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Abstract: The oil industries are an important part of a country’s economy. The
crude oil’s price is influenced by a wide range of variables. Therefore, how accu-
rately can countries predict its behavior and what predictors to employ are two
main questions. In this view, we propose utilizing deep learning and ensemble
learning techniques to boost crude oil’s price forecasting performance. The sug-
gested method is based on a deep learning snapshot ensemble method of the
Transformer model. To examine the superiority of the proposed model, this paper
compares the proposed deep learning ensemble model against different machine
learning and statistical models for daily Organization of the Petroleum Exporting
Countries (OPEC) oil price forecasting. Experimental results demonstrated the
outperformance of the proposed method over statistical and machine learning
methods. More precisely, the proposed snapshot ensemble of Transformer method
achieved relative improvement in the forecasting performance compared to auto-
regressive integrated moving average ARIMA (1,1,1), ARIMA (0,1,1), autore-
gressive moving average (ARMA) (0,1), vector autoregression (VAR), random
walk (RW), support vector machine (SVM), and random forests (RF) models
by 99.94%, 99.62%, 99.87%, 99.65%, 7.55%, 98.38%, and 99.35%, respectively,
according to mean square error metric.
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1 Introduction

Due to the widespread use of oil in many economic sectors, it is considered one of the world’s most
potential sources of energy [1]. The economic development of a country can be driven or hindered based
on its consumption and production [2]. Oil is a key factor in driving the global economy forward. It is
still the main origin of energy, responsible for the creation of about a third of worldwide energy. Because
oil prices are volatile, economy experts exert tremendous efforts to reach a better understanding of how
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oil price affects the global economy and the global financial market mechanics. As a result, price volatility
leads to increased inflation and a decrease in cumulative demand [3].

In the energy market, the global economy heavily relies on energy consumption, As the fluctuation in oil
prices could disrupt important economic domains such as industry and supply chains. On one hand, the surge
in oil demand could lead to slowing the growth of oil importing countries. In addition, it benefits exporting
countries [4]. While it is commonly agreed that a surge in oil prices affects all other goods since it is the main
driver of transportation. Thus, a well-established prediction of oil prices has become a significant subject that
has gained attention from all government agencies as it would aid policymakers adopt convenient policies
and take a proper decision considering natural energy resources. Furthermore, studies show that oil prices
have a notable impression on other financial markets [5].

Controlling major oilfields requires quick decisions while addressing ongoing issues. The Smart Oilfield
will help with the digitization of instrumentation systems and the development of network-based knowledge
exchange in order to optimize production processes [6,7]. Hence, ablility to forecast the prospective crude oil
price has been a remarkable issue in the forecasting research field [8]. Crude oil price forecasting is beneficial
in obtaining a greater comprehension of the global economic state [9]. Despite the vast literature on the
implications of speculation on the price of oil, no consensus has been reached [10]. However, many
researchers have successfully predicted oil prices using various methods [11]. In the energy market, oil
price forecasting is seen as a challenging task [12].

Generally, forecasting methods can be grouped into three clusters. The first cluster includes statistical
models such as random walk (RW) [13], generalized auto regressive conditional heteroskedasticity
(GARCH) family models [14], autoregressive integrated moving average (ARIMA) models [15], error
correction models (ECM) [16], etc. The second cluster is concerned with models that originate from
expert systems and artificial intelligence (AI) such as support vector machine (SVM) [17], adaptive
neuro-fuzzy inference system (ANFIS) [18], neural network and deep learning model [19].

Conventional statistical and econometric approaches have the ability to capture linear patterns in time
series data. Such methods may be unsatisfactory to reveal the nonlinear features of crude oil prices [20].
On the other hand, real-world problem is frequently multifaceted, thus there is no one model that works
well in every circumstance. Therefore, the mixture of different methods creates the last cluster [21]. As a
means to avoid the shortcomings of a single method while improving the accuracy of prediction, the
demand for using hybrid models has increased. Hybrid models incorporate a variety of individual models
to solve their shortages by adding each model’s advantages in order to have a better capability [12].
Literature shows that relying on a mixture of models results in a more reasonable forecast [22–24] as it
enhances the model’s ability to consider different patterns occurring in the time series [20]. Inspired by
such methods, we are aiming to propose an ensemble method for improving crude oil price forecasting
accuracy. Thus, in this work, we propose utilizing an ensemble method to strengthen the accurateness of
forecasting crude oil price variations by depending on the Snapshot ensemble of the Transformer model.

