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Abstract: A sensor graph network is a sensor network model organized according
to graph network structure. Structural unit and signal propagation of core nodes
are the basic characteristics of sensor graph networks. In sensor networks, net-
work structure recognition is the basis for accurate identification and effective pre-
diction and control of node states. Aiming at the problems of difficult global
structure identification and poor interpretability in complex sensor graph net-
works, based on the characteristics of sensor networks, a method is proposed to
firstly unitize the graph network structure and then expand the unit based on
the signal transmission path of the core node. This method which builds on unit
patulousness and core node signal propagation (called p-law) can rapidly and
effectively achieve the global structure identification of a sensor graph network.
Different from the traditional graph network structure recognition algorithms such
as modularity maximization and spectral clustering, the proposed method reveals
the natural evolution process and law of graph network subgroup generation.
Experimental results confirm the effectiveness, accuracy and rationality of the
proposed method and suggest that our method can be a new approach for graph
network global structure recognition.

Keywords: Sensor network; graph network; P-law; unit subgroup; structure
recognition

1 Introduction

The sensor graph network is a sensor network model organized according to the structure of the graph
network (the sensors are the nodes of the graph network, the connections between the sensors serve as the
edge of the graph network), and it is a distributed intelligent network system composed of sensor nodes
interconnected through wireless communication deployed in the area of action, which can perform the
specified tasks independently according to the environment. The self-organizing behavior of the sensor
network is manifested as the clustering of sensor nodes in the sensor graph network. In the sensor graph
network, there is a sensor network unit subgroup structure composed of several sensors with the core
node (such as the gateway of the Internet of things (IoT)) as the center. These unit subgroups can be
regarded as the basic organization module of a sensor network. The central node is the organizational
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core of the unit subgroup and has an aggregation effect. For example, the IoT gateway generally undertakes
the tasks of data exchange, storage, processing and so on. These unit subgroups can be further combined to
form more complex and larger sensor network subgroups. The unit and centrality of the sensor network are
identified as the core of sensor network subgroup structure.

As a type of graph network, sensor networks widely exist in the real world, such as meteorological
monitoring station network, energy consumption monitoring network, urban brain infrastructure network
and so on. Many problems of sensor networks are essentially graph network structure problems. For
example, the urbanization control of energy consumption of buildings, control of electric energy between
high-rise and low-rise buildings, which is a graph network structure problem; There are many resource
scheduling problems in the infrastructure of urban brain, including hardware resource management,
capturing resource bottlenecks, system changes of user dynamic graph, etc. These are structural problems
such as graph decomposition and graph synthesis.

At present, the research on sensor networks involves sensor network routing protocol [1–3], sensor
network security [4,5], internet of things resource scheduling [6,7], energy consumption management [8]
and so on. However, there is little research on sensor network structure recognition. The research of
sensor graph network structure and graph network structure comes down in one continuous line. In recent
years, the research on the structure of graph network has attracted widespread attention. Many graph
network structure recognition algorithms have been developed in many disciplines such as computer
science, physics and mathematics, and are widely used in specific problems in various scientific fields
[9,10]. The existing methods for graph network structure recognition mainly include modularity
maximization algorithm [11,12], spectral clustering algorithm [13,14] and label propagation algorithm
[15,16]. Due to the large scale of large-scale graph networks, it is difficult to find global structure
information. Therefore, the discovery of local structure has attracted the attention of researchers. The
basic idea is to start from a few known nodes in the target structure and gradually expand to the
remaining nodes in the structure. Research shows that the method based on seed set expansion [17,18]
can effectively find local structures, including local spectrum method [19], personalized PageRank
method [20,21], thermonuclear diffusion method [22], etc. Considering the unit characteristics and the
connection mode between units which are based on core node signal transmission in sensor graph
networks, a method based on unit patulousness and core node signal propagation (called p-law) is
proposed to achieve the global structure recognition of sensor graph networks. This method first
decomposes the sensor graph network according to the graph network units, and then combines the graph
network units by the signal transmission path of the core node to form the sensor graph network
subgroup. Specifically, the ideas of the proposed method are as follows: take the graph network unit
subgroup as the basic construction module of the graph network subgroup. Then, take the central node as
the signal organization center of the subgroup structure, and quickly generate the subgroup by the unit
expansion method.

In summary, the main contributions of this paper are as follows:

(1) The concepts of unit subgroup and k-order subgroup are provided, and the k-order subgroup model
of graph network is established.

