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Abstract: The prediction of mild cognitive impairment or Alzheimer’s disease
(AD) has gained the attention of huge researchers as the disease occurrence is
increasing, and there is a need for earlier prediction. Regrettably, due to the high-
dimensionality nature of neural data and the least available samples, modelling
an efficient computer diagnostic system is highly solicited. Learning approaches,
specifically deep learning approaches, are essential in disease prediction. Deep
Learning (DL) approaches are successfully demonstrated for their higher-level per-
formance in various fields like medical imaging. A novel 3D-Convolutional Neural
Network (3D-CNN) architecture is proposed to predict AD with Magnetic reso-
nance imaging (MRI) data. The proposed model predicts the AD occurrence while
the existing approaches lack prediction accuracy and perform binary classification.
The proposed prediction model is validated using the Alzheimer’s disease Neuro-
Imaging Initiative (ADNI) data. The outcomes demonstrate that the anticipated
model attains superior prediction accuracy and works better than the brain-image
dataset’s general approaches. The predicted model reduces the human effort during
the prediction process and makes it easier to diagnose it intelligently as the feature
learning is adaptive. Keras’ experimentation is carried out, and the model’s
superiority is compared with various advanced approaches for multi-level classifica-
tion. The proposed model gives better prediction accuracy, precision, recall, and
F-measure than other systems like Long Short Term Memory- Recurrent Neural
Networks (LSTM-RNN), Stacked Autoencoder with Deep Neural Networks
(SAE-DNN), Deep Convolutional Neural Networks (D-CNN), Two Dimensional
Convolutional Neural Networks (2D-CNN), Inception-V4, ResNet, and Two Dimen-
sional Convolutional Neural Networks (3D-CNN).

Keywords: Alzheimer’s disease; 3D CNN; ADNI; prediction accuracy; high-
dimensionality data

1 Introduction

Alzheimer’s disease is determined as the influencing kind of dementia in the medical field. Generally,
AD occurrence is identified for individuals aged 65 years (5%) and 30% for people above 85 years [1].
Based on the analysis reported by the World Health Organization (WHO), it is stated that 0.65 billion
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people will be diagnosed with AD in the later 2050 [2]. AD leads to the destruction of brain cells which
directly influences people by losing mental function, memory, and inability to continue their daily-life
activities. AD affects the brain parts and rules over memory and language [3]. As an outcome, AD
patients are noted with confusion, memory loss, and complexity in writing, reading and speaking. Often,
they seem to forget their lives and cannot identify their family members. Also, AD affected people suffer
from carrying out their daily activities like combing hair and brushing teeth. These consequences make
them aggressive, anxious, and wander over their home [4]. Therefore, it ultimately leads to the brain
being destroyed and manages the heart’s functionality and control of breathing which causes death [5].

There are three diverse kinds of AD. They are: very mild, mild, and moderate. The AD prediction
process is not proper until the patients reach the intermediate stage. Some essential things like neuro-
biological and physical examinations, patients’ detailed history and Mini-Mental state examination
(MMSE) are required for proper medical investigations on AD [6]. In recent times, physicians have been
using Magnetic Resonance (MR) images to predict AD. It reduces the cerebral cortex, and the brain
hippocampus expands ventricles. The hippocampus is generally accountable for spatial memory and
episodic [7]. Also, it works as a relaying structure among the brain and body. The hippocampus reduction
leads to damaged cells and influences the neuron ends and synapses. Therefore, neurons cannot establish
communication through synapses anymore [8]. As an outcome, the brain parts related to the remembering
portion (i.e., short-term memory like planning, thinking, and judging ability are affected [9]. The
degraded brain tissues show lower MR image intensity. The researchers have modelled various computer-
aided diagnostic systems to predict the disease correctly. In the earlier 1990s, the investigators modelled
rule-based expertise systems and supervised models [10]. From their investigation, feature vectors are
extracted from the provided image data for training the supervised methods, and the extraction of these
features requires human experts with higher cost computation. With the emergence of deep learning
approaches, features are extracted directly from the images, devoid of any human expert involvement
[11]. Therefore, investigators concentrate on modelling and efficient DL approaches for appropriate
disease diagnosis. This technological advancement has triumphed for various medical image analyses like
mammography, X-ray, ultrasound, CT, microscopy, and MRI [12]. The deep learning models have shown
pre-dominant outcomes for sub-structure and organ segmentation, various disease predictions and
classification in the retina, breast, bone, cardiac, abdomen, lung, brain, pathology, and [13].

