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Abstract: The Internet of Things (IoT) environment plays a crucial role in the
design of smart environments. Security and privacy are the major challenging pro-
blems that exist in the design of [oT-enabled real-time environments. Security sus-
ceptibilities in IoT-based systems pose security threats which affect smart
environment applications. Intrusion detection systems (IDS) can be used for
IoT environments to mitigate loT-related security attacks which use few security
vulnerabilities. This paper introduces a modified garden balsan optimization-
based machine learning model for intrusion detection (MGBO-MLID) in the
IoT cloud environment. The presented MGBO-MLID technique focuses on the
identification and classification of intrusions in the IoT cloud atmosphere. Initi-
ally, the presented MGBO-MLID model applies min-max normalization that
can be utilized for scaling the features in a uniform format. In addition, the
MGBO-MLID model exploits the MGBO algorithm to choose the optimal subset
of features. Moreover, the attention-based bidirectional long short-term
(ABIiLSTM) method can be utilized for the detection and classification of intru-
sions. At the final level, the Aquila optimization (AO) algorithm is applied as a
hyperparameter optimizer to fine-tune the ABiLSTM methods. The experimental
validation of the MGBO-MLID method is tested using a benchmark dataset. The
extensive comparative study reported the betterment of the MGBO-MLID algo-
rithm over recent approaches.
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1 Introduction

Recently, security in the Internet of Things (IoT) becomes a hot research topic among research communities
and business people. There exist two fundamental clarifications for many security issues and wide privacy
concerns. One is the IoT objects limited concerning processing capability, memory capacity, and power
consumption. Due to such constraints, conventional Internet techniques such as RSA and Advanced
Encryption Standards (AES) become complex in implementing directly in IoT [1,2]. End-to-end secure
interactions in rich source substances, namely laptops, tablets, and phones, could be attained at the transport
layer via Transport Layer Security (TLS) or else at the network layer through Internet Protocol Security
(IPsec). However, such techniques are not straight away implemented in constrained source objects, and their
unavailability can result in eavesdropping, network side-channel assaults, and tracking, amongst other
privacy and security menaces [3,4]. So, integrating machine learning (ML) related intrusion detection (ID) in
the IoT pattern becomes critical to resist such attacks whereas still meeting IoT criteria [5]. The IoT is
ubiquitous in everyday lives, linking physical objects to e-services [6]. In other words, the IoT refers to an
engine that powers modern health, home automation, and advanced manufacturing smart cities [7,8]. An
intrusion detection system (IDS) becomes a security system which functions majorly in the network layer of
an loT mechanism [9]. An IDS positioned for an IoT mechanism must make the analysis of data packets and
produce a response practically, scrutinize data packets presented in various loT layers having diverse
protocol stacks, and acclimatize to several technologies in an IoT setting [10]. An IDS designed for IoT-
related smart environments should work in difficult circumstances of low processing abilities, quick response,
and high-volume data processing. Thus, classical IDSs does not completely suitable for IoT settings [11]. IoT
security has become an ongoing and serious issue; hence, the latest understanding of the security
susceptibilities of IoT and the advancement of respective mitigation techniques were needed [12].

Attack detection in IoT was distinct when compared with the past because of its exclusive IoT service
needs, which a central cloud does not meet: scalability, source limitations, mobility, distribution, low latency,
and so on [13]. This denotes that neither cloud-related nor standalone threat discovery technologies were
sufficient for addressing the security issues of IoT. So, an IDS must analyse for bridging the gap [14]. It
was increasingly essential for continually studying the ID field in IoT networks. The latest method
integrates the sensor with an alarm facility and is expected to provide superior security compared to the
classical method. Henceforth, the latest system allows ML methods with IoT to fault diagnose from its
initial levels. The ML approach could be offered superior outcomes than human professionals provide.
Artificial neural network (ANN) is one of the ML approaches to detect a fault in the IoT environment.
The most used ML approach to predict fault in a system was support vector machine (SVM), ANN, and
Radial Basis Function (RBF) [15]. But several studies were being used to improve the act of the
prevailing mechanism and high concentration in reducing the fault by using advanced methods.

