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Abstract: The diversity of software and hardware forces programmers to spend a
great deal of time optimizing their source code, which often requires specific treat-
ment for each platform. The problem becomes critical on embedded devices,
where computational and memory resources are strictly constrained. Compilers
play an essential role in deploying source code on a target device through the
backend. In this work, a novel backend for the Open Neural Network Compiler
(ONNC) is proposed, which exploits machine learning to optimize code for the
ARM Cortex-M device. The backend requires minimal changes to Open Neural
Network Exchange (ONNX) models. Several novel optimization techniques are
also incorporated in the backend, such as quantizing the ONNX model’s weight
and automatically tuning the dimensions of operators in computations. The per-
formance of the proposed framework is evaluated for two applications: handwrit-
ten digit recognition on the Modified National Institute of Standards and
Technology (MNIST) dataset and model, and image classification on the Cana-
dian Institute For Advanced Research and 10 (CIFAR-10) dataset with the
AlexNet-Light model. The system achieves 98.90% and 90.55% accuracy for
handwritten digit recognition and image classification, respectively. Furthermore,
the proposed architecture is significantly more lightweight than other state-of-the-
art models in terms of both computation time and generated source code complexity.
From the system perspective, this work provides a novel approach to deploying direct
computations from the available ONNX models to target devices by optimizing
compilers while maintaining high efficiency in accuracy performance.

Keywords: Open neural network compiler; backend; ARM Cortex-M device;
handwritten digit recognition; image classification

1 Introduction

Compilers have been developed and used for the past 50 years [1] to generate device-dependent
executable binary files from high-level programming languages such as C and C++. However, the
development of compilers has remained an area of active research due to the rapid proliferation of new
hardware architectures and programming models [2]. In this field, particular challenges are posed by the
complexity of modern compilers such as Low-Level Virtual Machine (LLVM) [3] and Tensor Virtual
Machine (TVM) [4], as well as increasing concerns over the ability of compilers to port Open Neural
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Network Exchange (ONNX) [5] models to embedded systems without losing the accuracy of those models.
Furthermore, the process of compiling ONNX models to generate the final binary files can be complicated
and inflexible.

In compilers, optimization can be applied to the front-end, intermediate representation (IR), or backend.
Optimizing the compiler parameters, such as those governing loop unrolling, register allocation, or code
generation, is another approach. The performance of an optimization strategy can be measured by its impact
on the execution time, code size, energy cost, or, in the case of neural network compilers, the information
loss [6]. The main focus has been on backend compiler optimization methods, such as scheduling, resource
allocation [7], and code generation. More holistic approaches to optimization [8] have not yet been well
explored. Many backends have been developed to compile for different targets, for example a compiler
autotuning framework using a Bayesian network [9]. This study focuses on building a Bayesian network for
an ARM system with support from the GNU Compiler Collection (GCC) compiler. The studies in [10,11]
focused on optimizing energy consumption in embedded systems and assessed the impact of the available
compilers for multi-core processors. Another state-of-the-art compiler is DisGCo [12], which is mainly used
for distributed systems. The LLVM and TVM compilers are also widely used for ONNX models. However,
the mapping of operators in these two compilers to operators in ONNX is highly complex (e.g., LLVM
mainly supports the multiplier accumulator operators). Therefore, the end users need a conversion step
when computing with the fine-grained operators (e.g., convolution operators) that exist in most current
ONNX models. Intuitively, this complexity makes the goal of maintaining the accuracy of ONNX models
challenging when compiling for multiple hardware platforms. The problem becomes critical on embedded
devices because their storage and computational resources are limited. The challenges faced by the previous
approaches can be summarized as follows.

1. User applications written in standard machine learning frameworks such as the LLVM and TVM
compilers require efficient hardware with high-performance computational power to produce
quick and accurate results. Additionally, the process of compiling ONNX models to the C++ files
directly to deploy applications on ARM devices is complex for users.

2. The key metrics for embedded machine learning applications focus on accuracy, power consumption,
throughput/latency, and cost. Compiling an ONNX model into another format to improve the
accuracy over existing compilers in ARM devices, while minimizing power usage, time, and cost,
is a complicated task.