During the disease progression, abnormal proteins like hyperphosphorylated and amyloid-b are
accumulated in the brain region of AD patients [14]. The accumulation of these abnormal proteins leads
to synaptic progressive axonal and neuronal damage. The variations accounted in the brain region are due
to AD with stereotypical patterns for earlier prediction of medial temporal lobe involvements
(hippocampus and entorhinal cortex) followed by progressive neo-cortical damage. It shows some toxic
effects on amyloid-b and hyperphosphorylated tau may gradually erode the brain regions, the clinical
threshold is exceeded, and amnestic signs commence to grow. These changes happen before the
appearance of the AD symptoms. Generally, structural MRI (sMRI) is considered for evaluating
progressive brain variations because of AD [15]. The experimental outcomes examine the sMRI with DL
approaches for AD prediction.

Various Machine Learning (ML) approaches are adopted for neuro-imaging data for constructing the
diagnostic tools which assist in the automated classification and segmentation of brain MRI. Most
learning approaches use handcrafted feature extraction and generation from the MRI data. These features
are provided as the input to methods like Support Vector Machine (SVM), Logistic Regression (LR),
Naïve Bayes (NB), and disease prediction. The knowledge experts perform a substantial role in the
modelling of design architecture. However, neuro-imaging studies involve datasets with constraint
samples. The image classification dataset performs object classification with huge images. For instance,
the ImageNet dataset is a neuro-imaging dataset composed of hundreds of images. However, huge
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samples are required to construct feasible and robust neural networks. The lack of huge samples makes
designing a model to learn the vital features from the smaller dataset essential. However, the prevailing
DL approaches are optimized to work over the raw image data. Also, these models necessitate a vast
amount of balanced training data to prevent network over-fitting. Here, a novel 3D-CNN model is used to
learn the features from the online available ADNI dataset and eliminate the handcrafted feature
extraction. It is trained using the ADNI dataset composed of 294 cognitively normal, 232 progressive
Mild Cognitive Impairment (MCI), 254 stable mild cognitive impairments, and 268 AD samples. Our
model predicts AD and outperforms all the existing approaches. The application relies on extending the
hands to the medical community. Therefore, the below section shows the primary contributions of the work:

Here, the input is taken from the online source, i.e., ADNI dataset with huge samples and is well-suited
to perform the DL classification process.

To design a novel 3D CNN for performing the classification and generating the outcomes. The model
acts as a predictor approach to help the physicians during times of complexity.

The efficient approach is being trained to handle the over-fitting issues and evaluate various metrics like
prediction accuracy, precision, recall and F1-score.

The remainder of the work is structured as follows: Section 2 provides an extensive review of the various
existing approaches used for AD prediction and the pros and cons. Section 3 gives a detailed description of
the anticipated 3D-CNN model for AD prediction with the later structure. In Section 4, the numerical results
attained with the anticipated model are provided, and a detailed analysis is done with various existing
approaches to show the model’s superiority. In Section 5, the research summary is given with certain
research constraints and ideas for future research enhancements.

2 Related Works

AD is characterized based on the variations in mental degradation, which generally occurs for old-aged
people due to the brain regions’ deterioration. Moreover, the investigators pretend to find the primary cause
of the degradation and automated ways to predict neuroimages degeneration. Zhang et al. [16] discuss the
DNN-based model composed of CNN and sparse AE using 3D convolutions of the entire MR images.
The author acquired satisfactory outcomes by adopting 3-way classifier models like AD, MCI, and HC
and attains a prediction accuracy of 89% and three binary classifications. Here, local 3D patterns are
captured with the 3D-CNN model and acquire better outcomes than 2D convolutions. The
experimentation over the convolutional layers is pre-trained using encoders, and it is not well-tuned to
enhance classification performance. Moradi et al. [17] show the differentiation among AD and health
control by scale extraction and shift-invariant among the lower to higher-level features using CNN. Here,
a pipelined workflow is performed with sMRI data with a prediction accuracy of about 99%, and
Functional Magnetic Resonance Imaging (fMRI) shows 98%. Initially, pre-processing is performed by the
author to eliminate data distortion and noise. Next, CNN architecture comprises learning filters, scale-
invariant operations, shift serving, and low-to-mid level features. GoogleNet and LeNet are executed in
the successive pipeline to train and test the vast amount of images from 4D fMRI. The anticipated model
shows higher prediction accuracy with better reproducibility. The author makes a significant contribution
to multi-modal MRI bio-markers. The major constraint is that the experimentation is performed only for
the people of fixed age by restricting the computation to explore the patterns of various age groups.