(2) A k-order subgroup structure recognition method of graph network based on p-law is proposed.
(3) The typical application of graph network subgroup structure identification method in sensor

networks is presented.

1278 CSSE, 2023, vol.46, no.2



2 Graph Network K-order Subgroup Model

2.1 K-order Subgroups of Graph Networks

Convention: let G = (V, E) be a graph, where V = {v1, v2, …, vn} is the node-set of graph G, and

E = {e1, e2, …, em} is the set of edges of graph G, and j(vi, vj) is the order (HOPS) of node vi reaching
node vj, and deg(v) is the degree of node v (the number of edges connected to node v).

Definition 1: 1-order unit subgroup

Let H = (V′, E′) be a subgraph of G = (V, E), having V′⊆ V, E′⊆ E and nodes v∈ V, so that given any other
nodes v′′ in H, j(v′′, v) = 1 is satisfied. ThenH is the unit subgroup with node v as the core in graphG. which is
recorded as:

gðv;1Þ ¼ gðGjH ; v; k ¼ 1Þ (1)

In Eq. (1), v is the core of the 1-order unit subgroup g in the graph network G, and k is the order of the
subgroup in the graph network G.

Definition 2: 1-order extension of subgroups:

If g(v,1) = g(G|H, v, 1) is a unit subgroup with v as the core, gðvi;1Þi ¼ giðGjHi; vi; 1Þ is the i-th unit
subgroup of the graph network G with vi as the core, H = (V′, E′), Hi ¼ ðV 0

i ; E
0
iÞ,v′∈ V′,v0i 2 V 0

i . If

v0i 2 V 0,v0i 6¼ v0, then gðvi;1Þi is the 1-order extension of g(v,1) and v0i is the extended core of g(v,1). The
expanded subgroup is a 2-order subgroup, which is recorded as:

gðv;sk ;2Þ ¼ gðv;½v1;v2;...;vi�;2Þ ¼ gðv;1Þ [ðgðv1;1Þ1 [ gðv2;1Þ2 [ . . .[ gðvi;1Þi Þ (2)

In Eq. (2): sk = [v1, v2, …, vi], v is the core of the graph network subgroup g, and sk is the set of 1-order
extended cores of the graph network subgroup g.

The unit subgroups of the graph network and the 1-order extension of subgroups defined in definitions
1 and 2 are shown in Fig. 1.

Figure 1: Schematic diagram of unit subgroups and 1-order extensions of graph network
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Definition 3: k-order subgroup of graph network

if gðv;sk ;1Þ is a 1-order subgroup with v as the core, and gðv;s1;s2;...;sj;kÞ satisfies: gðvhi;shþ1;1Þ is a 1-order
subgroup with vhi as the core, sh+1 is its 1-order extended core, where vhi∈ sh,h = 1, 2, …, k − 2, then, the
following equation is called a k-order subgroup:

gðv;s1;s2;...;sk�1;kÞ ¼ gðv;s1;1Þ [ gðv1i;s2;1Þ [ . . .[ gðvhi;shþ1;1Þ (3)

In Eq. (3), s1, s2, …, sk−1 is the set of k-th order extended cores of the graph network subgroup G.

Fig. 2 is a schematic diagram of the extension of k-order subgroup and k-order subgroup.

2.2 Related Properties of K-order Subgroup in Graph Network

Property 1:The k-order subgroup gðv;s1;s2;...;sk�1;kÞ of graph network has an extension chain l(v, s1, s2,…,
sk−1) with v, s1, s2, …, sk−1 as the extension core series, and has a hierarchical structure corresponding to the
extension chain l(v, s1, s2, …, sk−1).

According to the definition of k-order subgroup, k-order subgroup expands gradually according to the
core node series v, s1, s2,…, sk−1, and the extension core expands step by step to form the extension chain l(v,
s1, s2, …, sk−1), and the extension forms k-order subgroup. Therefore, it has a k-layer hierarchy
corresponding to the extension chain l(v, s1, s2, …, sk−1).

Property 2: The order (hops) of any two nodes vi and vj in the k-order subgroup gðv;s1;s2;...;sk�1;kÞ of the
graph network through the core v satisfies:

jvðvi; vjÞ � 2k (4)

Proof: According to property 1, the k-order subgroup of the graph network is hierarchical. If vi and vj are just
on the k-th layer of subgroup g, at this time, the core v of the subgroup is the farthest from vi and vj, that is, j
(vi, v)=k, j(vj, v) = k.