Therefore, in this work, a novel AI backend is proposed to solve these challenges faced by existing
compilers. In contrast to previous approaches, a novel backend is developed for the ONNC, including
optimized techniques to reduce the operator dimension for computing on a small device. These include
techniques such as preprocessing the input image, tuning the dimension of the operators in the ONNX
model, and tuning the execution function and padding (Pad) parameter in computations. The input to the
backend consists of ONNX models, while the outputs are C++ files. Using the Cortex-M backend,
application developers can take advantage of the high-level programmability aspects of C++ to run their
next computations while compiling the ONNX models. Although the backend is developed for the
platform of the ARM Cortex-M device, it is believed that this backend can be extended to generate code
for other domain-specific languages. To the best of the authors’ knowledge, using a machine learning-
based backend of the compiler to implement computations directly from the ONNX model to a device is
the first attempt of its kind, specifically on the ARM Cortex-M device.

To summarize, the main contributions of this paper are as follows:

1. The main shortcomings of existing compilers are identified, and the development of a novel code
generation process in ONNC is discussed. This process can directly compute the ONNX model
on the target device.
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2. A novel backend is developed for the ONNC compiler, called the CortexM backend, the simplest
backend for a functional programming language to date. The backend plays an important role in
creating the execution files while minimizing the impact on the accuracy of the ONNX models.

3. A set of optimizations is implemented both in the ONNX models and the CortexM backend to
improve the performance of the system and maintain the accuracy of the ONNX models.

4. Two experiments, on handwritten digit recognition and image classification, are performed with the
CortexM backend and compared with the results from other state-of-the-art methods to evaluate the
benefits of this backend. Evaluation of the results shows that the backend obtains superior results,
demonstrating its usefulness in the embedded system.

The remainder of this paper is organized as follows. Section 2 presents a compiler framework used to
build the CortexM backend for the target device. Section 3 presents the system design to deploy an actual
application involving the backend. Section 4 describes the experimental methodology. Section 5 gives the
results of the experiments and compares them with other state-of-the-art research. The paper is concluded
in Section 6.

2 The Compiler Framework

This section gives an overview of the ONNC compiler framework architecture which is used to build the
CortexM backend, with a discussion of the main compilation phases and the compilation workflow of a
backend in the ONNC compiler. A brief outline of the core parts of the new backend is presented,
including the data structure of a use-define chain in a tensor and the mapping of ONNX IRs to ONNC IRs.

2.1 Compiler Framework Architecture

The compiler framework uses the ONNC compiler introduced in [13], a neural network compiler
consisting of a front-end, middle-end, and backend. The front-end translates the ONNX models into a
low-level intermediate language, called ONNX IR. ONNX IR is an assembly-level language, and
operands of all computational operations were built in ONNC IR.

The middle-end contains the ONNC IR and automatically finds the corresponding ONNX IR to create a
machine instruction. The backend maps ONNC IRs to ONNX IRs one-to-one by their values, which
simplifies computations of the ONNX model with ONNC backends. In ONNC compiler has four main
compilation phases, which can be thought of as the core architecture of the ONNC compiler. Fig. 1
depicts the overview compilation framework architecture for the proposed backend. This architecture is
the top-level block in the ONNC compiler, and it is also the order of compilation the backend uses to
create the hardware binaries. Fig. 1 depicts the main compilation phases in the backend; all backends in
ONNC use these four phases to compile an ONNX model. The phases are (1) addTensorSel, which
triggers ONNC to invoke the name of a backend and translates ONNX IR to ONNC IR; (2)
addTensorSched, which causes ONNC to schedule operators in topological order to improve
performance; (3) addMemAlloc, which adds passes for allocating memory space for tensors; and (4)
addCodeEmit, which registers the CodeEmit function for ONNC to generate executable code for the
target device.

2.2 Compilation Workflow of the Backend

This section describes the workflow of a backend in the ONNC compiler. All operators in the ONNX
model are mapped to the ONNC IRs. This mapping is implemented by a structure called the use-define
chain in ONNC. Its main purpose is to create the relationship between a network graph and a
computation graph in an ONNC backend.
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2.2.1 The Data Structure of the Use-Define Chain
In the neural network, each layer is called an operator. All computation formulas in the same layer are the

same; however, the input and output values are different. The computation of a convolution layer in ONNC is
illustrated in Fig. 2. The operator X1 defines a new value of the tensor W1. The S operator is calculated by
S ¼ Pn

i¼1 Wi � Xi

� �
, where Xi is the ith layer andWi is the tensor value of the i

th layer. Each layer in ONNC
is defined and used with different tensor values. This relationship between user and definer is called the use-
define chain in ONNC. An operator in ONNC plays two roles: definer and user, where a definer has a pointer
to its output value and a user has a pointer to its input value.