Predictive model performance depends heavily on how much amount of information is obtained from
the set of input variables. Choosing the input variables that are worth employing in order to build an
accurate forecasting model is one of the main challenges. Hence, in this work, ten variables were used for
forecasting the next OPEC oil price fluctuations. These variables are the ratio of three currencies
(Canadian dollar (CAD), Euro (EUR), and British Pound (GBP)) and the United States dollar; and silver
prices in three currencies USD, EUR, and GBP per troy ounce; three gold prices in USD, EUR, and GBP
per troy ounce, and past OPEC crude oil prices.

Literature highlights the significance of certain exchange rate for currencies in the oil price forecasting
task. These rates are a primary economic indicator that has an important role in the financial sector and the
global market economy. Governments and businesses evaluate some economic metrics, such as the
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purchasing power of various currencies, before investing or carrying out trading strategies. For that reason,
acquiring precise data on exchange rates is crucial before any effort is exerted to predict economic behavior
[25]. Moreover, it was reported that currency exchange rates have a considerable effect on predicting the
prices of commodities [26]. Besides, several research [27–32] studied the relationship between crude oil
and some currencies values such as US dollar, Canadian Dollar CAD, Euro EUR, and British Pound
GBP. The commonly accepted finding is that real exchange rates and real oil prices are cointegrated
throughout the most recent floating era. Additionally, the findings demonstrate that the adverse
association between the US dollar index and high-frequency oil prices is especially pronounced during
times of significant swings in oil prices.

Crude oil is employed in numerous production operations all over the world [12,21]. In addition, prices
of commodities are used to indicate crude oil prices since oil is now one of the commodities supplies most
widely used [33–35]. The work in [35] investigated the impact of oil price swings on the price variation of
important metals such as aluminium, nickel, copper, zinc, gold, silver, palladium, and platinum. Furthermore,
the association between the oil price and the gold price has been studied several times [36–38]. Moreover, the
relationship between crude oil and silver prices has been investigated by different studies such as [39–41].

In this study, we utilize the power of deep learning models in order to forecast the daily OPEC oil price
forecasting. Deep learning models have contributed and achieved lots of impressive results in different
domains [42–45]. Among the newest powerful classes of deep learning models is the transformer model
[46]. The Transformer model is an attention-based neural network architecture that was proposed for
addressing sequence-to-sequence problems. Due to its impressive results, it has been utilized in various
applications, i.e., language translation [46], speech [47], image generation [48], and time series
forecasting [49], to name a few. To summarize, the following points summarize the major contributions
of the proposed work:

� We are the first to propose a variant architecture of the Transformer (attention-based model) to address
the price prediction of oil prices.

� This study represents the first attempt to utilize the snapshot ensemble to forecast daily oil prices
fluctuations.

� The proposed Ensemble of deep learning models has been shown to be a promising approach,
particularly, when data suffers from dataset shifting (e.g., timeseries data).

� This study demonstrates the ability of the the next predictor variables to forecast fluctuations in crude
oil prices: these variables are the ratio of three currencies (Canadian dollar (CAD), Euro (EUR), and
British Pound (GBP)) and the United States dollar, silver and gold prices in three currencies USD,
EUR, and GBP per troy ounce and past OPEC crude oil prices.

� This work utilizes a large dataset of daily data for 18 years.

The remaining sections of this paper are organized as follows. Section 2 introduces the pertinent
literature review for time series forecasting models. The third section describes the Snapshot ensemble
methods and the transformer model. Section 4 illustrates the data set utilized in this work and the results
obtained. In Section 5, we conclude and summarize the paper.

2 Literature Review

This section discusses the methods used for forecasting oil prices. Methods for crude oil forecasting can
be categorized into three classes, typically, statistical methods, machine learning models, and hybrid
methods.