This paper introduces a modified garden balsan optimization-based machine learning model for
intrusion detection (MGBO-MLID) technique in the IoT cloud atmosphere. The presented MGBO-MLID
technique applies min-max normalization that can be employed for scaling the features in a uniform
format. Besides, the MGBO-MLID model exploits the MGBO algorithm to choose the optimal subset of
features. The attention-based bidirectional long short-term (ABiLSTM) algorithm was leveraged for the
recognition and classifying of intrusions. Finally, the Aquila optimization (AO) algorithm was applied as
a hyperparameter optimizer to fine-tune the ABiLSTM technique. The performance evaluation of the
MGBO-MLID model was tested with the help of a benchmark dataset.

2 Related Works

Alkadi et al. [16] suggested a deep blockchain framework (DBF) projected for presenting security-
related distributed intrusion detection (ID) and privacy-related blockchains having smart contracts in IoT
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networks. A bidirectional (BiLSTM) algorithm can use the ID technique for dealing with sequential network
data. Atul et al. [17] examined such issues and offered the pattern about enhanced transmission patterns,
particularly suggesting Energy Aware Smart Home (EASH) structure. In this study, the issues in
transmission failures and forms of network assaults were examined in EASH. Using ML methods, the
abnormality resources of the transmission pattern were distinguished. In [18], the NSLKDD can be utilized
for evaluating ML techniques for ID. But not everyone’s features enhance performance in huge datasets.
Thus, selecting and reducing a particular feature set improvise accuracy and speed. Then, features were
chosen by using Recursive Feature Elimination (RFE). Rigorous experimentation on IDS is conducted,
which employs ML techniques like random forest (RF) and SVM. Almiani et al. [19] provided an
artificially fully automated ID system for Fog security towards cyberattacks. The suggested method employs
a multi-layer RNN devised to be applied for Fog computing security near users and loT gadgets.

Yahyaoui et al. [20] suggested an anomaly detection technique employing SVM for wireless sensor
network (WSN) ID and deep learning (DL) for gateway ID. And suggest a detection protocol that performs
the on-demand SVM classifier orderly when an intrusion is suspected. The combination of an ML classifier
with a statistical technique for malicious node localization is carried out. In [21], a new hybrid weighted
deep belief network (HW-DBN) method was suggested for building an effective and dependable IDS
(DeeploT.IDS) method for detecting prevailing and new cyber-attacks. The HW-DBN method compiles an
enhanced Gaussian—Bernoulli Restricted Boltzmann Machine (Deep GB-RBM) feature learning operator
having a weighted deep neural network (WDNN) classifier. Kareem et al. [22] provide a new FS technique
by increasing the activity of the Gorilla Troops Optimizer (GTO) depending on a system for bird swarms
(BSA). This BSA can be utilized for boosting performance exploitation of GTO in recently advanced GTO-
BSA due to its strong ability in finding feasible regions having optimum solutions.

3 The Proposed Model

In this paper, a novel MGBO-MLID technique was projected for the effectual recognition and
classification of intrusions in the IoT cloud atmosphere. At the preliminary level, the presented MGBO-
MLID model applied min-max normalization for scaling the features in a uniform format. Following this,
the MGBO-MLID model exploits the MGBO algorithm to choose the optimal subset features. Besides,
the MGBO with ABiLSTM method is utilized for the recognition and classification of intrusions. Fig. 1
portrays the overall flow of the MGBO-MLID approach.

3.1 Data Pre-Processing

At the introductory level, the presented MGBO-MLID model applied min-max normalization for scaling
the features in a uniform format. Min-max normalization approach to scale the feature in [0,1] range by
applying Eq. (1).

O min/? (1)
max,y — miny

Herein, miny and max 4 represent the minimal and maximal values of feature 4. The original and normal
value of an attribute, 4, can be denoted by v and V' correspondingly. It is noticed from the equation which is
mentioned above that maximal and minimal feature values were mapped to 1 and 0 correspondingly.

3.2 Design of MGBO-Based Feature Selection Model

Once the input data is pre-processed, the MGBO-MLID model exploits the MGBO algorithm to select
the optimal subset features. During the simulation of garden balsam expansion and propagation, this process
iterates at the start. In the procedure, the mechanical and second propagator, a mapping rule, and a selective
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method were implemented in turn; still, the end criteria were fulfilled, viz., both the accuracy requirement of
the problem was fulfilled, and maximal iteration was obtained.