For example, the W1 value is the output value of the X1 operator and it has a pointer to its input value,
where it keeps the role of a user. Conversely, when it takes the role of a definer it has a pointer to its output
value. It was found that both the input and output value are the same object. To chain users and definers while
computing, ONNC provides a special data structure called “Use” to point out users and their values, as shown
in Fig. 2. This “Use” value is also the same as an operator and also has a pointer to the S operator and a

Figure 1: The compilation framework architecture

Figure 2: The data structure diagram of an operator’s use-define chain in ONNC, which is used to
implement the mapping process from ONNX IRs to ONNC IRs
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pointer to the W1 value. Since each value in the neural network is defined only once, ONNC keeps these
definers in the value of the operator. The use-define chain is used for the mapping between ONNX IRs
and ONNC IRs when compiling in the backend.

2.2.2 The Mapping of ONNX IRs to ONNC IRs
As shown in Fig. 1, the input is the ONNX model and the output comprises the corresponding hardware

binaries. This is similar to traditional compilation frameworks. However, the proposed compilation
framework is simpler than other compilation frameworks in connecting the ONNX models to deep
learning accelerators. Fig. 3 shows the mapping structure between ONNX IRs and ONNC IRs: at the top
are the nodes in the ONNX model and at the bottom are the compute operators in ONNC. The “Inputs
<*>” and “Outputs <*>” elements are the abstract classes of each node in ONNX and each operator in
the ONNC compiler, respectively. Input and output are containers used to point out the input and output
values of a particular operator. Since operators are inherited from the definer discussed in Section 2.2.1, it
has a pointer to their values and this value is the value of the tensors. All ONNX IR operators are
mapped to ONNC IRs by their values. The connections between these corresponding IR values are
represented by the two red lines in Fig. 3.

2.2.3 Compilation Flow of the Backend
The execution of a backend in ONNC is made up of four compilation phases, called IRReader,

TensorSel, MemAlloc, and CodeEmit. The detailed compilation workflow of each phase is shown in
Fig. 4. It consists of two parts, called the graph IR and compute IR. The graph IR consists of the original
ONNX IRs that are used to represent the tensors in the ONNX models. The compute IR consists of the
ONNC IRs and it is defined in ONNC. Its execution is as follows. In the TensorSel phase, ONNC maps
to these ONNX IRs to translate into the compute IR part of the compiler and it selects corresponding
instructions to generate the tensor, which is represented by symbols for target devices. In fact, both
symbols of ONNX IR and the ONNC IR are the values of operands. In the MemAlloc phase, symbolic
operands are turned into memory address, instruction scheduling, memory partition, and memory
allocation. Finally, in the CodeEmit phase, it emits codes for target devices.

Figure 3: The value mapping process of the operators between ONNX IRs and ONNC IRs. The ONNC IRs
find the corresponding values in ONNX IRs to link together

CSSE, 2023, vol.46, no.1 1003



3 The Proposed System Design

This section describes the implementation of a specific application with the new backend. Because the
goal is to deploy on Cortex-M devices, the execution diagram for this device is shown in Fig. 5—the same
implementation flow was used for all experiments in the paper. It consists of four main phases. The first phase
is to construct input data. The second phase builds the backend and adds the dimension-reduction techniques
for operators and their corresponding parameters. The main goal of this phase is to make the input data
suitable for the memory space of the target device. The third phase obtains the output results after the
compilation process. The fourth phase is to deploy results on the specific application.

3.1 Input Optimization

Based on the target devices, choosing suitable input data is necessary to identify the best pre-processing
phases while maintaining the accuracy of the ONNX model. In addition, optimizing to reduce the model size
is necessary to match the model size with the target device. Because the features of the model are affected by
optimization, a calibration file for the CortexM backend was used to store the right-shift information of the
computed weight values. The details of calibration and the ONNX optimization follow.

3.1.1 Input Calibration
The computation operations of the ONNX models with the Cortex Microcontroller Software Interface

Standard Neural Network (CMSIS-NN) library are difficult to use immediately due to different data formats.
In ONNX, the floating-point type is a common format that exceeds the computing range of the CMSIS-NN
library, while the q7_t type in the CMSIS-NN library is a signed 8-bit type with the computation range (−128,
127). Therefore, memory overflow occurs on the embedded devices during the computation of ONNX
models with this library. To remedy this problem, the values of weights outside the allowed range are
mapped into it using

Figure 4: The compilation flow diagram of a backend with an ONNX model

Figure 5: An overview block diagram of the system on the ARM Cortex-M board
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Weight calibration ¼ log2dmax X; Yf ge � Z � bit � 2; (1)

where X ¼ max outputf gj j, Y ¼ min outputf gj j, and Z represents the final bit number of the weight.