According to definition 3, vi must reach vj through the core v. At this time, if vi and vj are in layer K or
within layer K, then: j(vi, v) ≤ k, j(vj, v) ≤ k. So, there is: jv(vi, vj) = j(vi, v) + j(vj, v) ≤ 2k.

Figure 2: Schematic diagram of k-order subgroup extension and k-order subgroup
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End of proof.

Properties 1-2 are shown in Fig. 3.

Theorem 1: Core reachability theorem of k-order subgroup of graph network

Any node vi in k-order subgroup gðv;s1;s2;...;sk�1;kÞ of graph network can reach any other node vj
through the core node v.

Proof: According to definition 3 and property 1, the nodes of any layer in k-order subgroup of graph
network are directly connected with the extension core of the layer. Because there is an extension chain
in k-order subgroup of graph network, and the extended core on the extended chain is interconnected,
any node in any layer of subgroup can reach the core v of the subgroup along the extended chain. Then,
it reaches any other node in the subgroup through the extended chain. Therefore, any nodes in the
subgroup can reach each other through the core and the extended chain, which has core reachability.

End of proof.

Fig. 4 shows the reachability of the core node of k-order subgroup. The node v4 in the 3-order
subgroup reaches the core v1 through the extended chain L (v1, v2, v3), and then reaches the node
v5 through the core v1.

Theorem 2: Node reachability theorem between subgroups of graph network

Let gðv;s1;s2;...;sk�1;kÞ
1 ¼ g1ðGjH1; v; s1; s2; ... ; sk�1; kÞ,gðv

0;s01;s
0
2;...;s

0
l�1;lÞ

2 ¼ g2ðGjH2; v0; s01; s
0
2; ... ; s

0
l; lÞ

be two subgroups of graph network G respectively. If H1 \ H2 6¼ [, any node between

gðv;s1;s2;...;sk�1;kÞ
1 and g

ðv0;s01;s02;...;s0l�1;lÞ
2 can reach each other.

Proof:

According to the meaning, because H1 \ H2 6¼ [,gðv;s1;s2;...;sk�1;kÞ
1 and g

ðv0;s01;s02;...;s0l�1;lÞ
2 must have a

common node v′′.

Figure 3: Schematic diagram of hierarchical structure of k-order subgroup
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Let vi and vj be arbitrary nodes of subgroups gðv;s1;s2;...;sk�1;kÞ
1 and g

ðv0;s01;s02;...;s0l�1;lÞ
2 respectively. According

to theorem 1, vi can reach the common node v′′ through the core v of gðv;s1;s2;...;sk�1;kÞ
1 , and vj can reach the

common node v′′ through the core v′ of g
ðv0;s01;s02;...;s0l�1;lÞ
2 .

That is:vi⇔ v⇔ v′′, vj⇔ v′ ⇔ v′′, so there is:vi⇔ v⇔ v′′⇔ v′⇔ vj.

Therefore, vi and vj can reach the common node v′′ through their respective core and reach each other
through the common node v′′.

End of proof.

Fig. 5 shows the case where any node among subgroups can reach each other. Node v3 in subgroup
2 reaches node v4 in subgroup 1 through the common node v1 of subgroup 1 and subgroup 2.

Theorem 3: Extension Theorem of Subgroup in Graph Network

K-order subgroup of graph network is expansion of 1-order subgroup based on (k-1)-order
subgroup

Proof:

Let gðv;s1;s2;...;sk�2;k�1Þ be a (k-1)-order subgroup and l(v, s1, s2, …, sk−2) be its extended chain. sk−2 is the
set of the end extended core nodes of the extension chain of the subgroup. Let v′∈ sk−2,sv0 be the associated
node set of v′, and let v00 2 sv0 ,gðv

00;1Þ be the 1-order unit subgroup with core v′′.

According to Definition 2:

1-order extension of gðv;s1;s2;...;sk�2;k�1Þ, that is,gðv;s1;s2;...;sk�2;k�1Þ [ gðv
00;1Þ. At this time, the extended chain

is extended to l(v, s1, s2,…, sk−2, v
′′), and the original (k-1)-order subgroup gðv;s1;s2;...;sk�2;k�1Þ is extended to k-

order subgroup gðv;s1;s2;...;sk�2;v00;kÞ.

