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Abstract: Due to the rapid propagation characteristic of the Coronavirus (COV-
ID-19) disease, manual diagnostic methods cannot handle the large number of
infected individuals to prevent the spread of infection. Despite, new automated
diagnostic methods have been brought on board, particularly methods based on
artificial intelligence using different medical data such as X-ray imaging. Thoracic
imaging, for example, produces several image types that can be processed and
analyzed by machine and deep learning methods. X-ray imaging materials widely
exist in most hospitals and health institutes since they are affordable compared to
other imaging machines. Through this paper, we propose a novel Convolutional
Neural Network (CNN) model (COV2Net) that can detect COVID-19 virus by
analyzing the X-ray images of suspected patients. This model is trained on a data-
set containing thousands of X-ray images collected from different sources. The
model was tested and evaluated on an independent dataset. In order to approve
the performance of the proposed model, three CNN models namely Mobile-
Net, Residential Energy Services Network (Res-Net), and Visual Geometry Group
16 (VGG-16) have been implemented using transfer learning technique. This
experiment consists of a multi-label classification task based on X-ray images for
normal patients, patients infected by COVID-19 virus and other patients infected
with pneumonia. This proposed model is empowered with Gradient-weighted Class
Activation Mapping (Grad-CAM) and Grad-Cam++ techniques for a visual expla-
nation and methodology debugging goal. The finding results show that the pro-
posed model COV2Net outperforms the state-of-the-art methods.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
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1 Introduction

The infectious COVID-19 virus, officially called SARS-CoV-2, first appeared in China at the end of
2019 [1]. The infection is believed to have originated from animals to humans [2]. It spreads mainly from
one human to another through respiratory mechanisms. The droplets from the infected individual
probably contain COVID-19 viruses, which spread to others in numerous ways. The expanding spread of
the disease led the World Health Organization (WHO) to declare COVID-19 as a pandemic. More than
590 million cases of the infection had been reported around the world and 6.5 million people had
succumbed to the virus [3]. There is a question that needs serious discussion by researchers, what can be
done through coordinated efforts to accelerate research and subsequently save lives.

Though several trials for candidate vaccines and potential therapies are underway, there is currently no
cure, in the absence of either proven effective therapy or a vaccine, diagnostic testing becomes a valuable
tool. Public health authorities implementing extreme measures to isolate the virus, most countries have
been underprepared, as a result, they had faced community transmission before adequate testing was in
place to allow for isolation and tracking [4].

COVID-19 is one of many causes of viral pneumonia [4], and the symptoms are very similar for all
causes. It is not an easy task for researchers to diagnose and differentiate pneumonia arising from
COVID-19 from other types of pneumonia [5]. To achieve a definite diagnosis, doctors need additional
information that could be obtained from blood tests and radiation imaging techniques. Since the virus
spreads rapidly, the traditional methods of diagnosis are not effective rapid. Thus, automated diagnostic
methodologies are needed to control this pandemic [6].

Many imaging techniques are based on electromagnetic waves [7]. The resulting images are based on
particles absorption and reflection properties in our bodies. The produced images are generally composed
of gray-scale levels which allows doctors to analyze the tissue density based on the information in these
images so they can diagnose accurately the disease [8]. Concerning COVID-19 virus, X-ray imaging is
fast and inexpensive, and many techniques could be used to select only helpful features [9]. In some
cases, radiologists can detect COVID-19 on thoracic X-ray images, but in most cases, they need the help
of automated artificial methods and techniques [10,11].

Artificial Intelligence (AI) techniques have been used in many fields and applications including natural
language processing [12], civil engineering systems [13], rumor and emotion detection [14], medical
diagnosis support systems [15], diabetes mellitus retinopathy detection [16], heart and atherosclerosis disease
[17], Parkinson’s disease detection [18–20]. Although, the mean limitations of the prior works related to this
paper are the insufficiency of results due to the proposed architecture and the availability of medical data.