Many researchers utilized statistical methods to predict the upcoming crude oil price. One of the
repeatedly used conventional mathematical methods is the autoregressive integrated moving average
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(ARIMA). Widely utilized, the ARIMA model has been used in various fields for forecasting tasks such as
engineering, economic, social, energy, and stock price problems [50,51]. The work in [52] has performed a
comparison study between two predictive GARCH-type models in terms of forecasting volatility power. In
the first type, forecasts are attained after estimating time series models. The second type is an implied
volatility model in which forecasting is achieved by inverting one of the models used to price options.
Reference [53] implemented a predictive model of the nonparametric GARCH method to forecast oil
price return volatility. Moreover, [15] used the ARIMA model to forecast the global crude oil price.

Artificial neural networks (ANNs) have some major advantages which make them extremely suitable for
a prediction model, ANNs are able to model different types of interactions (i.e., linear, non-linear, and
complex) between input and output [54]. Also, ANN has a good generalization performance. After
capturing patterns in the input data, it can infer relationships without seeing the data or the input.
Moreover, ANN can catch hidden patterns in the input data without explicitly highlighting any fixed
interaction in the data, which makes it an efficient method for making predictions [55].

Authors in [56] utilized a generalized regression method that is based on neural networks to predict the
variation of oil prices. Furthermore, [57] utilized a deep learning method, specifically, a recurrent neural
network (RNN), to estimate oil price fluctuations. Reference [58] performed an experimental study to
validate that support vector machine (SVM) is efficient in oil price prediction. Reference [59] studied the
precedence of deep learning methodologies over some conventional methodologies such as vector
autoregressive models in oil price forecasting problems. Reference [60] suggested a method to predict the
price of oil by employing SVM. Reference [61] improved the application of ANN techniques to address
the oil price forecasting problem.

According to the literature, using hybrid models increases the model’s ability to capture different
characteristics present in the time series, resulting in a more accurate forecast [5,62]. Reference [12]
proposed oil price prediction model, which as stated reveals a huge influence on global economies. The
suggested approach is based on utilizing an alternative version of the salp Swarm algorithm (SSA) to
boost the performance of an adaptive neuro-fuzzy inference system (ANFIS). In [63], the Brent oil price
forecast was conducted with the aid of an effective hybrid model. Reference [9] proposed a deep learning
prediction model (VMD-LSTM-MW model) using a hybrid technique of variational mode decomposition
(VMD), long short-term memory (LSTM) neural network, and the moving-window strategy to predict oil
price.

In [8], Google trends and text mining techniques are used to develop a novel data-driven crude oil
market forecast technique. Reference [64] proposed a novel hybrid model based on an LSTM neural
network and ensemble empirical mode decomposition (EEMD) for crude oil price forecasting. In order to
predict the West Texas Intermediate (WTI) oil price, a hybrid method combining two different models,
namely the combined forecasting model (CFM) and ensemble empirical mode decomposition (EEMD),
was proposed in [65]. Alternatively, to forecast oil prices, researchers in [66] combined decomposition of
high-frequency sequences pattern of, potential nonlinearity of model setting, regime-switching, transition
points, and time-varying factors to propose a forecasting method.

Remarkably, several studies have demonstrated the high level of accuracy of the machine learning
methods [67–70], and they used these models for improving many problems. On the other hand, From
the literature, most of the studies have investigated the relationship between oil prices and
macroeconomic factors, but such studies seldom focus to validate the agreement on how much these
macroeconomic factors influence oil prices [71].

Forecasting crude oil prices still faces substantial challenges. The results, for instance, are frequently
sensitive to the frequency and amount of data samples, and they may also be unable to fully identify
structural breakpoints in crude oil price series. These ambiguities have created significant difficulties for
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regulating the crude oil market and researching crude oil prices. Based on [72] assessment, these are
primarily caused by a number of variables that affect the movement of crude oil prices, including crude
oil production, economic growth, inventory levels, production costs, geopolitical events, speculative
trading, and psychological expectations. Because of the intricate interactions between these variables,
crude oil prices change in a highly nonlinear and time-varying manner. As a result, in this paper, we
leverage the capability of advanced deep learning models i.e., Transformer model that employs the self-
attention mechanism, in addition to, ensemble learning methods to develop a forecasting method for
crude oil prices using the financial markets data. To highlight the outperformance of the proposed method
over the conventional competitive methods, we perform a significant statistical test using the predicted
and actual values (using paired samples t-test).