End of proof.

Theorem 4: Contraction theorem of subgroup in graph network

Figure 4: Schematic diagram of core reachability of k-order subgroup
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Contraction of k-order subgroup in graph network is by removing 1-order unit subgroup
associated with the end extension core node in the extension chain (except the core node).

Proof:

Let gðv;s1;s2;...;sk�1;kÞ be a k-order subgroup and l(v, s1, s2, …, sk−1) be its extended chain. Select the end
extended core node sk−1 from l(v, s1, s2,…, sk−1). Let vi∈ sk−1,gðvi;1Þ be a 1-order unit subgroup with vi as the
core. According to Theorem 3, if the subgroup is to be contracted, only remove the 1-order unit subgroup
gðvi;1Þ from gðv;s1;s2;...;sk�1;kÞ (except the core node vi).

Namely: ðgðv;s1;s2;...;sk�1;kÞ � gðsk�1;1ÞÞ [ sk�1. At this time, the k-order subgroup gðv;s1;s2;...;sk�1;kÞ shrinks to
k-1-order subgroup gðv;s1;s2;...;sk�2;k�1Þ and the extension chain l(v, s1, s2,…, sk−1) shrinks to l(v, s1, s2,…, sk−2).

End of proof.

3 Recognition Algorithm for K-order Subgroup Structure of Graph Network

3.1 The Basic Flow of Subgroup Structure Recognition of Graph Network

The basic flow of k-order subgroup structure recognition algorithm of graph network is as follows:

(1) Determine the order of subgroup structure. You can set the default value to 3. According to the
general law, if the order is too large, the subgroup scale may be too large, the compactness of the
subgroup structure will be reduced, and the control force of the core node of the subgroup
structure on the subgroup will be weakened.

(2) The unit subgroups are generated in the order of the degree of the nodes with which as core of unit
subgroups in graph network (from high to low), until the generated unit subgroups contain all the
nodes of the graph network.

(3) Select the unit subgroup with high degree of core node from the unit subgroups in turn for k-order
expansion until it cannot be extended.

(4) If necessary, the generated k-order subgroups can be further synthesized and optimized.

Figure 5: Schematic diagram of mutual accessibility of any nodes among subgroups
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3.2 Generation Algorithm for K-order Subgroups of Graph Network

Algorithm-1: Graph network subgroup generation algorithm

Input: graph G(V, E), order of subgroups K

Output: k-order subgroups of graph network G

Process:

01 Generating a degree list of graph G nodes sorted by descending order:degree_list

02 Generating node_list according to the degree list

03 Generating unit subgroup of G:

04 init unit subgroup:unit_subgroup_dict = {key : value}//key

05 For a node in node_list

06 Select the Associated nodes of the node from G

07 Add node(core node)and the Associated nodes to dict, set the core node as key, set the Associated
nodes as value

08 If unit_subgroup_dict includes all the nodes of G

09 return unit_subgroup_dict

10 end

11 Generating k-order subgroup:geSubGroup(G,K, unit_subgroup_dict) // K is the order of the
subgroup

12 init expand_subgroup_list

13 while unit_subgroup_dict dict has more elements:

14 select the higher degree unit subgroup from unit_subgroup_dict as a subgroup to be extended

15 remove the unit subgroup from unit_subgroup_dict

16 for k in K: // Extend the k-order subgroups until they can no longer be extended

17 set Intersection of the unit subgroup(exception the core of the unit subgroup) and keys of
the unit_subgroup_dict to intersection_node

18 for node in intersection_node

19 select the unit subgroup by node(key) from unit_subgroup_dict, implements 1-order
subgroup extension, set expanded subgroup to expand_subgroup

20 end

21 end

22 add expand_subgroup to expand_subgroup_list

23 end

24 return expand_subgroup_list // Returns the generated k-order subgroup
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3.3 Synthesis and Optimization Algorithm for K-order Subgroups of Graph Network

Algorithm-2: Synthesis and optimization algorithm of k-order subgroups in graph networks

Input: Graph G(V,E), k-order-subgroups, K(similarity coefficient among subgroups)

Output: Subgroups of graph networks after synthesis and optimization

Process:

# subgroup synthesis and optimization: synAndOptSubgroup (G, k-order-subgroups, K)

1 init Subgroups list of graph networks: subgroups_list = [ ]