This work proposes a novel CNN model COV2Net based on deep learning methods in dealing with
images. To compare the performance of the proposed model, a set of well-known CNN models in
literature was fine-tuned on the same dataset used to build the COV2Net model.

The main contribution presented through this work can be summarized as follow:

� An equilibrated lung X-Ray based images dataset of three classes: normal, pneumonia and COVID-
19 is collected.

� A new CNN proposed model entitled COV2Net to overcome the drawback of the existing models.

� To demonstrate the performance of the proposed COV2Net model, we implemented three standard
CNN models, Mobile-Net, Res-Net and VGG-16, using the transfer learning technique.
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� To explain the results, Grad-Cam and Grad-Cam++ techniques were implemented to debug the
prediction process of the proposed model and, on the other hand, to visualize the regions of
interest in the X-ray image responsible for the final decision.

The content of this paper is organized as follows: The Section 2 is a brief presentation of similar recent
research work. Section 3 outlines the resources and methodology involved in collecting and generating a
valid dataset to work with and presents a brief description of the methodology used in the experimental
work. Section 4 presents the results obtained and discusses and compares them to the state-of-the-art.
Finally, Section 5 presents conclusions drawn from our work.

2 Related Works

The pandemic aspect of COVID-19 forced many researchers to focus on utilizing artificial intelligence-based
approaches in diagnosing COVID-19-based pneumonia using Computer Tomography Images (CTI) [21].

A novel multi-feature CNN model was designed [22] to classify COVID-19 disease based on Chest
X-ray (CXR) images. The classifications concerned pneumonia, normal and COVID-19 images. Obtained
results were 99% precision, recall and F1-scores for the COVID-19 class and 95.57% accuracy.

In [23], the authors proposed a new CNNmodel for the automatic detection of COVID-19 disease based
on raw X-ray images. Their model showed 87.02% accuracy in predicting COVID-19 cases. The authors
implemented 17 convolutional layers within this model with different filtering layers.

In [24], the authors proposed a performance evaluation system for five pre-trained CNN models
(ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) in predicting the presence of
COVID-19 infection. In this study, ResNet50 achieved the best results, with 99.7% accuracy in a binary
classification task on dataset-3 comprising only 301 images containing COVID-19, together with
2800 normal images, 2772 bacterial pneumonia images and 1493 viral pneumonia images. An
augmentation technique was used in the dataset to increase its size.

In [25], the authors proposed a CNN model called a deep learning model for X-ray-based COVID-
19 classification (COV-SNET). Their expanded dataset consisted of 3913 COVID-19 images, 7966 normal
images, and 5441 pneumonia images. Their special idea is the choice of a large number of X-ray images,
but this work only showed 95% sensitivity and between 75% and 80% accuracy for both multi-class and
binary classification. Results are not enough to take into consideration for the real diagnosis. The main
problem of this methodology lies in the conception of their CNN model. Even if the size of the dataset is
huge, the architecture of the CNN model is very important in predicting COVID-19 cases accurately.

In [26], authors designed a system called COVIDC to diagnose COVID-19 based on CNNmethodology
and using 4882 COVID-19 CT scans as the dataset. The approach involved using a combination of three
classifiers: support vector classification (SVC), random forest classification (RFC) and extreme gradient
boosting classification (XGBC). The special idea in this work is that the model goes deep in classifying
the CT features by predicting how severe COVID-19 is, based on the image. In this work, the authors did
not report the accuracy of their models, which makes it hard to evaluate the model compared to other
models. In [27], authors proposed a CNN model based on Xception architecture and trained it across a
prepared dataset containing 284 COVID-19 X-ray images, 657 pneumonia images and 310 normal
images, resulting in 89.6% accuracy.

In [28], authors conducted a comparative study of the ability of different CNN models to detect
coronavirus cases based on chest X-ray and CT images. In this study, the best CNN model was
inception_Resnet_V2, for which they obtained 92.18% accuracy based on training a dataset of
2780 images of pneumonia, 231 of Covid19 and 1583 normal individuals. The dataset used in this study
is imbalanced and insufficient in term of COVID-19 cases.