Data Preprocessing

Data Transformation | | Class Labeling
Dataset 1

Data Normalization

l

Feature Selection process
using Modified
Garden Balsan Optimization Algorithm

l

Chosen Features

Data Classification Process
using
Attention based Bidirectional Long Short Term Memory

Hyperparameter Tuning Process
using
Aquila Optimizer Algorithm

Figure 1: Overall flow of MGBO-MLID technique

At this point, the steps contained from the dispersal of garden balsam populations:

1) The initialisation of populations is because of some seeds scattered arbitrarily on a particular region
developing roots and constructing a 1st-generation population;

2) Progeny reproduction: The natural states of the developing region caused all the plants from the 1st-
generation population to show different development rates. The stronger plants bear further fruit and
spawn other seeds.

While the consequence of individual x, the subsequent amount of seeds were created:

Jmax —f(x

S = L() X (Smax - Smin) + Smin (2)
fmax _fmin

whereas f'(x) refers to the fitness value, f.x denotes the present population’s maximal fitness value, fyin

denotes the present population’s minimal fitness value, s, indicates the upper limits on the amount of

seeds, and Sy, implies the minimal amount of seeds.

3) Mechanical transmission: The plants from optimum developing states bear completely grown fruits,
further powerful ejection force, and, accordingly, distant ejections of seeds.
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The range of seed diffusions is computed as follows:
4= <iterr.nax - iter)n ><fmax _f(x)
1termax fmax _fmin

If finax — f(x) = 0, or itermax — iter = 0, A = ¢. ¢ refers to the min value; iter signifies the evolutionary
iterations at Present, iter,,,, implies the max iteration and »n proposes the non-linear harmonic factor.

X Ainis 3)

4) Second transmission: To population diversity for increasing, the seed is arbitrarily transported from
place to place by animals, water, and wind.

Its appearance is as follows:
x; =xp+ F(x2 —x3) @
whereas x/1 denotes the novel place of x; afterwards the secondary broadcast, xp signifies the optimum place,
F represents the zoom factor, and x; and x3 indicate the places of 2 dissimilar seeds.

5) Competition-based elimination: The population size of a particular area was restricted by Npy.x. Once
the population size attains the upper limit, an elite seed is taken, and a redundant seed is arbitrarily
removed. The amount of elite seeds is computed utilizing Eq. (5).

iter

Nbest = .—Nmax (5)
1termax

Npes: signifies the number of elite solutions, and iter and iter,x are related to individuals.

The chaotic tent map has the characteristics of orderliness, randomness, and ergodicity. Based on the
distinct characteristics, numerous researchers have proposed a chaotic tent map into the optimization
technique that could significantly improve the diversity of the population and speed up the convergence
rate at an earlier stage. In this work, the EGBO algorithm is designed by using the chaotic tent map to
replace the original random population initialisation technique to improve the presented technique's
population diversity as follows.

. 2z 0<z <05
kL = {2 (1—2z), 05<z<1 ©)

The equation transformed from Eq. (7) using the Bernoulli shift is as follows.
Zk+1 = (2z)m0d1 (7)

The step of utilizing the chaotic tent map for generating values is as follows.

Step 1: Randomly produce z, within the range of zero and one (avoid z, in a smaller period
(0.2, 0.4, 0.6, 0.8), y(1) =zp, i =j = 1.

Step 2: Iterate through Eq. (7) to attain a sequence of z;, i =i + 1.

Step 3: Once the maximal iteration count is reached, return to Step 4. Or else, if z; = {0, 0.25, 0.5, 0.75}
or y =y — k, k={0, 1, 2, 3, 4}, changes the initial value of iteration by the formula
x(i) =y(j+ 1) = y(j) + ¢, whereby c refers to a random number, j = j + 1. Or else return to Step 2.

Step 4: The process is halted, and the y sequence is maintained.