3 Methodology

The proposed method is composed of an ensemble method of the Transformer model. Therefore, we
present a brief introduction to the proposed ensemble method (i.e., Snapshot ensemble). Then, we present
the deep learning (i.e., Transformer) model architecture.

3.1 Snapshot Ensembles

In this section, we briefly explain the snapshot Ensemble technique. During the training of a deep neural
network, the neural network converges to N number of various local minima, as shown in Fig. 1b [73]. Each
trajectory to a local minima represents a cycle. For each cycle, a model snapshot is stored for the ensemble
task. Typically, the model starts a new cycle by increasing its learning rate to perturb the model and locate it
to a different loss position over the loss landscape. Then, the model reduces the learning rate at very fast steps
to start its convergence towards the first local minima. Such a scheduling of the learning rate, denoted by
cosine annealing learning rate with restart, is given by Eq. (1). Fig. 2 depicts an example of a cosine
annealing learning rate scheduling for 5-cycles snapshot ensemble method employing an initial learning
rate of 0.01 and the number of training epochs equals 50.

Figure 1: Exploring the loss surface, modified from [55]
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Finally, the process is repeated N times to reach multiple convergences, each time a cycle model is
obtained, and the final ensemble prediction is given by the snapshots’ model predictions mean. It was
reported that such an ensemble technique results in an advantageous performance compared to the best
single snapshot model [73].

a tð Þ ¼ a0
2

cos
pmod t � 1; T=Nd eð Þ

T=Nd e
� �

þ 1

� �
(1)

where a0 is an initial learning rate, t is the current epoch number, T is the total training epochs, and N is the
total number of cycles.

3.2 Transformer Model

The Transformer model is composed of a stack of encoder layers (Fig. 3a), a stack of decoder layers
(Fig. 3b, and a linear layer followed by a fully connected layer (employing SoftMax activation function)
to predict the upcoming output probabilities in a given sequence, as shown in Fig. 3. The encoder stack,
as shown in Fig. 3a, consists of a stack of encoder layers, each layer embodied a multi-headed self-
attention technique followed by a fully connected layer. Further, two residual connections after each of
the two layers are added and connected to the normalization layers.

The decoder stack, shown in Fig. 3b, is somehow similar. The sole difference is that the decoder layer
has two multi-headed self-attention layers along with the residual connection, which is also connected to a
normalization layer followed by a fully connected feed-forward network. In short, the decoder layer has the
same encoder layer architecture in addition to an extra multi-headed self-attention layer that performs multi-
head attention over the output of the encoder stack. Thus, the decoder stack is fed with the encoder stack’s
output alongside its layer input. Finally, in the proposed model, the decoder stack output is passed through a
linear transformation followed by an output layer to yield the predicted value.

Since the Transformer model has neither recurrence nor convolution operations, thus, in order for getting
advantages of the order in the input sequence, input data must be aware of the relative or absolute position of
input data elements. Thus, input data is injected with some information to encode its input order. For that
purpose, several methods are proposed to produce such order representation (time encoding), for instance,
positional encoding [74] and Time2Vec [75].

Figure 2: Cosine annealing with restart learning rate
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3.3 Formulation of the Proposed Model

The overall architecture of the Transformer model is depicted in Fig. 4 which combines the encoder and
decoder unites (depicted in Figs. 3a and 3b) in addition to the output layer. In this section, we aim to present
the utilized architecture of the Transformer model that can fit the time series forecasting problem. Unlike the
original Transformer architecture, the proposed architecture drops the fully connected layer, which employs
the SoftMax activation function and is located after the decoder stack, as depicted in Fig. 4. Each rectangle
(encoder/decoder layer) in Fig. 4 is represented by Encoder or Decoder sub-network which is presented in
Fig. 3a or Fig. 3b, respectively.

Additionally, we propose investigating the possibility of using a simpler Transformer model architecture
(without a decoder stack) for fast training and lower computational cost. In order to obtain the best model
architecture that fits the data while maintaining good generalization performance, the model architecture
is obtained by performing a grid search over a search space of parameters. Typically, model
hyperparameters and their corresponding search spaces are depicted in Table 1.