CSSE, 2023, vol.46, no.2 1791



In [29], the authors developed a CNN model called COVID-CXNet based on densely connected
convolutional networks (Dense-Net) architecture. They used a CXR dataset containing 780 COVID-19
cases, 5000 Normal images and 4600 pneumonia cases. The method achieved the result of 96.10%
accuracy in detecting positive COVID-19 images correctly. In [30], authors used a very large dataset
containing 13975 COVID-19 CXR images. They obtained 93.3% accuracy, where the training phase was
across 25 epochs with a batch size of 64. In [31], authors developed a new CNN model called a parallel-
dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images
(PDCOVIDNet). They achieved 96.58% accuracy by training their model across a dataset containing
2019 COVID-19 X-ray images, 1341 of normal cases and 1345 pneumonia cases.

Table 1 summarizes the results obtained by the works described above and specifies the size of the
COVID-19 dataset used.

The summary of the related work in Table 1 shows that although Narin et al. [24] obtained 99.7%
accuracy using their proposed transfer learning methodology based on a pre-trained model ResNet50, the
dataset used contained only 301 images of COVID-19, which is a weak dataset compared to the actual
availability of COVID-19 data. In contrast, Wang et al. [30] proposed a COVID-Net CNN-based model
and trained it on a massive dataset of 13975 CXR medical images. However, they achieved only 93.3%
accuracy, which is not a good result to adoptfor confirmed case diagnosis. Thus, a well-designed CNN
model for predicting COVID-19 disease should have an optimal architecture and be trained on a balanced
dataset containing a sufficient number of images, without augmentation techniques, as well as obtaining
good accuracy on the test dataset.

Based on the weaknesses identified in related studies, we propose through this work a newly designed
CNN model, COV2Net, that is trained on a moderated and cleaned dataset of 1764 COVID-19 X-ray images
collected from many sources and achieved a high level of accuracy of 97.52%.

3 Materials and Methods

This section presents the research methods used to carry out this research work. The methodology
consists of four interrelated phases: preparing the valid dataset from multiple datasets, data pre-
processing, deep learning model building, and model evaluation and test performance.

Table 1: Comparison of results in related work

Year of the work Method COVID-19
dataset

Dataset
type

Augmentation Accuracy

Qi et al. (2021) [22] Multi-feature CNN 3323 X-ray No 95.57%

Ozturk et al. (2021) [23] DarkCovidNet 127 X-ray No 87.02%

Narin et al. (2021) [24] ResNet50 301 X-ray Yes 99.7%

Hertel et al. (2021) [25] COV-SNET 3913 X-ray No 80%

Abbasi et al. (2021) [26] COVIDC 4882 CT scans No –

Khan et al. (2020) [27] CORONET 284 X-ray No 89.6%

El Asnaoui et al. (2021) [28] INCEPTION_RESNET_V2 231 X-ray & CT No 92.18%

Mahmud et al. (2020) [29] CovXNet 305 X-ray Yes 90.2%

Wang et al. (2020) [30] COVID-Net 13975 X-ray No 93.3%

Nihad et al. (2020) [31] PDCOVIDNet 219 X-ray Yes 96.58%
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3.1 Global Overview of the Proposed COVID-19 Detection System

This methodology used in this work consists firstly of the preparation and the pre-processing of images
in the dataset, then building the models for training. At the end, an evaluation step is performed with
validation of the results using the Grad-cam technique, which is the principal novelty of this paper. The
global overview of the proposed methodology for predicting COVID-19 cases is shown in Fig. 1.

3.2 Dataset Preparation and Pre-processing Phases

This section presents the initial phase of the research methodology, which is the data preparation phase.
The availability of datasets is volatile. In general, publicly available datasets for COVID-19 patients to train
machine learning models and obtain excellent results are still limited. In this work, many X-ray thoracic
images were collected to train the proposed COV2Net model, as described later. The constructed dataset

Figure 1: Global overview of the proposed COVID-19 detection system
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contains three classes of patients: normal patients, COVID-19-confirmed patients and patients with other
pneumonia types. Fig. 2 shows examples of each category.