Zhao et al. [18] use CNN to predict AD from the health control. It performs scale-invariant and shifts
features for feature extraction, followed by the LeNet model. It serves only binary image classification, and
the accuracy attained with this is 96%. Ramírez et al. [19] model a framework with hyper-parameters from a
deep image classifier model with CNN for predicting the stages of AD. Therefore, the anticipated model
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avoids the requirement for handcrafted features, which transforms the input towards the output by
constructing the hierarchical feature from the lower-level features to higher-level features (complex). The
anticipated model is adopted with hyper-parameters from deep classifiers, learning from image datasets. It
predicts AD and classification with DL approaches over available datasets above 20 years. Here, the
attained classification accuracy is 74% with a 5-fold Cross Validation (CV). Moreover, the author does
not show much interest in validating the performance metrics compared to conventional approaches. El-
Sappagh et al. [20] use CNN for multi-class classification among the Head Circumstance (HC), AD, and
prodromal AD stages. The author designs the CNN model with MRI image pre-processing and attains
grey matter images, and the latter discusses the CNN model. ResNet and GoogLeNet are used to train
and test CNN. The author shows 4% improved prediction accuracy compared to other approaches, and
the overall prediction accuracy is 98% for three classes, Non-Cognitive (NC), MCI and AD. McKhann
[21] discuss various parameters attained from the 3D-CNN model for predicting MCI to AD with HC and
AD classification. It relies on 3D clustered and separated convolutions for provisioning descriptive
features from sMRI. Here, the author contributes to MCI prediction over the risky high convergence to
AD in the earlier stage. The classification accuracy attained with this model is 87%, 86% sensitivity, and
86% specificity over a 10-fold CV. The parameters are evaluated efficiently by restricting over-fitting and
exploiting HC and AD data. Afzal et al. [22] intend to classify HC and AD using layer-wise propagation
over MRI data, compare the back-propagation with LRP, and perform appropriate detection. Also, it is
reported that the approach is beneficial for clinical context and the constraint with this approach is the
restricted ground-truth value. The approximation is used for dominating the classifier decision. The model
highlights the significant contributions of the classifier model and does not facilitate assertion regarding
the causes. It reports a 75% success rate and AD classification using a 5-fold CV. Altaf et al. [23] apply
CNN for differentiating AD, MCI to AD and stable MCI for cross-sectional MRI scans. The model
successfully overcomes the generalization constraints and performs various scanners, centres, and neuro-
imaging protocols to acquire reproducibility and reliability. Some drawbacks could not exclude the
functionality of MCI, and it has to be tested to enhance the prediction ability of that specific approach.
The validation has to be performed in Positron emission tomography (PET), cognitive, clinical and
genetic biomarkers. Choi et al. [24] conducted some modifications over the CNN layer and intended to
predict dementia and AD using MR images. It is used to generalize other diseases, and the training
process improves the prediction accuracy. The accuracy was attained at 81% using cross-validation. Gao
et al. [25] anticipated conventional ML approaches like RF for feature selection and DNN for AD
classification at the earlier stage. Here, the Kaggle dataset attains an overall accuracy of 35% using a 10-
fold CV. The outcomes with DNN acquire appropriate prediction with the participant roaster, and the
multi-class classification accuracy can compete with the clinical applicability.

Brier et al. [26] discuss LSTM with AE, which contains RNN for learning informative and compact
representation from cognitive measures by facilitating and characterizing AD prediction with MCI
progression. The model attains notable performance for MCI prediction to AD with two years follow-ups.
The model is constructed with time points and gives superior performance to other models. The C-index
acquired by the model is 90.1% with Alzheimer’s Disease Neuroimaging Initiative (ADNI)-1% and
88.9% with ADNIGO-2. Cox et al. [27] discuss an automatic AD prediction model with CNN using 3D
MRI brain data by considering the entire 3D brain topology. CNN architecture comprises three
consecutive groups with two FC layers and classification layers. Here, 3D brain topology is considered
for the whole AD recognition, which improves prediction accuracy with a specificity of 93% and
sensitivity of 100%. Kong et al. [28] discuss DNN with stacked-AR with multi-class classification and
learns the complex non-linear patterns for MCI, NC, and AD classification. There are two specifications
for blind datasets. The author produces a True Positive Rate (TPR) of 63% for AD, 55% for CN and 40%
for MCI, and for the successive model, the TPR of AD is 65%, CN is 56% and 52% for MCI. Here, a
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superior fractal-based fractal dimensional co-occurrence is merged with surface area, cortical thickness, and
volumetric analysis for multi-class AD classification. Sukkar et al. [29] anticipate a novel Markov model for
automatic feature learning and predict AD fine-tuned and pre-processed using Markov. The model intends to
predict the consequences of hyper-parameter analysis based on the AD classifier performance using
preliminary models like pre-processing, data partitioning, and dataset size. The work concentrates on
evaluation with data partitioning tests. Noh et al. [30] perform statistical analysis with a feature grey-level
co-occurrence matrix based on Probabilistic Neural Network (PNN) and Principal Component Analysis
(PCA) for training and classification. The author intends to classify NC, MCI, and AD. It attains 86%
sensitivity, 83% specificity, and 86% accuracy, and the anticipated network model acquires superior
outcomes than k-Nearest Neighbourhood (k-NN) and Support Vector Machine (SVM) based on accuracy.