2 init dict_subgroups = []

3 for subgroup in k-order-subgroups:

4 dict_subgroups = [subgroup]

5 remove subgroup from k_order_subgroups

6 set nodes of subgroup to subgroup_1_nodes

7 for next_subgroup in k-order-subgroups:

8 set nodes of next_subgroup to subgroup_2_nodes

9 set intersection of subgroup_1_nodes and subgroup_2_nodes to intersection_1_2_subgroup

10 set size intersection_1_2_subgroup to size_intersection_1_2_subgroup

11 set minimum size of subgroup_1_nodes and subgroup_2_nodes to min_size_1_2_subgroup

12 set round (size_intersection_1_2_subgroup/min_size_1_2_subgroup, 2) to result

13 if result > k

14 dict_subgroups.append(next_subgroup)

15 remove next_subgroup from k_order_subgroups

16 end

17 subgroups_list.append(dict_subgroups)

18 end

19 for plus_subgroup in unit_subgroups(unit subgroups not composited in k-order-subgroups):

20 set nodes of plus_subgroup to nodes_plus_subgroup

21 init max_size_list

22 for subgroups in subgroups_list:

23 init nodes_list, result_nodes

24 for group in subgroups:

25 add nodes of group to nodes_list

26 end

27 for nodes in nodes_list:

28 add intersection of nodes and nodes_plus_subgroup to result_nodes

29 end

30 set max(result_nodes) to max_group

(Continued)
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31 add max_group to max_size_list

32 end

33 index =max_size_list.index(max(max_size_list))

34 add plus_subgroup to subgroups_list[index]

35 end

36 return subgroups_list

3.4 Analysis of Recognition Algorithm for K-order Subgroup Structure of Graph Network

The key points of recognition algorithm for k-order subgroup structure of graph network are as follows:

(1) Unit subgroup generation: the 1-order unit subgroup generation method used in the algorithm is to
sort the nodes from high to low according to the degree of nodes, and then take out the nodes in
order to generate 1-order unit subgroup until the nodes contained in the generated 1-order unit
subgroups cover all the nodes in the graph network. In the generation of 1-order unit subgroups,
this method ensures the clustering centrality and cohesion of nodes, that is, the nodes with
higher degree give priority to the generation of 1-order unit subgroups.

(2) Generation of k-order subgroup: select the 1-order unit subgroup with the highest centrality and
cohesion as the subgroup to be expanded firstly, and then select the corresponding unit subgroup
from the rest 1-order unit subgroup to expand until it can no longer be expanded.

(3) Synthesis and optimization of k-order subgroups: for the previously generated k-order subgroups,
further synthesis and optimization can be carried out as needed. If two k-order subgroups have high
similarity (a coefficient can be set here for similarity control), that is, there are more common nodes,
they can be combined to ensure their cohesion.

(4) After subgroups synthesis and optimization, there may be common nodes between subgroups,
which are the channels to realize signal transmission between subgroups. If you want to define
the subgroup attribution of these coincident nodes, the following principles can be adopted: 1) If
the common node is the core node, it can be determined according to the subgroup attribution
of the core node (the core node can only belong to one subgroup); 2) If the common node is not
a core node, it can be determined by the number of associated edges of the node and each
subgroup; 3) Adjustment of subgroup belonging of core nodes: the associated nodes of core
nodes may belong to multiple subgroups, which can be determined by the number of associated
nodes between the core node and each subgroup.

4 Experiments and Analysis

4.1 Data Description

The following is the simulation experiment of sensor graph network structure recognition using the
general real data set of graph networks: Dolphin network and karate club network. The two graph
networks have 62 nodes, 128 edges, 34 nodes and 78 edges respectively. The real subgroup structure is
two subgroups. The network diagram is shown in Fig. 6. The following experiments are carried out on
these two real data sets to analyze and verify the above theories and algorithms.

Algorithm 2: (continued).
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4.2 Experimental Process

4.2.1 Unit Subgroup Generation
According to algorithm 1, based on the degree of nodes in the graph network, from the high to low order,

the unit subgroup with the node as the core is generated successively until all nodes in the graph network are
contained in the unit subgroups. Dolphin social network generates 43 unit subgroups, and karate club
network generates 13 subgroups. As shown in Fig. 7.

These unit subgroups are generated according to the clustering centrality (node degree), covering all
nodes in the graph network. They are the basic elements of graph network subgroups.