The distribution histogram of tent chaotic and logistic chaotic maps lies in the range of zero and one with
the primary value of 0.32 and the iteration times of 500, correspondingly. The stimulation outcome indicates
that the sequence produced by tent chaos maps has considerably good uniformity compared to the logistic
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chaos sequence. As a result, the chaotic tent map is applied for initializing the position of the searching agent,
which can improve the searching ability and reduces the impact of initial value on the optimization accuracy.

The fitness function (FF) takes the classifier’s accuracy and the number of selected features. It increases
the classifier accurateness and reduces the selected features set size. Therefore, the FF mentioned below was
leveraged for assessing individual solutions, as given in Eq. (8).

4SF

Fitness = a.x ErrorRate + (1 — a) SAILF

®)

Wherein ErrorRate refers to a classifier error rate by making use of selected features. The error rate can
be computed as the per cent of faulty classified (by 5-ANN classifier) to the number of classifications
performed, exhibited as a value within 0 and 1. (Error Rate was a complement of the classifier
accurateness), #SF represents the quantity of feature which is selected and #A4//_F means the total sum
of attributes in an original set of data. o can be employed for managing the worth of classifier excellence
and subsets length. In this test, « was fixed to 0.9.

3.3 Intrusion Detection and Classification Using ABIiLSTM Model

In this study, the ABILSTM model is utilized for the recognition and classification of intrusions. The
main disadvantage of recurrent neural networks (RNN) was the incapability of learning contextual data to
an extensive duration produced by vanishing gradient problems [23]. It was mostly attributed to the
extended temporal gap range in the time input was attained for decision-making. Weakening the
capability of RNNs for learning in long-distance dependency. Thus, the long short-term memory (LSTM)
technique, an expanded version of RNNs utilized the model of gates to compare units. It overcomes
vanishing gradient problems, so permits the preservation of extended periods of contextual data.

During this case, the opinion of BILSTM was created in bidirectional RNNs (BiRNN). BiRNN manages
orders of input from forwarding and backward input directions by utilizing 2 distinct hidden layers (HLs).
The BiLSTMs link every HLs to a similar resultant layer. The restriction of classical RNNs was that it
only utilizes the preceding context of input data sequences. BILSTMs compensate for this by permitting
data flow from either forward or backward directions.

The BiLSTM network evaluates the forward HL sequence outcome W(t), the resultant sequence of
backward HL /% () and resultant layer y(¢) with repeating the forward layer starting = 1 to ¢, backward
HL while ¢ = # to 1, and then upgrading the last value utilizing the subsequent formulas:

W(t) = H(W—>Xt +Voh—(t—1)+ b—,)) )
J J J J

W(t) = H<W<—)(t +y<fh<—_(t — 1) + be) (10)
J J J J

=U—h—s Ue—he(t) + b,. 11

»(?) 7 j(f)+ 5 j(f)+y (11)

The last resultant vector, y(¢), is computed as:
—
y(t):ay<h,h>. (12)

The o, function concatenates the outcome sequence of neurons from the HL, and cloud is one of
4 functions like concatenate, multiply, add, and average. Fig. 2 depicts the framework of BiLSTM.
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Outputs Yi-1 Yt Y+l

— ]88

Inputs Xg-1 X¢ X+

Figure 2: Structure of BILSTM

To overcome the issue of Multihead attention (MHA), the block can be used from the presented
technique, which calculates the numerous attention weighted sum previously considering single attention
pass-on values. Thus, it is called “MHA”. Here, numerous attention heads are used. The resultants of
such 2 heads are fed to drop-out layers and subsequently combined using a concatenation layer, and the
resultant was given to the LSTM layer. The attention procedure allows weighted to context words to
determine the word which is exacted was used to determine the sentiment of given input series.

ap=wi+twr+ws+...+w, (13)
ay=wi+wr+ws+...+w, (14)

3.4 Hyperparameter Tuning

At the last stage, the AO algorithm is applied as a hyperparameter optimizer to fine-tune the ABiLSTM
model. Abualigah et al. 2021 developed an Aquila Optimizer (AO), a novel metaheuristic optimization
technique [24]. This technique comprises four different kinds of hunting behaviour for the species of prey
Aquila that could flexibly switch the hunting strategy for different prey species beforehand it is attacking
the prey with the help of their sturdy feet and claws as well as rapid speed. It is mathematically modelled
in the following subsection. At the expanded exploration (X) stage, Aquila identifies the prey area and
chooses the better region to hunt by soaring higher in a vertical dive. AO extensively explores from
higher altitude soaring to determine the range of searching space where the prey is situated. This
behaviour can be mathematically expressed in the following:

X114 1) = X (1) x (1 - %) 4 Xy () = Xpout (1) % rand) (15)

1 N

Xu(t) =D %(0) (16)

From the equation, Xj (7 + 1) refers to the location of the t + 1 iteration produced by the extended
exploration. X (¢) illustrates the best-obtained solution that could reflect the approximate location of
prey X(¢) indicates the average solution at ¢ — th iterations. rand denotes a random value that lies within
[0,1]. t and T denote the existing iteration count and the maximal iteration; correspondingly, N indicates
the population count. Once the prey area is located at a higher altitude, they hover above the targeted
prey, prepare to land, and eventually attack. For prey attacking, they explore a certain region for prey, and
the mathematical expression can be explained in the following.
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Xo(t 4+ 1) = Xpesi(t) x Levy(D) + Xg(t) + (v — x) X rand (17)

In Eq. (17), D refers to the dimension size, Levy (D) indicates the Levy flight distribution function
evaluated as follows, and X (t) represents a random solution that lies in the interval of [I, N] at i-th
iteration.

Levy (D) = s X “ xla (18)
v
I'(1+p) x sin(%ﬁ>
o= 1 (19)

r(#) % x 25

In the above equation, s and f are, correspondingly, constant values equivalent to 0.01 and 1.5; u and v
denote random values lying within zero and one, y, and y is evaluated to render the spirals in the search.

y=rxcos (0) (20)

x =r xsin (0) 21

r=r+Ux Dy (22)
3xm

HZ—COXDl—FH],Q]: (23)

2
From the expression, ; denotes the search cycle count that has a value from 1 to 20, D, is comprised of
integer numbers from 1 to dimension size (D), U, and o refers to a fixed value of 0.00565 and 0.005.

In the expanded exploitation (X) phase, the prey region is precisely allocated, and they are prepared for
the landing and attack. Aquila vertically descends and makes the first attack to observe the prey’s reaction.
This technique is called a lower-altitude slow descent attack. Now, they approach the prey using a target
region and perform the attack. The mathematical expression of this behaviour can be explained in the
following.

X3(t 4+ 1) = (Xpest(t) — Xps(2)) X oo — rand + ((ub — Ib) X rand + Ib) X 6 (24)

In Eq. (24), Xpes(f) represents the optimal location and X (¢) implies the average value of the existing
position. o and ¢ are adjustment parameters fixed to 0.1, rand refers to a random number that lies within
[0,1], and ub and /b denote the upper and lower limits.

Once Aquila approaches the prey, they attack the prey on land based on random movement. Finally, they
attack the prey in the last location. The mathematical formula for these behaviours is given below.

Xy(t+ 1) = OF X Xpesi(t) — (Gy X X(t) X rand) — G, x Levy(D) + rand x G (25)
2xrg—1
OF (1) = 1017 (26)
G =2xrand — 1 27)
t
Gy =2 x (17) (28)

From the expression, X (¢) denotes the existing location. QF (¢) indicates the quality function values that
are utilized for balancing the searching strategy, and G| signifies the tracking prey movement that is a random
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value within [1,1]. G, symbolizes the flight slope while chasing the prey that linearly reduces from 2 to 0.
The rand denotes a random integer within [0,1].

The AO method makes a derivation of a fitness function for achieving improvised classifier
performance. It sets a positive digit for indicating superior execution of candidate resolutions. In this
work, the reduction of the classifier error rate was taken as a fitness function, as presented in Eq. (24).
The optimum solution contains the least error rate, and the poor solution gets a higher error rate.

b isclassified l
fitness(x;) = ClassifierErrorRate(x;) = number of misclassified samples

100 29
Total number of samples * 29)

4 Performance Validation

This section reviews the experimental validation of the MGBO-MLID model utilizing a benchmark
dataset, namely the NSL-KDD dataset. The results are investigated under distinct aspects.