The X-ray images obtained from many publicly available sources were filtered and resized as valid
images. As a result, 1349 images of normal patients and 3895 images of non-COVID-19 related
pneumonia cases were collected. This part of our dataset originated from two different datasets, the
Joseph Paul Cohen database, and Dataset-01 Chest X-rays. In addition, the COVID-19-based X-ray
images required four different databases to collect 1764 images. The details are illustrated in Table 2.

After preparing the dataset, we split it into three sub-datasets with the ratios: 70% for training, 15% for
validation and 15% for testing. A detailed description of this partitioning is shown in Table 3.

Figure 2: A sample of image classes in the collected dataset: (a) Normal case, (b) Pneumonia case, (c)
COVID-19 case

Table 2: Resources used to collect the COVID-19 dataset

Dataset COVID-19
images

Valid
images

Joseph Paul Cohen database
(https://github.com/ieee8023/covid-chestxray-dataset)

985 980

Covid-19 chest X-ray database (https://github.com/agchung/Figure1-COVID-
chestxray-dataset)

759 512

ACTUALMED COVID-19 chest X-ray database (https://github.com/agchung/
Actualmed-COVID-chestxray-dataset)

319 226

Dataset-01 Chest X-rays database (https://github.com/zeeshannisar/COVID-19) 106 46

Table 3: Dataset distribution

SUBSETS NORMAL PNEUMONIA COVID-19

Training set 944 2726 1235

Validation set 202 585 265

Testing set 203 584 264

Total 1349 3895 1764
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3.3 Deep Learning Model Building Phase

In the third phase, the methodology adopted in this work derives from the artificial intelligence field [32]
where machine learning techniques [33], specifically the convolutional neural networks (CNNs) [34,35], are
proven their ability to handle images efficiently. CNN are very efficient in processing and analyzing images
for classification and segmentation tasks. It allows the creation of model architecture that can handle the
visual problem. The training of the designed model is based on a specific dataset assembled from
publicly available data and then organized and preprocessed to ensure it is a valid dataset.

The segmentation and classification of labels based on image processing, a CNN network is
recommended to obtain significant results [36]. The discrete convolution operation is based on a
mathematical operator applied to image pixels as discrete spaces of elements.

For complex functions f, g defined on N natural ensemble, the convolution of f and g is defined as
follows [37]:

f � gð Þ n½ � ¼
Xm¼þ1

m¼ �1
f m½ �:g m� n½ � (1)

CNN network is composed of different types of layers [38]: input layers, convolutional layers [39] and
fully connected layers [40] and output layers. The input parameters are up to the designer, but the parameters
of this layer must fit the preprocessed image shape. While the output layer conception depends on the type of
the classification task, which would be a binary classification task or a multi-class task. The convolutional
layers are ensembles of connected nodes, where each node can perform a defined convolution operation
for its inputs and forward the output to the next node [41]. The fully connected layers, also called deep
layers, consist of a network of nodes connected with a full-mesh structure, where each node of a specific
layer is connected to each node in the next and the previous layers. All layers in a CNN network have
different types of parameters specified while designing the architecture. Fig. 3 illustrates a simplified
global architecture for a convolutional neural network where hidden layers contain the convolutional
layers, pooling layers, and fully connected layers.

a) Convolutional layers

The convolution layer is composed of several neurons connected spatially with neurons of the next layer,
with a specific weight to be shared. The shared weights are optimized and regularized in the back-and-
forward process over iterations [42]. This process detects the local features at all positions in the input
feature.

Figure 3: Global CNN architecture
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b) Pooling layers

The pooling process consists of selecting only the vital information existing in the input feature map that
can affect the final decision of the network [43]. The method of selecting this information determines the type
of pooling layer. Generally, the most used type in CNN networks is max-pooling [44]. This type consists of
selecting the maximum value inside a filter, where the size of the filter is defined as a parameter while
designing the layer. Overall, all pooling layer types use the input to generate a smaller amount of
essential data at the output. In Fig. 4, a max-pooling layer architecture is presented, applied to an input
resolution shape of 224 × 224.