4.2.2 Graph Network Subgroup Extension
According to algorithm 1, based on unit subgroups, the unit subgroups with high aggregation degree are

selected in the order of node degree from high to low, and the k-order expansion is carried out until it can no
longer be extended. After expansion, the dolphin network is expanded from 43 unit subgroups to

Figure 6: Dolphin social network and karate club network

Figure 7: Unit subgroups of dolphin social network and karate club network
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8 subgroups, of which 6 are 2-order subgroups and 2 unit subgroups are not expanded, indicating that the two
unit subgroups tend to be separate groups, as shown in Fig. 8; The Karate club network is expanded from
12 unit subgroups to two 2-order subgroups. The expanded results are shown in Fig. 9.

4.2.3 Synthesis and Optimization of K-order Subgroups
If the generated k-order subgroups have more common nodes, further synthesis and optimization of

k-order subgroups can be considered. The synthesized and optimized subgroups should have less
connectivity, that is, there are fewer common nodes among subgroups. For Karate clubs, since the
generated 2-order subgroups have reached the minimum number of graph network divisions, they will not
be merged, and only the nodes between subgroups will be adjusted and optimized. The adjustment and
optimization algorithm and idea are shown in the previous section. Subgroup structure recognition results
are shown in Fig. 10.

Figure 8: Eight subgroups of dolphin social network(after expansion)

Figure 9: Two subgroups of the karate club network(after expansion)
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For dolphin social network, eight subgroups are further merged into four subgroups by aggregation
coefficient K(K = 0.6, K is a hyperparameter, it can be determined by observing the common nodes
among subgroups in advance), two of which are unexpanded unit subgroups. According to algorithm 2,
the number of common nodes of two unit subgroups and composite subgroups are compared respectively,
and the unit subgroup is merged with the subgroup with more common nodes. After optimization and
adjustment, eight subgroups are combined into two subgroups. The results are shown in Fig. 11. The
coincident nodes among subgroups are processed according to the principle of coincident node
processing. Subgroup structure recognition results are shown in Fig. 12.

4.3 Analysis of Experimental Results

The experimental results show that the method based on unit subgroup expansion and core node signal
propagation can effectively recognize the subgroup structure of the sensor graph network. The identification
results are consistent with the actual subgroup structure of graph network. At the same time, the core node

Figure 10: Two subgroup structures of the karate club network

Figure 11: Two subgroups of the dolphin social network(after combined)
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expansion chain of subgroup (shown by red dots in each subgroup) are identified. The extension chain is a
fast channel for signal transmission in subgroups, and the signal transmission between subgroups is carried
out through the common nodes between subgroups. The experimental results are shown in Tab. 1.

5 Conclusion

Driven by the new generation of information technologies such as artificial intelligence, the IoT and
cloud computing, the sensor network based on sensor technology has penetrated all aspects of the social
industry, promoted the integration of human, machine and object space, such as intelligent medical
treatment, intelligent transportation, ecological monitoring, urban brain, etc. To enable each unit of a
sensor network to work cooperatively, accurately, and efficiently, it is necessary to involve the
identification, optimization, decomposition and combination of sensor graph network structure. Starting
from the objective phenomenon of sensor networks, this paper analyzes and studies them from the
perspective of the graph network model. Experimental results reveal the objectivity of the existence of

Figure 12: Two subgroup structures of the dolphin social network

Table 1: Experimental results of graph network subgroup generation

No. Dataset Data scale Number of real
subgroups

The core node of each
subgroup

Experimental
results of
structure
recognition

1 Dolphin social
network

59 nodes,
128 edges

2 [Grin, SN96, Kingel,
Trigger]
[Gallatin, Beescratch, DN63,
Ripplefluke]

2

2 Karate club
network

34 nodes,
78 edges

2 [1],[34] 2
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unit structure and core nodes in graph network, and the universal significance of unit patulousness and the
continuous propagation of the core node signals in the process of subgroup structure identification, which can
be well interpreted. The research results can be used in the identification of sensor network structure and the
core node transmission path discovery and so on. Compared with existing similar studies, the research
process, methods and results of this paper are better interpretable and enlightening. In the future, further
research and attempts will be made in the following aspects: dynamic adjustment and optimization of
sensor network structure, message exchange model among sensor network subgroups, intelligent
cooperation among sensor network subgroups and so on.
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