For example, suppose the weight size is �279; 182; 94; 46; 2½ �, where the maximum number is 182
(X ¼ 128), the minimum number is −279 Y ¼ �279ð Þ, and Z ¼ 7 (because in CMSIS-NN, the weight is
represented by 8 bits, of which one is a sign bit). Therefore, the value in Eq. (1) is
log2dmax 182; 279f ge � 7� bit ¼ log2279� 7 ¼ 2. The new weight values are therefore
�279; 182; 94; 46; 2½ � � 2 ¼ �69; 45; 23; 11; 0½ �. Finally, all the weight values are right-
shifted by the above method, and so their weight size also is significantly reduced. However, the pixel
value of each image is not the same, and the output value in each layer of test data must be maximally
right-shifted. Because the value of a right-shift parameter in CMSIS-NN is fixed, it cannot be adjusted in
time with the pixel value of input images. Consequently, the maximum value must be chosen during the
selection of the displacement value. This calibrated value is a separate file that is not included in the
ONNX model.

3.1.2 Quantization of ONNX Models
This section discusses the quantization of the ONNX model weights from floating-point numbers to

integers in the range (−128, 127). In the ONNX models, the usual weight format is floating-point, as this
allows for increased accuracy and reliability. However, due to the complexity of circuits needed for the
arithmetic operations and the memory of the device, the floating-point format is not practical for the
ARM Cortex-M device. Therefore, in the Cortex-M backend, the weight symmetric quantization [14]
method is used to change the weight format of the model from floating-point to integer format.

First, in the weights of a model, the fractional bits use more memory than the integer bits, so these
fractional bits must be calculated before quantization by Eq. (2). The main purpose is to calculate the
largest bits in the weight array and use the value of these occupied bits as a parameter in the fracbits
quantization formula,

fracbits ¼ ceil log2 max Wmaxj j; Wminj jð Þð Þð Þ (2)

Wout ¼ threshold round Win � 2fracbits ; � 128
� �

; 127
� �

(3)

where Wmax and Wmin are the maximum and minimum values of the input array, respectively, the ceil (x)
function returns a float containing the smallest integer value that is not less than x, Wout is the result of the
quantized weight array, and Win is the input weight array.

Second, after obtaining the fractional bits, the model’s weights are quantized using Eq. (3), in which
threshold is an operation limited by fracbits, and the round function rounds the number to the nearest
integer. The result of a model after quantization is an array of 8-bit integer weights in the range −128 to
127. Since this quantization process is required for each application when using the proposed backend for
embedded systems, it is designed as an automatic optimization pass in the backend. This pass is called
automatically when compiling.

3.2 CortexM Backend Compilation

This section discusses the compilation of the backend with the designed optimization passes inside it to
create the optimized final output code. Fig. 6 shows the overview implementation diagram in the CortexM
backend. It can be divided into three phases, as follows.
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First, the CortexM backend is compiled with an ONNX model as discussed in Section 2.2.3. This
backend detects all layers (e.g., convolution, max-pooling, and ReLU layers) in the ONNX model and
saves information about them, such as their names, strides, weights, dimensions, and pads. At the
detection and compilation stages, the necessary parameters, such as input and output dimension, input
and output channel, kernel size, stride, pad, weight, and bias in each layer are recorded in a list.
Detecting all layers in a model ensures that all operators in the model are compiled and demonstrates the
format compatibility between the operands in the model and operands in the CortexM backend. The
operators and their parameters are changed according to the input models.

The second phase calls the optimization passes in the backend. It is used if any optimization pass is
added to the pass manager of the backend. In addition, the backend creates a suitable weight format with
operands in the CMSIS-NN library added in the cross-compilation process.

The third is the final optimization code generation phase for a device of the CortexM backend. The
proposed CortexM backend creates all parameters in a model as well as related files such as Function-
Call.cpp and pre-processing input data. However, the optimization is implemented on a few important
phases including pre-processing input data, tuning the Pad parameter in the model, reducing the operator
dimension, and tuning the final min function.