In Eq. (2), the output element y of the pooling layer [45] calculates the maximum value in each patch of
the filter R of each feature map. The results are down-sampled to highlight the most present feature in the
patch, which is defined as follows:

y ¼ max
i;jeR

xij (2)

where xij represents an element covered by the filter R.

c) Fully Connected layers (FC)

Fully connected layers (also called dense layers or hidden layers) are composed of neurons that are
connected fully with neurons of the previous and subsequent layers. This architecture is present in many
artificial neural network types. Its goal is to help in the propagation of parameters through the network
and to update weights to fit the optimal values for obtaining the best possible predictions [46].

d) Detailed Architecture of the Proposed COV2Net

The proposed CNN architecture of COV2Net is developed from scratch. In particular, it contains
convolution layers and dense layers. Adding some dropout layers avoids over-fitting while training and
max-pooling layers eliminate unnecessary data which propagate into the network.

At the beginning of the network, we use an input layer of shape (224 × 224 × 3), and at the end of the
network we insert an output layer with three classes. Fig. 5 illustrates the global distribution of the used
architecture and the main layers used to build COV2Net.

Figure 4: Down-sampling process across a max pooling layer
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In the COV2Net model, we used a root mean squared propagation (RMSProp) optimizer with a 10-6

learning rate to reduce over-fitting problems. Due to the multi-label aspect of our case, a cross-entropy
loss function for regularization is used. As an output activation function, the softmax function is used
because of the multi-class aspect of our classification task [47,48]. The mathematical formula of the
activation function used is defined as follows:

r zð Þi ¼
ezi

PK
j¼1 e

zj
(3)

Where zj is the input vector of the Softmax function and K is the number of classes in the multiclass
classifier.

A detailed description of COV2Net is provided in Table 4.

Figure 5: Architecture of COV2Net

Table 4: Detailed configuration of COV2Net architecture

Layer type (size) Output shape Activation Kernel Filters Padding Parameters

Input (224, 224, 3) – – – – 0

Dense (32) (224, 224, 32) – – – – 128

Conv2D (224, 224, 64) Relu (3,3) 64 same 18496

Conv2D (224, 224, 64) Relu (3,3) 64 same 36928

Maxpooling2D (2,2) (112, 112, 64) – – – – 0

Conv2D (112, 112, 128) Relu (3,3) 128 same 73856
(Continued)
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3.4 Model Evaluation and Performance Phase

There are many metrics to evaluate a CNN model, depending on the case of the study. In this work, we
chose metrics that could accurately evaluate CNN models trained and tested for the multi-label classification
task using X-ray gray-scale images [49].

All the used metrics depend on specific parameters that must be calculated at the end of each step
(training and testing); these concern, true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). These parameters are linked to one of the classes concerned. The true positive (TP)
is the number of predicted positive cases correctly predicted according to the ground truth data. The true
negative (TN) is the number of predicted negative cases that are correctly predicted according to
the ground truth data. The false positive (FP) is the number of predicted positive cases that do not match
the ground truth values. The false negative (FN) is the number of predicted negative cases that match the
ground truth values.

Table 4 (continued)

