] 0.08% [19.625, 19.69] 0.08%
[96.875, 97.5] 0.53% [193.75, 195] 0.53% [78.75, 79] 0.53% [19.69, 19.75] 0.53%
[97.5, 98.125] 2.42% [195, 196.25] 2.42% [79, 79.25] 2.42% [19.75, 19.81] 2.42%
[98.125, 98.75] 7.53% [196.25, 197.5] 7.53% [79.25, 79.5] 7.53% [19.81, 19.875] 7.53%
[98.75, 99.375] 16.03% [197.5, 198.75] 16.03% [79.5, 79.75] 16.03% [19.875, 19.94] 16.03%
[99.375, 100] 23.40% [198.75, 200] 23.40% [79.75, 80] 23.40% [19.94, 20.00] 23.40%
[100, 100.625] 23.40% [200, 201.25] 23.40% [80, 80.25] 23.40% [20.00, 20.06] 23.40%
[100.625, 01.25] 16.03% [201.25, 202.5] 16.03% [80.25, 80.5] 16.03% [20.06, 20.125] 16.03%
[101.25, 01.875] 7.53% [202.5, 203.75] 7.53% [80.5, 80.75] 7.53% [20.125, 20.19] 7.53%
[101.875, 102.5] 2.42% [203.75, 205] 2.42% [80.75, 81] 2.42% [20.19, 20.25] 2.42%
[102.5, 103.13] 0.53% [205, 206.25] 0.53% [81, 81.25] 0.53% [20.25, 20.31] 0.53%

(Continued)
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Table 3: Continued
A/mm B/mm C/mm D/mm

Interval BPA Interval BPA Interval BPA Interval BPA

[103.13, 103.75] 0.08% [206.25, 207.5] 0.08% [81.25, 81.5] 0.08% [20.31, 20.375] 0.08%
[103.75, 04.325] 0.01% [207.5, 208.75] 0.01% [81.5, 81.75] 0.01% [20.375, 20.44] 0.01%
[104.325, 105] 0.00% [208.75, 210] 0.00% [81.75, 82] 0.00% [20.44, 20.50] 0.00%

Taking the allowable stress S = 0.0164, the Bernstein approximation method and linear
approximation method proposed in this paper are used to analyze the reliability problem. They
are compared with the safety results calculated directly by the genetic algorithm. The results are
shown in Table 4. Case 1 represents the Bernstein approximation method, case 2 represents the linear
approximation method, and case 3 represents the genetic algorithm. It can be seen from Table 4
that the interval probability obtained by dividing each variable into four segments, eight segments
and sixteen segments by the method proposed in this paper is included in the safety probability
interval, and the finer the number of variable segments, the smaller the interval probability span and
the closer it is to the actual probability value (the real probability value is obtained by the Monte
Carlo method, and the number of samples is 106), which shows that the method proposed in this
paper is effective. The proposed method has lower computational efficiency compared with the linear
approximation method, but the results are closer to the actual value. It can be seen that the proposed
method has higher accuracy, especially for reliability problems with high nonlinearity. At the same
time, the computational efficiency of the proposed method and the linear approximation method is
related to the number of evidence uncertainties. The less uncertain the quantification of evidence, the
higher the computational efficiency, and vice versa. The calculation efficiency and accuracy are related
to the interval number of variable divisions. The larger the interval number, the lower the efficiency and
the higher the accuracy. Therefore, the method proposed in this paper is more suitable for the implicit
limit state with less evidence uncertainty and the explicit complex expression. The appropriate interval
score should be selected during the calculation.

Table 4: Interval probability calculation results

Number of segments Case Bel Pl N∗
4 Case 1 0.2509 0.7454 2304

Case 2 0.2516 0.9908 1280
Case 3 0.2523 0.9908 1280

8 Case 1 0.3043 0.6952 36864
Case 2 0.3043 0.8638 20480
Case 3 0.3047 0.8656 20480

16 Case 1 0.4289 0.6477 589824
Case 2 0.4295 0.7646 327680
Case 3 0.4486 0.7758 327680

MCS(106) 0.6072

Note: ∗: N is the number of calls of the limit state function.
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4.2 Engineering Examples
Fig. 3 shows the ten-bar structure. All horizontal and vertical bars are of length L, and Pi(i =

1, 2, 3) is the concentrated load. The cross-sectional area and elastic modulus of each bar are Ai(i =
1, 2, . . . , 10) and E, respectively.