Figure 3: Encoder and decoder layers architectures
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Table 1 present the model parameter search space of the of the proposed transformer model. By utilizing
grid search method to find the optimal architecture, The optimal model architecture is composed of one
encoder layer employing 12 attention heads, followed by a fully connected layer of 64 neurons with a
Relu activation function, and finally an output layer with a linear activation function. The model is
trained for 25 epochs. Each epoch of batch size equals 32 training records. For regularization purposes,
we employed dropout with a rate of 0.1 in order to get more generalization performance. Finally, we
employed the Adam optimizer [76] as the optimization algorithm for the proposed method. The model is
trained with the objective of minimizing the mean square error objective function.

In contrast with the original snapshot method, in the proposed method, in addition to the cyclic
annealing learning rate, we employ random re-initialization methods that re-initialize model parameters at
the beginning of each cycle in order to surely escape the current local minima and completely explore
different modes. Moreover, we initialize the model parameter at each cycle with different initialization
methods (e.g., Glorot uniform [77], Glorot normal, and normal distribution) to better obtain diverse
models [78].

Figure 4: Transformer model architecture

Table 1: Transformer model hyperparameters and their corresponding search spaces

Hyperparameter Search space

Number of attention heads [4,8,12,16]

No. of neurons in fully connected layers [64, 128, 256, 512]

Architecture [encoder only, encoder-decoder]

Stacking size [1–3]

Dropout size [0.0, 0.1, 0.2, 0.3]

No. of epochs [10,15,20,25]

Batch size [16,32,64,128]

Time encoding method [Time2Vec, positional encoding]
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Due to the fact that neural network models are prone to over/under-fitting problems, which are caused by
the excessive/less training epochs of the neural network model [79]. Therefore, in contrast to the original
snapshot method, we propose employing early stopping [80] per cycle to prevent over/under-fitting
problems of the DL-based model. Consequently, each cycle stops model training (and starts the following
cycle if exists) when its generalization performance starts degrading. While, for each cycle, the model
that achieves better generalization performance is saved for being used in the ensemble method.

As reported in [73], the number of cycles (N ) influences the ensemble performance. Thus, N is
considered a hyperparameter that requires tuning. Consequently, the proposed snapshot ensemble is
composed of N ¼ 3 snapshots of Transformer models trained for T ¼ 75 epochs, where each cycle is of
a maximum of 25 epochs (depending on the early stopping method). Moreover, we employed the cyclic
cosine annealing learning rate with restart at the initial learning rate a0 ¼ 0:01.

Machine learning models’ parameters are obtained using a grid search method. Therefore,
hyperparameter values that resulted in obtaining the best validation scores for random forest (RF) and
Support Vector Machine (SVM) models are reported in Tables 2 and 3, respectively. While other models’
parameters are set to the default value as implemented in the scikit-learn library for RF1 and SVM2.

3.4 Accuracy Metrics

For a better evaluation of the proposed forecasting models’ performance, we employ numerous widely
used time series forecasting evaluation metrics [23]. Therefore, three forecasting metrics are employed,
namely, mean absolute error (MAE), root mean square error (RMSE), and mean square error (MSE). The
performance metrics are defined as follows:

Mean absolute error MAEð Þ ¼ 1

n
:
Xn

t¼1
yi � ŷij j (2)

Table 2: Hyperparameters’ values for the random forest model

Hyperparameter Value

Number of trees in the forest 800

Maximum tree depth 10

Number of features considered for obtaining the best split 10

Minimum number of samples needed to be at a leaf node 4

Minimum number of samples needed to split an internal node 3

Table 3: Hyperparameters’ values for support Vector machine model

Hyperparameter Value

kernel type rbf

epsilon 0.001

regularization parameter C 100

Kernel coefficient 1

Tolerance for stopping criterion 0.002

1
https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

2
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

CSSE, 2023, vol.46, no.1 937

https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html


Root mean square error RMSEð Þ ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

t¼1
yi � ŷið Þ2

q
(3)

Mean square error MSEð Þ ¼ 1

n

Xn

t¼1
yi � ŷið Þ2 (4)

where n denotes the number of test-set data records, yi represents the actual observation values, and ŷi is the
model output values.

3.5 Empirical Studies

In this section, we describe the dataset used in this study and we explore the correlation between the
predictors. Then, we assess the effectiveness of the suggested Snapshot ensemble of the Transformer
system for predicting oil price swings. Moreover, we evaluate the predictive capacity of the proposed
model against statistical, machine learning and random walk models. The comparative statistical models
include ARIMA (1,1,1), ARIMA (0,1,1), ARMA (0,1), and VAR models. While baseline machine
learning models are SVM and RF. All models are evaluated utilizing the same test dataset. Eventually,
the fourth subsection is dedicated to analyzing the outcomes statistically.