Layer type (size) Output shape Activation Kernel Filters Padding Parameters

Conv2D (112, 112, 128) Relu (3,3) 128 same 147584

Maxpooling2D (2,2) (56, 56, 128) – – – – 0

Conv2D (56, 56, 256) Relu (3,3) 256 same 295168

Dropout (0.25) (56, 56, 256) – – – – 0

Conv2D (56, 56, 256) Relu (3,3) 256 same 590080

Conv2D (56, 56, 256) Relu (3,3) 256 same 590080

Conv2D (56, 56, 256) Relu (3,3) 256 same 590080

Maxpooling2D (2,2) (28, 28, 256) – – – – 0

Conv2D (28, 28, 512) Relu (3,3) 512 same 1180160

Conv2D (28, 28, 512) Relu (3,3) 512 same 2359808

Conv2D (28, 28, 512) Relu (3,3) 512 same 2359808

Maxpooling2D (2,2) (14, 14, 512) – – – – 0

Conv2D (14, 14, 512) Relu (3,3) 512 same 2359808

Conv2D (14, 14, 512) Relu (3,3) 512 same 2359808

Conv2D (14, 14, 512) Relu (3,3) 512 same 2359808

Maxpooling2D (2,2) (7, 7, 512) – – – – 0

Flatten 25088 – – – – 0

Dense (4096) 4096 Relu – – – 102764544

Flatten 4096 – – – – 0

Dense (512) 512 Relu – – – 2097664

Dropout (0.25) 512 – – – – 0

Dense (256) 256 Relu – – – 131328

Dense (Output) 3 Sigmoid – – – 771

Total parameters 120 315 907
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Recall: Ratio of correctly predicted positive cases over the total truly positive cases.

Recall ¼ TP

TPþ FN
(4)

Precision: Ratio of elements accurately predicted as positives out of all elements predicted as positive
cases.

Precision ¼ TP

TPþ FP
(5)

F1-Score: this metric combines precision and recall in one value that describes the correlation of
both.

F1� score ¼ 2 � Precision � Recall
Precisionþ Recall

(6)

Accuracy: The ratio of total images accurately predicted over all the images.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(7)

Loss: This metric is reversibly proportional to the accuracy metric. It shows how much the prediction
process fails across the dataset. In the training step, it has the role of a regulation parameter. Its formula
depends on the nature of the classification task. In our case of multi-tasks, we use a categorical cross-
entropy loss function [50], defined by:

Loss ¼
Xoutput size

i¼1

Yi:log Ŷi

� �
(8)

3.5 Background on Some State-of-the-Art Pre-trained CNN Models

For comparison and performance evaluation, we decided in this work to train some well-known CNN
models on the image classification tasks. We chose a VGG-16 CNN model explained in [51], where the
model achieved 92.7% accuracy on an image-net dataset composed of 14 million images of
1000 different classes. In addition, VGG-16 can be considered as a form of improved AlexNet CNN [52]
at the level of kernel-sized filters in the first and second convolutional layers.

Another interesting pre-trained CNN is Res-Net [53,54]. This network is based on skipping connections
and taking shortcuts by ignoring some layers. This strategy is inspired from the functions of pyramidal cells
in the human cerebral cortex [55]. This technique allows the network to train a vast number of datasets
regardless of the lack of resources. The network obtained 92% accuracy on an Image-Net dataset.

The MobileNet CNN, which was proposed and explained in [56], is based on an inverted residual
structure. The main idea of this network is that the input and the output layers of the residual blocks are
bottleneck layers, in opposition to the traditional residual-based networks. This model obtained 89.5%
accuracy on the Image-Net dataset and demonstrated excellent performance in dealing with images.

A brief description of the pre-trained CNN models used in the present study is provided in Fig. 6.
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4 Results and Discussion

This section explains the results of the conducted experiments based on the proposed model. Generally,
in a CNN model, many factors can make a difference in the results obtained, including the depth of its
architecture, the type of its layers and the configuration parameters. In this work, we trained three other
existing CNN models and compared the results to our COV2Net outcomes for each step. To accurately
evaluate the models, all the models are trained on the same dataset through 50 epochs with the same
configurations and conditions. Some metrics are computed after each epoch to supervise the convergence
of the model and log the training process for graphical visualization. Trained models are also tested on
the same independent dataset, then the metrics are computed.

4.1 Experiment Settings

The simulation experiments were conducted on the Kaggle platform owned by Google. It’s default
hardware specifications consist of Intel Xeon central processing units (CPU) with four cores and
13 GIGABYTEs (GBs) of random-access memory (RAM), and a NvidiaP100 graphical processing unit
(GPU), with two cores and 16 GB of memory. In this cloud platform, the most used deep learning
libraries are pre-installed. The Kaggle platform runs with a Jupyter-like interface that can save works in
versions and notebooks.