3.2.1 Pre-processing Input Data
Since the goal of building and optimizing the CortexM backend is to create a useful backend for the

community, it is necessary to optimize the input data, which are mostly images. This process is not
specific to ARM Cortex M devices and could be applied to image processing on other devices. An input
image optimization pass is also included in the backend. Since the input data are loaded into the system
in the form of an array of 8-bit integers, this array length will exceed the range (−129, 128) and overflow
the memory. Therefore, it is necessary to develop a pre-processing function to map the image values to
the range (−129, 128), as presented in Algorithm 1. Based on Algorithm 1, the input data array are
shifted to the right in a round-robin manner until the array values are in the range (−129, 128) to save
memory and to fit in the computation range of the CMSIS-NN library.

Algorithm 1: Pre-processing Input data

void pre_processing (int *image_data , q7_t* img_buffer){

1: if (image_data_max < 128 & image_data_min > −129) {

2: for (int i = 0; i < image_size; i ++)

3: img_buffer[i] = (image_data[i]>>1);

4: }

5: else image_buffer[i] = image_data[i];

6:}

Figure 6: An overview diagram of the process of generating the optimization code in the CortexM backend.
The numbers (1), (2), and (3) indicate the order implemented in the backend
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3.2.2 Tuning the Pad Parameter in Models
This section discusses the padding of ‘0’ values on the outside of an image so that the picture size

matches the size of the kernel in the model. In ONNC, each layer is called an operator and its structure
was already built in the ONNC compiler. Since there are many parameters in each layer of a model,
which can affect the features of the input image, there is an important parameter called the Pad parameter
in both the Convolution and MaxPooling layers. This parameter is used to calculate the feature range of
the input images. If the parameters of the input images do not match the calculation range, then the
kernel size is extended by supplementing the ‘0’ values into the margin edge for these images. This Pad
value is the same as the auto Pad [15] value in the proposed model. Its computation is defined by two
values called SAME_UPPER and SAME_LOWER. Based on those two values, the Pad parameter is
optimized using Eqs. (4) and (5). Its main target is to produce an integer assemblage according to the
floor() or ceil() function in the computation process of the model. In addition, supplementing the ‘0’
values into the margin edge of images makes the digits and image labels more prominent, which should
improve recognition and classification. Based on Eqs. (4) and (5), the weight size of the model not only
significantly decreases, but the computation speed for the application also increases, while barely
affecting the original accuracy of the model due to the rounding margin of this function being very small.

PadSAME UPPER ¼ max floor
Sizeoutð Þ � Strideþ Sizekernel � Sizein

2

� �
; 0

� �
(4)

PadSAME LOWER ¼ max ceil
Sizeoutð Þ � Strideþ Sizekernel � Sizein

2

� �
; 0

� �
(5)

where Sizeout is the length and width of the output picture after the operation ends, Stride is the unit number
to move the calculation range right or down after each operation, Sizekernel is the length and width of the
calculation range for an image, Sizein is the length and width of the input picture during the operation, and
the floor(x) function returns the largest integer that is less than or equal to x.

3.2.3 Operator Dimension Reduction Techniques
This section discusses techniques to reduce the weight size of the addition and multiplication operators.

In Section 3.1.2, the weights of the model were optimized by limiting their values to the range (−129, 128);
however, at this point, they remain unsuitable for the new operators added in the CortexM backend. Because
the CMSIS-NN library does not provide matrix addition and multiplication operators for 8-bit integers, these
have been added to the backend to support matrix computation. Adding two new operators is also the reason
for the memory overflow in the computation process. Therefore, to remedy the overflow while enabling
matrix addition, matrix multiplication, and convolution layers, two new parameters have been added: two
different Right-Shift values, (1) Right� Shif tresult and (2) Right� Shif tMatmul. The weight tuning of the
two operators is also based on these values. Eqs. (6) and (7) are the functions to compute the
Right� Shif tresult and Right� Shif tMatmul values, respectively. The function Right� Shif tresult is to
prevent memory overflow. It is used in matrix multiplication, matrix addition, and convolution layers.
The function Right� Shif tMatmul is used as an input parameter for the multiplication matrix to align the
bits of operators and avoid errors in the computation results.

Since the format of weights in ONNX (channel-height-width [CHW]) and the CMSIS-NN library
(height-width-channel [HWC]) are different, the computation of matrix addition and matrix multiplication
are problematic. As part of the proposed system, a function is designed and implemented to convert them
into the HWC format. In this way, the ONNX model weight is converted to the HWC format so that it is
compatible with the CMSIS-NN library. Additionally, the formats of the input weight (Matmul-Weight)
of the matrix multiplication layer and the weight of the convolution layer are different. The conversion
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must be performed one more time. These conversions are included in the backend and are performed
automatically when compiling it.