There are two diverse kinds of approaches used for classification purposes. Sun et al. [31] designed the
aAD model to attain superior performance devoid of any feature extraction process, which is time-
consuming. The anticipated model performs an MRI classification task and intends to select the initial
image of all subjects to avoid the probable information. Here, various performance metrics like Region of
curve (ROC), Area Under Curve (AUC), and prediction accuracy are evaluated using ResNet and
VoxCNN model attains 88%� 0:08 and accuracy of 79%� 0:08 for VoxCNN and AUC of 87%� 0:07
and prediction accuracy of 80%� 0:07 for ResNet. The model achieves one-verse classification and
shows superior prediction accuracy and outcomes multi-class classification process. The primary research
gap is the adversarial noise over the neuro-images, reducing classification accuracy. Therefore, the
elimination of this noise is considered a significant research challenge. Similarly, DL shows superior
accuracy with a large dataset and drastically impacts the prediction process. However, high-resolution
CNN models like 2D/3DCNN offer outstanding performance for multi-modal neuro-images. The model
attains excellent results with larger training datasets with DL approaches, which are a massive obstacle to
the application process. Some datasets are found to be rare and limited [30–37]. These issues need to be
addressed in the future. Table 1 depicts the comparison of various DL approaches used for AD prediction.

Table 1: Comparison of diverse deep learning approaches for AD prediction

DL architecture Features Dataset Size Performance
metrics

3D SAE, CNN
[15]

Cerebral blood
flow (CBF)

ADNI 760 samples (AD, HC,
MCI)

89% for AD, 86% for
HC and 92% for MCI

CNN [16] SSIF ADNI 52 AD samples, 92%
HC samples,
211 AD1, and 91 HC

98%

CNN [17] SSIF ADNI 15 NC and 28 AD 96.8%

CNN [18] CBF ADNI 49 MCI, 33 AD,
22 LMCI, 45 HC

98.7%

CNN [19] – ADNI 193 AD, 151 HC 95% class score

DNN [20] HPCV, LVV,
CFV, MMSE

ADNI 60 HC, AD, MCI 35%

3D-CNN [21] 3D CBF ADNI 43 LMCI, 50 AD,
77 EMCI, 160 LMCI

98.7%

PNG [22] SED, GLCM, ADNI 150 NC, 90 AD,
160 EMCI and
160 LMCI

85%

(Continued)
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3 Methodology

This research includes two major phases: 1) dataset acquisition for predicting AD using MRI images and
2) designing a 3D-CNN model AD prediction. The performance of the anticipated 3D-CNN model is done
with metrics like prediction accuracy, precision, recall and F1-score.

3.1 Dataset Description

This work uses Alzheimer’s disease Neuroimaging Initiative (ADNI) data composed of 819 samples
with 192 AD, 398 MCI and 229 cognitively normal and enrolled based on standard functional and
cognitive measures with clinical trials. The target of the construction of the dataset is to measure
longitudinal and cross-sectional efforts with normal controls, subjects with mild AD and MCI to facilitate
the evaluation of the chemical biomarkers and neuroimaging measures. The samples with MCI are
significantly more impaired than the cognitive subjects (standard); however not impaired as AD subjects.
Non-memory cognitive measures are impaired minimally with MCI, showing the progression of MCI to
dementia. Roughly 50% of MCI subjects are under anti-dementia therapies. There is minimal movement
on the AD evaluation scale-cognitive sub-scale for normal control subjects, slight subject movement of
MCC with 1.1 and modest variations with AD of 4.3. ADNI is recruited successfully with typical issues,
mild cognitive impairment, and AD with baseline characteristics. Table 2 depicts the dataset description.