4.2 Training Results

As stated earlier, (Mobile-Net, Res-Net, VGG16 and COV2Net) were trained across 50 epochs with the
same configuration to get comparable results. Figs. 7, 8 show the obtained results for the training step. The
Mobile-Net model training stabilized at epoch 40, while the Res-Net model achieved the training goal at
epoch 45. The VGG16 model and COV2Net are slightly similar at the training step, stabilizing at epoch 20.

In this experiment, we used a Linux platform and computing capacity of four CPUs with 13 GB of RAM
and 16 GB of GPU memory. This configuration forced us to set the patch parameter of the training to 16 to
achieve the training goal without errors.

Figure 6: Graphic description of the architecture used for: (a) Res-Net, (b) MobileNet, (c) VGG-16
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The charts presented in Fig. 7 show the accuracy obtained after training and testing our proposed
COV2Net model and three other pre-trained CNN models within 50 epochs. The COV2Net model
presents the best accuracy compared to the other models.

The loss function values over the 50 epochs are presented in Fig. 8, in which COV2Net shows the
smallest loss values compared to the three other CNN models.

Loss variation in Fig. 8 converges very fast for all models. Generally, the loss value stabilizes at epoch
30 for all the models. However, the loss function for the VGG16 model has higher values than the other
trained models, while the COV2Net model achieves best results, with the lowest loss values.

4.3 Testing Results

After training each model, we tested them on a completely independent sub-dataset, and obtained
different results, as presented in Fig. 9.

According to the results obtained in the testing step, the COV2Net model shows the best results with
97.52% in terms of accuracy and 9% in terms of loss. The accuracy value is slightly higher than that for
VGG16. However, the low loss value of COV2Net compared to all other models is very interesting. It
means that COV2Net predicts COVID-19 cases very well compared to other models.

To show more details of the testing step, we generated a confusion matrix of the prediction results for the
test set images. Fig. 10 shows the results obtained.

Figure 7: Accuracy metric of trained models: (a) Mobile-Net, (b) Res-Net, (c) VGG16 and (d) COV2Net
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Figure 9: Detailed values of metrics for each trained model

Figure 8: Loss metric of trained models: (a) Mobile-Net, (b) Res-Net, (c) VGG16 and (d) for COV2Net
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The maximum number of correctly predicted COVID-19 cases is 259 over 264, made by models Res-
Net and Cov2Net; this constitutes 98.10% of the ground truth. This resultalso shows that VGG-16 and
Mobile-Net models, with 97.3% of accurately predicted COVID-19 patients, are less efficient at
predicting COVID-19 cases compared to Res-Net and COV2Net.

The proposed model accurately predicted 193 normal cases out of 203 and 573 out of 604 pneumonia
cases. It represents 95% of the normal ground truth cases, but only 64.8% of pneumonia ground truth cases.

The results obtained by training and testing the CNN models are based on the configurations cited in
Table 5.

Figure 10: Confusion matrix of tested models: (a) Mobile-Net, (b) Res-Net, (c) VGG16 and (d) for
COV2Net

Table 5: Configurations and execution time of different trained CNN models

Parameter MobileNet Res-Net VGG16 COV2Net

Input shape 224 × 224 × 3 224 × 224 × 3 224 × 224 × 3 224 × 224 × 3

Epochs 50 50 50 50

Patch size 16 16 16 16

Loss function Cat_crossentropy Cat_crossentropy Cat_crossentropy Cat_crossentropy

Accuracy function Cat_accuracy Cat_accuracy Cat_accuracy Cat_accuracy

Optimizer RMSprop RMSprop RMSprop RMSprop

Learning rate 1e-6 1e-6 1e-6 1e-6

Training time (s) 11682.15 s 7721.85 s 9811.33 s 10815.67 s

Testing time (s) 112.10 s 87.21 s 95.64 s 111.05 s
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Almost all parameters are the same for configuring the four CNN models, but we observe that the
training time and testing time are different for each model. It is due to the architecture of the CNN
model. The ResNet-based model is the fastest one. It completed the training of the dataset in 7721.85 s
and the testing step in only 87.21 s, while the slowest model is the MobileNet-based CNN model. The
accuracy results obtained are independently related to the speed of the training and are highly affected by
the designed architecture of the model.