4.1 Result Analysis on NSL-KDD Dataset

The performance validation of the MGBO-MLID model on the test NSL-KDD dataset is given in
Table 1. The dataset holds 148417 samples with five class labels.

Table 1: Details on the NSL-KDD dataset

NSL-KDD dataset

Class No. of records
DoS 53385

Probe 14077

R2L 252

U2R 3649

Normal 77054

Total no. of records 148417

Fig. 3 exhibits the confusion matrices produced by the MGBO-MLID model on the NSL-KDD dataset.
With the entire dataset, the MGBO-MLID model has identified 52745 samples in the denial of service (DoS)
class, 12787 samples in the Probe class, 10 samples in R2L class, 3260 samples in the user to root (U2R)
class, 76084 samples in a normal class. In addition, with 70% of training (TR) data, the MGBO-MLID
method has identified 36892 samples in the DoS class, 8923 samples in the Probe class, 5 samples in
R2L class, 2265 samples in U2R class, 53342 samples in the normal class. Along with that, with 30% of
testing (TS) data, the MGBO-MLID approach has identified 15853 samples in the DoS class,
3864 samples in the Probe class, 5 samples in the R2L class, 995 samples in U2R class, and
22742 samples in the normal class.

Table 2 and Fig. 4 highlight the classification results offered by the MGBO-MLID model on the NSL-
KDD dataset. The experimental values pointed out that the MGBO-MLID model has accomplished
improved results in all aspects. For instance, on the entire dataset, the MGBO-MLID model has offered
an average accu, of 99.05%, prec, of 83.02%, reca; of 76.34%, spec, of 99.26%, Fcor. of 76.53%, and
FPR of 0.74. Also, on 70% of TR data, the MGBO-MLID technique has rendered an average accu, of
99.05%, prec, of 81.30%, reca; of 76.14%, spec, of 99.26%, Fy.r. of 76.13%, and FPR of 0.74.
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Meanwhile, on 30% of TS data, the MGBO-MLID approach has provided an average accu,, of 99.04%, prec,
of 85.93%, reca; of 76.76%, spec, of 99.25%, Ficore of 77.37%, and FPR of 0.75.

Entire Dataset - NSL-KDD Dataset Training Phase (70%) - NSL-KDD Dataset
o o
-] 2
2] =)
S Il
o o
® ©
< <
(-4 4
o o
=] =

Normal
Normal

DoS Probe R2L U2R Normal DoS Probe R2L U2R Normal

Predicted Predicted
(a) (b)
Testing Phase (30%) - NSL-KDD Dataset

Actual

DoS Probe R2L U2R Normal

Predicted
(©

Figure 3: Confusion matrices of MGBO-MLID approach under NSL-KDD dataset (a) Entire dataset, (b)
70% of TR data, and (c) 30% of TS data



CSSE, 2023, vol.46, no.2 1481

Table 2: Result analysis of the MGBO-MLID approach with various measures under the NSL-KDD dataset

Class Accuracy Precision Recall Specificity F-score FPR
Entire dataset
DoS 99.22 99.01 98.80 99.45 98.91 00.55
Probe 98.56 93.79 90.84 99.37 92.29 00.63
R2L 99.83 41.67 03.97 99.99 07.25 00.01
U2R 99.27 82.51 89.34 99.52 85.79 00.48
Normal 98.37 98.12 98.74 97.96 98.43 02.04
Average 99.05 83.02 76.34 99.26 76.53 00.74
Training phase (70%)
DoS 99.21 99.00 98.81 99.44 98.90 00.56
Probe 98.58 93.86 90.87 99.38 92.34 00.62
R2L 99.83 33.33 02.92 99.99 05.38 00.01
U2R 99.27 82.15 89.35 99.51 85.60 00.49
Normal 98.37 98.15 98.73 97.99 98.44 02.01
Average 99.05 81.30 76.14 99.26 76.13 00.74
Testing phase (30%)
DoS 99.23 99.06 98.79 99.47 98.92 00.53
Probe 98.53 93.65 90.75 99.35 92.18 00.65
R2L 99.82 55.56 06.17 99.99 11.11 00.01
U2R 99.29 83.33 89.32 99.54 86.22 00.46
Normal 98.35 98.06 98.77 97.90 98.41 02.10
Average 99.04 85.93 76.76 99.25 77.37 00.75
NSL-KDD Dataset
I Entire Dataset I Testing Phase (30%)