Table 1 (continued)

DL architecture Features Dataset Size Performance
metrics

DBN [23] Meso scale
discovery (MSD)
24 and VV 3611

Open access series
of imaging studies
(OASIS)

49 AD, 49 HC Voxel Value (VV)
gives 91%, and MSD
gives 73%

3D-CNN [24] Clinical features
and 4D features

ADNI 184 HC, 192 AD,
228 sMCI, 181 pMCI

87%

LSTM-RNN [25] LSTM-based
features

ADNI-1, ADNI-2 822 MCI NA

SAE-DNN [26] SAF, 310 volume,
5000 FDCM

Computer aided
design (CAD)-
dementia, ADNI

171 CNN, 101 AD,
232 MCI

ADNI–59% and
CAD-dementia–57%

ADNI–57%,

CAD-dementia–52%

Table 2: ADNI dataset description

Source Features AD subject Non-subject Cognitive subject Non-cognitive subject

CSF 3 103 122 85 105

MRI 305 392 189 142 178

PET 116 77 105 70 75
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3.2 Normalization for Pre-Processing

It is the most general approach used for performing pre-processing. It converts the image values into a
specific range, i.e., 0 and 1. The normalization approaches considered here are z-score normalization and zero
means. It is expressed as in Eq. (1):

X 0
i ¼

Xi � mean ðX Þ
SD ðX Þ (1)

Here, X 0
i is normalized data; mean ðX Þ specifies the mean value, and SD ðX Þ specifies the standard

deviation of input X. The SD is mathematically expressed as in Eq. (2):

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1
ðXi � mean ðX ÞÞ2

r
(2)

Here, r specifies the standard deviation for the provided input values. Along with this, image resizing is
also done.

3.3 3D-CNN Model

Before executing the ideas of 3D-CNN, some pre-processing steps like oversampling [15],
undersampling [15,16] and data augmentation [17] can be adopted to handle the data imbalance in the
anticipated model. Generally, standard CNN performs feature reduction from input to final classification
layers. It is followed when the CNN input image is in 3D form, i.e., 3D-MRI image attained from (the
ADNI dataset). The inbuilt function in KERAS reads the input, and it is resized from the original
256 � 256 � 256 to 64 � 64 � 64. In a CNN, each layer has two parameters: weights and biases. The total
number of parameters is same as the sum of all weights and biases. Multiple downsampling is performed
with the max-pool operation for all convolutional layers. Here, dropouts are used to reduce the over-
fitting issues and yield Fully-Connected Layers to give the final output class, and it is depicted as the
input to the softmax layer. The adoption of Fully connected Layer (FCL) is done to perform the target
domain, and it is generally known as fine-tuning. It is considered the essential step for transfer learning
with pre-trained networks. It is merged with the large number filters where the weights are kept random
(random weights) and updated with back-propagation training. The intermediate layer pretends to identify
the activated image parts, while the final layers learn about the discriminative features (pattern and shape)
between the target regions. When the training reaches convergence, then it represents that there is no
further weight change and training accuracy triggers to the maximum value, thereby terminating the
training process. An Activation Function decides whether a neuron should be activated or not, i.e., it
determines whether the neuron’s input is essential or not during prediction. Consequently, the proposed
CNN model (refer to Fig. 1) is trained and acts as a generic feature extractor like of conventional way of
generating the features. The features developed are considered the discriminative features, and it is used
for differentiating the classes. Here, 3D filters pretend to give 4D outputs in every connected layer, i.e.,
3D feature map/filter. Convoluting the features with the provided filters predicts the occurrence of the
features over the image. The filters are equal to 64, 128 and 256. This generic nature of the CNN model
is depicted as the baseline for automatic feature extraction and assists computer-aided systems. It is
highly complex to predict the features earned by CNN without a training process. Thus, it is a
challenging task to examine the features. The network model is composed of millions of parameters, and
it is difficult to evaluate the final converged values of every filter devoid of training. Therefore, the
features learned have to be analyzed whenever the CNN is introduced. The CNN is loaded with the
weighted filter once the model is trained, used for further prediction with the testing images. It is
convoluted over every layer to acquire various outcomes for diverse MRIs. Consider, MRI has a
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64 � 64 � 64 matrix specified by IðxiÞðyiÞðziÞ where i ¼ 1 to 64: Thus, it results in 144 grey-scale values,
determined as the numerical specification for 3D images [18–29].