3.6 Data Description

The data utilized in this study incorporated daily records of the OPEC crude oil prices ($/barrel) from
January 2, 2003, to December 31, 2020. The data is split into training, validation, and test sets in splitting
ratios of 60%, 10%, and 30%, respectively, as shown in Fig. 5.

Meanwhile, performance results are reported using the test set. Typically, the validation set is beneficial
for machine learning and deep learning models [81], whereas statistical models are fitted using training and
validation sets. Train-validation splitting is a crucial practical tip while training machine learning and deep
learning models to get better generalization performance and is used in almost all machine learning problems
[82]. A crucial step in creating a consistent model is the precise choice of the variables. Thus, in this study, we
specified ten predictors to enhance the forecasting models’ performance. Those predictors include silver and
gold prices in three currencies, namely, USD, GBP, and EUR. In addition to the exchange rates of USD to
CAD, EUR, and GBP, in addition to the past OPEC crude oil prices. The data used in this study was gathered
from different sources, as illustrated in Table 4 (available in Annexure 1).

The input variables (i.e., predictors) comprise various financial indicators of diverse scales and domains.
Consequently, in this study, normalizing data is beneficial in obtaining a homogeneous dataset. As a result,
we normalized each variable Xi to Xi normð Þ using the following equation.

Figure 5: The historical OPEC crude oil prices starting from January 2, 2003, to December 31, 2020
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Xi normð Þ ¼ Xi � Xmin

Xmax � Xmin
; i ¼ 1; 2; 3; . . . . . . . . . ; 4697 (5)

where Xmin and Xmax represent the minimum and maximum values of the original data series, respectively.

3.7 Correlation Analysis

The main motivation behind correlation analysis is to investigate and explore the relation between crude
oil prices (response variable) and the input predictors. Various research has substantiated that correlation is a
robust method for deciding the relationship among examined variables [22,23]. To clearly explain a
relationship between two variables, the correlation is primarily focused on establishing the association
between two rationally connected variables and recognizing the relationship’s direction and strength. It
suggests that the relationship between variables is either positive or negative in direction [83].

Pearson’s correlation coefficient is employed in this research to estimate the relationship between oil
prices and their predictors, as illustrated by Table 5 (available in Annexure 2). Pearson’s correlation
examines the existence of a correlation between two given variables, the resulting value is a number
between [−1, 1]. The +1 value denotes a completely positive correlation, while the zero shows an
immense statistical significance, with a p-value < 0.01.

4 Results and Discussions

In this section, we examine the efficacy of the suggested model and its comparative statistical and
machine learning models (ARIMA (1,1,1), ARIMA (0,1,1), ARMA (0,1), VAR, SVM, and RF).
Considerably, various studies have proved that these comparative models possess an extreme degree of
precision, and these models have been used for enhancing the forecasting of different problems.
Typically, the comparative models are efficient methods and are widely used in forecasting commodity
prices [84–86].

4.1 Experimental Results

Table 6 presents the execution behavior of the utilized methods using 3 different performance metrics
(MAE, MSE, and RMSE). The results confirm and demonstrate the high capacity and strong ability of
the predictors to forecast the price volatility of crude oil. Such significant outcomes validate the
importance the correlation holds between crude oil prices and all the predictors. The validation course of
action that was used in this study was to assess the efficacy of the suggested model, in which the last
30% of the data were employed as a test set. The results of this assessment are depicted in Table 6. The
suggested Snapshot ensemble method provides the lowest MAE, MSE, and RMSE among its competitive
models used in this study. Such high performance indicates that the variation in data is strongly expressed
by the fitted model. In addition, the proposed method was able to generalize and is highly probable to
perform better than comparative methods when examined against other extra test periods.

Table 7 outlines the enhancement ratio of the snapshot ensemble method in contrast to different
comparative models. The suggested method clearly showed various significant contributions to raising the
performance of the task at hand. Additionally, the predicted values of each model (ARIMA (1,1,1),
ARIMA (0,1,1), ARMA (0,1), VAR, random walk, RF, SVM, and Snapshot ensemble models) for the
test data are presented in Fig. 6.