Figure 11: Samples of COV2Net visual explanation using Grad-Cam and Grad-Cam++ technique for
COVID-19 and Pneumonia predicted classes
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4.4 Visual Explanation of COVID-19 Diagnosis Process Using Grad-Cam and Grad-Cam++

CNN models are some black boxes systems in terms of what happens across their layers. To debug the
diagnosis process based on X-ray images, we implemented the Grad-Cam technique [56]. This algorithm
allows us to visualize and understand which regions of the image are the most significant for the
proposed model in terms of prediction decisions. This method is a great approach for debugging almost
any CNN model by processing the gradient of the convolved features for the last convolutional layer. It
provides us with a heat-map matrix to visualize how the model is processing our image classification and
which regions of the images contribute the foremost to the prediction decision. The system consists of
tracking the prediction process in the last convolutional layer of the CNN model. The weighted sum of
the feature maps is performed for every prediction process to detect the principal areas of the initial
image that affects the model decision. The result is a warmth map that could be associated with the
original image for visualization. This method helps us to see whether the model predicts the COVID-
19 disease based on the suitable infected regions of the lungs or not.

A better and improved version of the Grad-Cam methodology, defined by Grad-Cam++ [57], is also
implemented during this work. This improved version provides us with an enhanced visual explanation of
CNN model predictions compared to the simple Grad-Cam technique. It also allows us to evaluate how
accurate is the classification task using the Cov2Net CNN model by confirming the important regions in
the image obtained using the simple Grad-Cam method.

The Grad-CAM visualization analysis confirms that the COV2Net model predicts more accurately
COVID-19 cases based on the correct regions of the lungs by highlighting the responsible regions for the
prediction decision. The same regions are confirmed using the Grad-Cam++ visualization technique
decisions with a small extension for the region of interest. In Fig. 11, we present some samples of
original, COVID-19 and other pneumonia X-ray cases. These classification test results concern the
designed and developed Cov2Net model debugged using Grad-Cam and Grad-Cam++ techniques.

5 Conclusion and Perspectives

In this paper, we proposed a CNN architecture that was trained and tested on a constructed dataset. The
assembled dataset contains 1349 normal X-ray images, 3895 pneumonia and 1764 COVID-19 cases. This
dataset was filtered and processed to feed our network. In addition to the training of the proposed
network, we also retrained three other pre-trained CNN networks from the literature for comparison and
evaluation purposes. The results we obtained are very interesting in terms of accuracy and loss. The
proposed model shows the results of 97.52% accuracy and 0.09 loss, while the second-ranked model is
VGG16, with 97.33% accuracy and 0.26 loss. Even with these promising results, the automatic diagnosis
of COVID-19 still cannot yet be adopted for patients, as a higher level of accuracy needs to be reached.
To improve the current results, future work concerns collecting the maximum number of valid datasets
and improving the proposed CNN network architecture. Deep learning provides a convenient tool for fast
screening of COVID-19 and identifying potential high-risk patients, which may be helpful for medical
resource optimization and early prevention before patients show severe symptoms. Future perspectives
include additional COVID-19 clinical parameters into the training process, such as interrogatory results
and medical measures, collecting more valid X-ray images and updating the core of the proposed
architecture. This would significantly increase the accuracy and enable the methodology to converge
further, so that it can be adopted by doctors in hospital infrastructures. Another methodology based on a
combination of convolutional Modules and single-shot detector (SSD) architecture [58] could be
implemented and improved. The ultimate goal of these automatic methods is to win the war against the
virus. After all, it’s a matter of speed in the diagnosis process.
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