As this research is based on 3D, these values are voxel and not the pixel. Every voxel specifies a 3D
value with coordinates ðx; y; zÞ. Here, MRI is represented in the form of a cube. Therefore, every voxel
is allocated with three diverse coordinates mathematically for every representation and used the vector
notation of v ¼ ½Ixiyizi � to make this process so simple and easy. The first convolution over the initial layer
is expressed in Eq. (1), where initial bias and weights are represented as b11 and w1

N ;1, and the importance
of convolution kernel over Nth filter with initialization algorithm. Here, ⊙ it specifies element-wise
multiplication. The flow is mathematically expressed as in Eq. (3):

½x11; x12; x13; . . . ; x
1
64� ¼ ½b11; b12; b13; . . . ; b

1
64� þ ½v1; v2; v3; . . . ; v9� � ½ðw1

1;1;; w2
1;2; . . . ; w

1
1;9Þ� (3)

The convolution operation window keeps moving based on the stride size. The above Eq. (3) is rewritten
to reduce the mathematical expression in a shorter form. The nodes of the 3D convolution filter are
mathematically expressed as in Eq. (4):

xlk ¼ blk þ
XNl�1

i¼1
conv3 ðwl�1

ik ; sl�1
i � (4)

Here, conv3 is a regular 3D convolution devoid of any zero paddings over the boundaries. Eq. (2), xlk is
considered an input, blk is k

th neuron bias over the layer 0l0: Then, sl�1
i is the ith neuron output at layer l � 1

towards kth neuron over layer l: conv3, which specifies element-wise multiplication over [3*3*3] kernel size.
The input sl�1

i is supplied as a 3 � 3 � 3 matrix of image voxel value (normalized) and performed by the same
sized window for the initial convolution layer. Fig. 2 shows the blocks of the 3D-CNN model. While
representing it in the form of discrete or matrix, N�dimensional convolution in discrete form and
variables A&B are expressed as in Eq. (5):

Cðj1; j2; . . . ; jN Þ ¼
X

k1
. . .

X
kN
A ðk1; k2; . . . ; kN ÞB ðj1 � k1; j2 � k2; jN � kN Þ ¼ convN ðA; BÞ (5)

For all k1 which runs on values and provides legal sub-scripts for the provided variables A & B.
Therefore, 3D convolution runs are provided. The provided network layer convolves the input by
eliminating the filters (horizontal and vertical) filters. However, it evaluates the weighted dot products and
input, which subsequently adds to the bias term. When the filtering is done along with the input, it
utilizes a similar weighted set and bias for performing convolution. Therefore, it forms feature mapping.
With stochastic Gradient descent, the weighted filters are iteratively optimized, and it is updated based on
the provided Eqs. (6) and (7):

Wtþ1
l ¼ Wt

l þ V tþ1
l (6)

Here, Wt
al specifies the lth convolution layer weights for every lth iteration, and E specifies the cost

function by back-propagation updation for reducing the cost function over the mini-batch with 0N 0 size. It
is expressed as in Eq. (7):

V ðtþ1Þ
l ¼ m: V t

l � ctl : al
dE

dWl
(7)

Here,/l specifies the lth layer-based learning rate, 0m0 is momentum based on prior weight updation over
the current iteration, c is defined as scheduling rate, which reduces the learning rate for every epoch
completion. When al ¼ 0 and it relies on the value 1. All the layers from 1 to l are not updated with
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weight. Therefore, the weights are moved to the final trained model. The parameter tuning is achieved with
Eq. (8):

TotalerrorðEÞ ¼ EðyL1; . . . ; yLNÞ ¼
XNL

i¼1
ðyLi � tiÞ2 (8)

Here, the error is considered Mean Square Error by accumulating the MSE value of the samples derived,
i.e., trained data from predicted data. Here, L specifies the final layer output and BP is performed for weight
updation for all parameters over Eq. (9):

@E

@wl
ik

¼ @E

@xlþ1
k

:
@xlþ1

k

@wl
ik

¼ @E

@xlþ1
k

: yli (9)

Here, xlþ1
k is the kth filter output which is the number of lth layer filters, and the weight of the previous

layers l þ 1 provides yli layer where the bias is updated based on Eq. (10):

Figure 1: Experimentation workflow
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@E

@blk
¼ @E

@xlk
:
@xlk
@wl

k

¼ @E

@xlk
(10)

Based on Eq. (10), the result is provided as the entire length with 1 to l þ 1. Therefore, it is added for N
filters over the l þ 1 layers to attain y in the lth layer, and it is expressed as in Eq. (11):

Figure 2: Blocks of 3D-CNN model
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@E

@ylk
¼

XNlþ1

i�1

@E

@xlþ1
i

:
@xlþ1

i

@ylk
(11)