1 2 3

4 5 6

� �1 � �2

1P 2P

3P

� �4� �3

� �5 � �6

� �7

� �8

� �9

� �10

Figure 3: Schematic diagram of a ten-bar structure

Of these, the cross-sectional areas are A1 ∈ [6, 10] cm2 for bar 1 and A2 ∈ [6, 10] cm2 for bar
2, L ∈ [1.3, 1.7] m is the evidence uncertainty, and the BPA structure is shown in Table 5. The rest
are fixed parameters, and the values are: A4−10 = 8 cm2, E = 70 GPa, L = 1.5 m , P1 = 500 N and
P2 = P3 = 100 N. The limit state equation can be defined as g(x) = D − dy(x), where dy(x) is the
displacement in the vertical direction of node 3 and D is the allowable maximum displacement value,
which is set as D = 0.03 m in this example.

Table 5: BPA structure of 4 intervals:A1, A2, A3, L

A1, A2, A3/cm2 L/m

Interval BPA Interval BPA

[6, 7] 10.07% [1.3, 1.4] 19.73%
[7, 8] 39.93% [1.4, 1.5] 30.27%
[8, 9] 39.93% [1.5, 1.6] 30.27%
[9, 10] 10.07% [1.6, 1.7] 19.73%

5 Results and Discussion

To display the comparison results more clearly and accurately, the curves of Bel and Pl with the
allowable stress S obtained by the two methods are given in this paper and compared with the actual
probability curve obtained by the Monte Carlo method (the number of samples is 106). Figs. 4–6 show
the results obtained by dividing the variables into four segments, eight segments and sixteen segments,
respectively. As can be seen from the figure, in the whole process of S change, the Bel curve and Pl
curve obtained by the two methods always include the actual probability P curve. With the increase of
variable segmentation, i.e., the increase of information, the Bel curve and Pl curve gradually approach
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the actual probability curve. The Bel and Pl curves obtained by the Bernstein method are closer to the
actual probability curve than those obtained by the linear method.
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Figure 4: 4-interval cumulative distribution results
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Figure 5: 8-interval cumulative distribution results

Table 6 shows the obtained reliability analysis results. When the allowable maximum displacement
D of node 3 is D = 60.0 mm, the plausibility Pl = 0.9821 is obtained by linear approximation.
According to this result, structural safety is ideal. However, the plausibility obtained by the Bernstein
approximation is Pl = 0.9317, which is relatively small, indicating an excellent possibility of structural
failure under the design requirements of this displacement value. It can be seen that the accuracy of
the proposed method is higher than that of the linear approximation method. When the maximum
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allowable displacement D of node 3 is D = 72.6 mm, the reliability and plausibility obtained by the
two methods are 1. It can be seen that the safety index always meets the design needs; that is, the
structure is entirely reliable.
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Figure 6: 16-interval cumulative distribution results

Table 6: Reliability analysis results

Method Case Bel Pl D

Linear
approximation

60.0 0.5746 0.98211 60.0
72.6 1 1 72.6

Bernstein 60.0 0.5746 0.9317 60.0
72.6 1 1 72.6

6 Conclusion

In this paper, a reliability analysis method based on evidence theory is proposed. Based on the
non-probabilistic reliability index method, the extreme value of the limit state function is obtained by
using the properties of the Bernstein polynomial to avoid large sampling.

The proposed method has been applied to a numerical example and an engineering application.
The calculation results have shown that the proposed method has high calculation efficiency and
accuracy, especially for some reliability problems with high nonlinearity. Compared with the linear
approximation method, the proposed method in this paper has higher accuracy. Unfortunately, this
study has not yet included large-scale reliability problems with many evidence uncertainties. It is
expected that this method will be extended to the mixed reliability problem with cognitive uncertainty
and random uncertainty in future.
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