@3 Training Phase (70%)

100.0 -

95.0

Values (%)

75.0 I l
70.0 -
Accuracy Precision Recall Specificity F-Score

Figure 4: Result analysis of the MGBO-MLID approach under the NSL-KDD dataset



1482 CSSE, 2023, vol.46, no.2

The training accuracy (TA) and validation accuracy (VA) acquired by the MGBO-MLID algorithm on
the NSL-KDD dataset is portrayed in Fig. 5. The experimental outcome denoted the MGBO-MLID method
has attained higher values of TA and VA. In Particular, the VA is greater than TA.

Training and Validation Accuracy - NSL-KDD Dataset

—— Training
0.975 4 —— Validation

0.970 -

0.965

Accuracy

0.960 -

0.955 -

Epochs

Figure 5: TA and VA analysis of the MGBO-MLID approach under the NSL-KDD dataset
The training loss (TL) and validation loss (VL) obtained by the MGBO-MLID approach on the NSL-

KDD dataset were illustrated in Fig. 6. The experimental outcome implied that the MGBO-MLID
methodology has reached minimal values of TL and VL. Specifically, the VL seems to be lesser than TL.

Training and Validation Loss - NSL-KDD Dataset

—— Training

0.24 —— Validation

0.22

0.20

Loss

0.18

0.16

0.14

Epochs

Figure 6: TL and VL analysis of the MGBO-MLID approach under the NSL-KDD dataset
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A comparative result analysis of the MGBO-MLID model with recent models such as fuzzy (F-SVM),
RNN, ensemble deep neural network (DNN), deep belief network (DBN), DMM, DNN, CVT, and deep
learning model with rule-based feature selection (DL-RBFS) on NSL-KDD dataset was illustrated in
Table 3 [25]. The obtained values pointed out that the MGBO-MLID model has reached enhanced
performance over the other models. Concerning detection rate (DR), the MGBO-MLID model has gained
a higher DR of 99.04% whereas TANN, F-SVM, RNN, Ensemble-DNN, DBN, ADS-DL, DMM, DNN,
CVT, and DL-RBFS models have reached lower DR of 90.54%, 92.42%, 72.43%, 97.49%, 95.15%,
99.31%, 97.26%, 76.11%, 95.30%, and 98.84% respectively. Also, for FPR, the MGBO-MLID
methodology has obtained a higher DR of 0.75% whereas TANN, F-SVM, RNN, Ensemble-DNN, DBN,
ADS-DL, DMM, DNN, CVT, and DL-RBFS technique have attained lower FPR of 8.70%, 5.60%,
2.40%, 9.40%, 4.50%, 3.60%, 15%, 14.70%, 1.80%, and 1.10% correspondingly.

Table 3: Comparative analysis MGBO-MLID approach with existing methodologies under the NSL-KDD
dataset

Methods Detection rate FPR
TANN 90.54 8.70
F-SVM 92.42 5.60
RNN 72.43 2.40
Ensemble-DNN 97.49 9.40
DBN 95.15 4.50
ADS-DL 99.31 3.60
DMM 97.26 15.00
DNN 76.11 14.70
CVT 95.30 1.80
DL-RBFS 98.84 1.10
MGBO-MLID 99.04 0.75

5 Conclusion

In this paper, a new MGBO-MLID technique was developed for the effectual recognition and
classification of intrusions in the IoT cloud environment. At the preliminary level, the presented MGBO-
MLID model applied min-max normalization for scaling the features in a uniform format. Following this,
the MGBO-MLID model exploits the MGBO algorithm to choose the optimal subset feature. Besides,
the MGBO with ABiILSTM model is utilized for the recognition and classification of intrusions. The
experimental validation of the MGBO-MLID model is tested with the help of a benchmark dataset. The
extensive comparative study reported the betterment of the MGBO-MLID model over recent approaches.
In future, data clustering and outlier reduction algorithms can be applied to improve the classification
outcome.
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