During the training process, the gradient error needs to be BP via the transformation and evaluate the
gradients based on the parameters like batch normalization transformation. The initial layers are tested,
i.e., convolutional-batch normalization, max-pooling and ReLU are defined based on the optimal layers
with 64 � 64 � 64 input (3D scan). The blocks are executed based on the provided layers L1 to 4: The final
feature size with convolution ½2 2 2� is provided for all 64 filters. It shows that the filter kernels possess
two pixels for all filters. Therefore, this work does not consider more than five convolution layers. The
training and validation are provided to project how the proposed 3D-CNN influences the training process
and assists in having a better understanding of the convergence process for all CNN. The MRI for all
domains is passed to better understand the feature extraction from the provided convolutional layers, and
every layer is monitored. The observations help predict the difference among the patterns, intensities,
lines and edges [30,31]. The layers are visualized for the entire testing set and, therefore, help segregate
the features from the provided framework in a superior manner. At last, the outcomes from the various
hyper-parameter setting are provided [32–37].

The filter size depicts the scanning window during the convolution process, and two strides increment
window size for all consecutive layers. Therefore, the extracted features are sequentially at a lower,
intermediate and higher level. Here, the low-level features are removed from filter window 3 � 3 � 3 and
maximum-pooling by 2 � 2 � 2 windows with a stride of the convolutional layers. The filter size increases
based on the step size; however, the filters of every layer are provided as 64. It is done to preserve the
channel size for the given input 64 � 64 � 64. Thus, the variations are captured more straightforwardly.
When the layer moves more profoundly, the features are accumulated by increasing the window size of
all layers. The maximum-pooling strides are also increased to diminish the feature redundancy. The
kernel size is uniform, with 3 � 3 � 3 for all convolutional layers. The outcomes after the training, testing
and validation are discussed below. The layer details are shown in Table 3.

Table 3: 3D-CNN layer description

Layer (type) Output shape Parameters

Input_1 (input layer) (None, 64, 64, 64, 1) 0

Conv3D (None, 62, 62, 62, 64) 1792

Max_pooling 3D (None, 62, 62, 62, 64) 2

Batch_Normalization (BatchNo (None, 31, 31, 31, 64)) 256

Conv3D_1 (None, 29, 29, 29, 64) 110656

Max_pooling3D_1 (Maxpooling3 (None, 14, 14, 14, 64)) 0

Batch_Normalization_1 (Batch (None, 14, 14, 14, 64)) 256

Conv3D_2 (None, 12, 12, 12, 128) 221312

Max_pooling3D_2 (Maxpooling3 (None, 6, 6, 6, 128)) 0

Batch_Normalization_2 (Batch (None, 6, 6, 6, 128)) 512

Conv3D_3 (None, 4, 4, 4, 256) 884992

Max_pooling 3D_3 (Maxpooling 3 (None, 2, 2, 2, 256)) 0

Batch_Normalization_3 (Batch (None, 2, 2, 2, 256)) 1024

Global_average_pooling 3D (GL (None, 256)) 0
(Continued)
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4 Numerical Results and Discussion

Here, four diverse performance metrics are utilized for evaluation purpose and they are: accuracy, recall,
precision, and F1-score. In the equation given below, True Negative (TN), True Positive (TP), False Negative
(FN) and False Positive (FP) are used for evaluation, and it is expressed as in Eqs. (12)–(15):

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
(12)

Precision ¼ TP

TP þ FP
(13)

Recall ¼ TP

TP þ FN
(14)

f 1� score ¼ 2TP

2TP þ FP þ FN
(15)

Here, the ADNI dataset is used where 800 samples are adopted for training, and 200 samples are adopted
for testing with a partitioning ratio of 70:30, i.e., 70 for training, 20 for testing and 10 for validation.

Table 4 depicts the anticipated 3D-CNN performance with existing LSTM-RNN, SAE-DNN, D-CNN,
and 2D-CNNmodels. Here, metrics like accuracy, precision, recall, and F1-score are evaluated and compared
among these models. The prediction accuracy of 3D-CNN is 89.47% which is 11.47%, 12.47%, and 13.47%
higher than LSTM-RNN, SAE-DNN, D-CNN and 2D-CNN, as depicted in Fig. 5. The 3D-CNN precision is
86.66% which is 18.66%, 13.66%, and 2.667% higher than LSTM-RNN, SAE-DNN, D-CNN and 2D-CNN.
The recall of 3D-CNN is 89.47% which is 11.47%, 12.47%, and 13.47% higher than LSTM-RNN, SAE-
DNN, D-CNN and 2D-CNN. The F1-score of 3D-CNN is 90.41% which is 18.41%, 15.41%, and 8.41%
higher than LSTM-RNN, SAE-DNN, D-CNN and 2D-CNN.