Finally, it is worthwhile to point out two main reasons behind implementing a variant snapshot method
than that one implemented in [73]. Firstly, applying the original snapshot resulted in very similar models’
performance, which motivated us to look for a way to obtain different variant methods. Therefore, we
implemented random and different re-initialization methods of the model’s parameters at the beginning of
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each cycle to ensure exploring different modes in function space [78]. Theoretically, each re-initialized (i.e.,
cycle) model should explore different parameter spaces that other cycles’ models did not benefit from during
the optimization of other cycles [73]. It is noteworthy that Huang et al. [66] reported better performance of
snapshot of randomly initialized cycle’s model in the case of a high training budget.

The second reason is that implementing the original snapshot method has not yielded perfectly
converged models and/or, for some cycles, it results in over-fitted models by the end of those cycles,
depending on the loss surface path a model is moving on. Such csycles’ models are weak and degrade
the snapshot ensemble performance. Consequently, we proposed increasing each cycle length (epochs)
alongside performing early stopping per cycle to obtain the best cycle model for each cycle. Although the
proposed early stopping per cycle often reduces cycle length, generally, the proposed implementation of
snapshot ensemble variant imposes more training time and epochs due to each cycle is trained from
scratch, in contrast to the original snapshot where cycles models (for cycles ¼ 2; . . . ;N ) get advantages
from the optimization of previous cycle relevance.

Table 6: Out-of-sample performance comparison of the models

Models MAE MSE RMSE

ARIMA (1,1,1) 0.3139575 0.1102526 0.3320431

ARIMA (0,1,1) 0.1056142 0.0166467 0.1290222

ARMA (0,1) 0.1910907 0.0495321 0.2225581

VAR 0.1195594 0.0179894 0.1341247

Random walk 0.0058641 0.0000689 0. 008302

SVM 0.037399 0.0039426 0.0627904

RF 0.0060077 0.0098572 0.0098572

Snapshot ensemble 0.0055129 0.0000637 0.00798

Table 7: Improvement percentage of the proposed model over machine learning and statistical models

Models MAE MSE RMSE

ARIMA (1,1,1) 98.24% 99.94% 97.60%

ARIMA (0,1,1) 94.78% 99.62% 93.82%

ARMA (0,1) 97.12% 99.87% 96.41%

VAR 95.39% 99.65% 94.05%

Random walk 5.99% 7.55% 3.88%

SVM 85.26% 98.38% 87.29%

RF 8.24% 99.35% 19.04%
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Figure 6: (Continued)
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4.2 Statistical Analysis

In order to highlight the outperformance of the suggested model over the conventional competitive
models, we perform a significant statistical test using the predicted and actual values. Therefore, we
utilized the well-known paired samples t-test [87] using the null hypothesis. A paired samples t-test is
used to examine the existence of a remarkable distinction between the actual values and the forecasted
values of ARIMA (1,1,1), ARIMA (0,1,1), ARMA (0,1), VAR, random walk, SVM, RF, and the
proposed Snapshot Ensemble method depending on a 95% interval of confidence. The paired sample t-
test is composed of two competing hypotheses (i.e., the null hypothesis and the alternative hypothesis).
The two hypotheses are given by the following equations (Eq. (6)).

Ho: l1 � l2 ¼ 0; H1: l1 � l2 6¼ 0 (6)

where m1 is the mean value of the actual data, and m2 represents the average of the forecasted values for the
proposed methods. As presented in Table 8 the null hypothesis can be rejected at the significance level of
0.05 according to the paired samples t-test. More precisely, Table 8 depicts the paired samples t-test
output for all pairs of ARIMA (1,1,1), ARIMA (0,1,1), ARMA (0,1), VAR, random walk, RF, SVM, and
Snapshot Ensemble against the actual values over the test set, respectively. Consequently, the significance
of the statistical t-test results demonstrates a difference among the ARIMA (1,1,1), ARIMA (0,1,1),
ARMA (0,1), VAR, random walk, RF, and SVM models in opposition to the actual values; in contrast,
the difference between the suggested method and the actual values shows no significance.