Table 3 (continued)

Layer (type) Output shape Parameters

Dense (Dense) (None, 512) 131584

Dropout (Dropout) (None, 512) 0

Dense_1 (Dense) (None, 3) 1539

Table 4: Performance evaluation of proposed vs. existing

Metrics Long short
term memory-
recurrent
neural
networks
(LSTM-RNN)
[15]

Stacked auto-
encoder and
deep neural
network
(SAE-DNN)
[17]

Deep
convolutional
neural
networks (D-
CNN) [19]

2D-
convolutional
neural
network (2D-
CNN) [21]

Inception-
V4 [22]

ResNet
[24]

3D-
CNN

Accuracy 78% 77% 83% 76% 75% 82% 89.47%

Precision 68% 73% 84% 76% 67% 68% 86.66%

Recall 78% 77% 83% 75% 75% 82% 89.47%

F1-score 72% 75% 82% 64% 71% 75% 90.41%
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Table 4 depicts the anticipated 3D-CNN performance with existing Inception-V4, ResNet, and D-CNN
models. Here, metrics like accuracy, precision, recall, and F1-score are evaluated and compared among these
models. The prediction accuracy of 3D-CNN is 89.47% which is 14.47%, 7.47%, and 6.47% higher than
Inception-V4, ResNet, and D-CNN. The precision of 3D-CNN is 86.66% which is 19.66%, 18.66%, and
2.66% higher than Inception-V4, ResNet, and D-CNN. The recall of 3D-CNN is 89.47% which is
14.47%, 7.47%, and 6.47% higher than Inception-V4, ResNet, and D-CNN. The F1-score of 3D-CNN is
90.41% which is 19.41%, 15.41%, and 8.41% higher than Inception-V4, ResNet, and D-CNN,
respectively. Figs. 3–6 depicts the overall comparison of the anticipated model with the existing
approaches. Fig. 7 shows the training and validation accuracy, and Fig. 8 shows the training and
validation loss. Finally, Fig. 9 shows the prediction outcome of the anticipated model.

Figure 3: Accuracy comparison

Figure 4: Precision comparison
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From the analysis of the past few decades, the hybridization approach integrates the conventional
learning approaches for diagnostic prediction with DL approaches for extracting features and yields
superior performance. Fig. 10 depicts the confusion matrix of the anticipated model. Generally, DL needs
considerable data to attain desired performance levels and prediction accuracy. It is considered an
excellent alternative to deal with these constraint data. Even though hybrid approaches have achieved
relatively superior outcomes, they do not benefit DL, which extracts features automatically from a large
amount of neuroimaging data. The most commonly adopted DL approaches in computer vision studies is
CNN, which specializes in removing images’ characteristics. Currently, 3D-CNN models are proposed in
this work and show superior performance for AD classification.

Figure 5: Recall comparison

Figure 6: F-measure comparison
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Figure 7: Representation of training and validation accuracy

Figure 8: Representation of training and validation loss

Figure 9: Prediction outcome
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5 Conclusion

This work provides a productive approach for AD prediction using MRI brain image analysis. Various
existing research works concentrate on performing binary and multi-class classification; however, the
enhancement of prediction accuracy is highly solicited. The anticipated 3D-network architecture is
exceptionally beneficial for predicting AD in its earlier stage. Based on this research progression, the
expected 3D-CNN model is tested over the AD dataset; it is applied to other research in the medical field.
The proposed 3D-CNN model gives a prediction accuracy of 89.47%, precision of 86.66%, recall of
89.47% and F1-score of 90.41%, which is higher than LSTM-RNN, SAE-DNN, D-CNN, 2D-CNN, AD-
Net, ResNet, and Inception-V4. Here, the prediction and validation accuracy intends to eliminate the
over-fitting issues encountered in the previous research works. The proposed 3D-CNN model provides
promising outcomes which may be further improved in the future. However, the primary research
constraint is the acquisition of dataset images. In the future, the anticipated 3D-CNN model needs to be
tested over various other AD datasets and other-brain related disease diagnoses. The prediction of AD
using DL still evolves to attain superior prediction accuracy and transparency. The research on AD
diagnostic classification is shifting towards deep learning instead of other prediction methods. In future,
some techniques must be modelled to merge diverse data formats in the deep learning network model.
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