To sum up, according to the aforementioned points, we presented that the suggested method can be
effectively implemented for predicting OPEC daily oil price variations. Moreover, we validated that this
methodology is not limited to predicting the oil price but also different commodities, all metals, and ores
as well.

Figure 6: Performances of ARIMA (1,1,1), ARIMA (0,1,1), ARMA (0,1), VAR, Random walk, SVM, RF,
and Snapshot ensemble models using the test set
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5 Conclusion and Future Scope

Crude oil prices sustain an immense impact on the global economic dynamics. Proposing an effectively
accurate method to forecast the price is substantially beneficial to pave the way for experts to make the right
decisions. In this research we carefully examined the forecasting significance of a set of chosen predictors
(Canadian dollar (CAD), Euro (EUR), and British Pound (GBP); and three silver prices USD, EUR, and
GBP per troy ounce; three gold prices (USD, EUR, and GBP per troy ounce, and past OPEC crude oil
prices) to predict future crude oil prices. Furthermore, we inspected the correlation between the response
variable and predictors employing a long-term data set (from January 2, 2003, to December 31, 2020).
By employing the selected predictors, we presented a deep learning ensemble method for predicting
OPEC oil price fluctuations, namely, snapshot ensemble of the Transformer model. The performance of
the proposed method is assessed against comparative statistical and machine learning models. The
outcome prediction values proved that the snapshot ensemble of the transformer model enhanced the
accuracy of forecasting compared to the ARIMA (1,1,1), ARIMA (0,1,1), ARMA (0,1), VAR, RW, SVM,
and RF models by a 97.60%, 93.82%, 96.41%, 94.05%, 3.88%, 87.29%, and 19.04% improvement in
RMSE, respectively. Due to the exceptional superiority of the snapshot ensemble of the transformer
method over the comparative models, the proposed snapshot ensemble of the transformer model is
considered to be a successful technique for predicting the prices of various commodities with a high
degree of precision. In the future work, the proposed ensemble model can be validated to predict other
financial market variables. Additionally, other predictors can be examined in the prediction process.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Table 8: Statistical results using the paired samples t-test

Paired differences t df

Mean Std.
deviation

Std. error
mean

95%
Confidence

interval of the
difference

Sig. (2-
tailed)

Lower Upper

Pair 1 Actual-ARIMA
(1,1,1)

.0454 .108 .0028 .0397 .0511 15.68 1399 .00

Pair 2 Actual-ARIMA
(0,1,1)

.06896 .108 .0029 .0632 .0746 23.73 1399 .00

Pair 3 Actual-ARMA (0,1) .0165 .105 .0028 .0109 .0220 5.84 1399 .00

Pair 5 Actual-VAR -.01710 .099 .0026 -.0223 -.0118 −6.40 1399 .00

Pair 4 Actual-Random walk .07129 .108 .0028 .0656 .0769 24.68 1399 .00

Pair 6 Actual-Random forest -.1629 .108 .0028 -.1686 -.1572 −56.21 1399 .00

Pair 7 Actual-SVM .16941 .145 .0038 .1617 .1770 43.61 1399 .00

Pair 8 Actual-snapshot
ensemble

-.0000 .007 .0002 -.0004 .0004 -.06 1399 .94
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Annexure

Annexure 1: Input data sets used in this research

Variable Period Unit Data availability

Oil price 2, Jan 2003 to 31, Dec 2020 usd/parrel Freely available dataset

Gold USD 2, Jan 2003 to 31, Dec 2021 usd/troy ounce Freely available dataset

Gold EUR 2, Jan 2003 to 31, Dec 2022 eur/troy ounce Freely available dataset

Gold GBP 2, Jan 2003 to 31, Dec 2023 gbp/troy ounce Freely available dataset

Silver USD 2, Jan 2003 to 31, Dec 2024 usd/troy ounce Freely available dataset

Silver EUR 2, Jan 2003 to 31, Dec 2025 eur/troy ounce Freely available dataset

Silver GBP 2, Jan 2003 to 31, Dec 2026 gbp/troy ounce Freely available dataset

USD/CAD 2, Jan 2003 to 31, Dec 2027 - Freely available dataset

USD/EUR 2, Jan 2003 to 31, Dec 2028 - Freely available dataset

USD/GBP 2, Jan 2003 to 31, Dec 2029 - Freely available dataset
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