Right� Shif tresult ¼ ceil log2 max Wout minj j; Wout maxj jð Þð Þð Þ � 7 (6)

Right� Shif tMatmul ¼ ceil log2 max Win minj j; Win maxj jð Þð Þð Þ � 7 (7)

where Wout min and Wout max are the minimum and maximum of the output matrix, respectively, and Win min

and Win max are the minimum and maximum of the input matrix, respectively.

3.2.4 Tuning the Main Function
The main function is a final file that contains all computation layers of a model including all added

optimization passes. The Cortex-M backend generates this main function and the detailed computation is
shown in Algorithm 2. For each different model, this main function has different operators. The algorithm
combines the input data pre-processing process with the detected layers to create a full main function
containing all layers such as Convolution, Maxpooling, and ReLU. Algorithm 2 can be described in the
following steps.

Algorithm 2: Computation flow in the main function

Int Main (bool input_pre_proc, int* image_data){

1: int return_type = 0;

2: q7_t * img_buffer1 = scratch_buffer;

3: q7_t * img_buffer2 = scratch_buffer2;

4: if (input_pre_proc){

5: pre_processing (image_data, img_buffer2);

6: }else{

7: for (int loop = 0; loop< image_size; loop++) {

8: img_buffer2[loop] = image_data[loop];

9: }

10: }

11: //The operators will be computed here.

12: Return_type;

13: }

First, all header files and arrays are declared for the program. Second, the input image data pre-
processing is performed depending on the input data. Finally, the program produces the result. All
computations in this file are related to the CMSIS-NN library, which contains many convolution layers.
Each layer requires different input parameters to perform different computations. Therefore, these
functions are combined with the required parameters to generate a suitable main function, as shown in
Algorithm 3.
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Algorithm 3: Tuning the Function-Call function

Input: The parameters of the RGB, fast, basic convolution layers.

Output: Function-Call function

1: If (input channel == 3) {

2: // Generate RGB convolution function

3: } else if (input channel % 4 == 0 && output channel % 2 == 0) {

4: //Generate fast convolution function

5: }else {

6: // Generate basic convolution function

7:}

Its main function calls the proper convolution function based on the input channel. Since these
convolution layers are limited by the input and output channels, these values are tuned to the main
function. This algorithm only combines the computation of layers in the model with the pre-processing
function; it does not affect the accuracy during the computation process. The arrays in the main function
and the parameter values in the detected layers have different lengths after tuning. If the length is not
fixed, many redundant ‘0’ elements exist in the output array, occupying a significant amount of memory.
Therefore, these output parameters are adjusted by limiting the array size of the output variables to save
memory. The formula to calculate the output file size is:

buffer size ¼ output dimension2 � output channel; (8)

where output dimension is the output dimension of the main function and output channel is the output
channel of the main function.

In the calculation process of the main function, two arrays are used to store the computation results as the
input and output matrices. The input matrix is computed to obtain the output result and it becomes the input
of the next layer. The final output matrix of the previous layer will become the input matrix of the next layer.
Consequently, the memory is saved without allocating more matrices.

3.3 Featured Parameters of Applications

The final compilation result of the proposed backend with an ONNX model is to create a specific
machine instruction for the target device. With ONNC, based on the specific applications, the user can
redefine these featured parameters in their backend. This is an advantage of ONNC backends. In the
approach employed in this paper, common source file types (i.e., *.cpp or *.h) are required, and these
files are created. These file types are not only popular with users but also suitable for computations in the
CMSIS-NN library. This also increases the inference speed in problems of recognition and image
classification. With the proposed system, this phase is the most important because all features of a model
are generated in it. Defining files, architectures of operands, and codes to generate these files are designed
in the CortexM backend, and it can be extensible by adding or modifying any operands.

3.4 Application-Specific Phase

The application-specific phase uses the results of the previous phases to deploy an application-specific
binary on the target device; on different devices, the implementation methods are also different. Therefore, to
implement an application, the user must add some of the library and available applications to support the
computation process. In this paper, the generated files are combined with the CMSIS-NN library and
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Mbed application to create a complete application. Mbed-CLI is an existing program used to compile related
files into a single file. The Mbed-CLI program is installed with the command Embed-os-example-blinky [16]
to create the Mbed CLI environment. Then, the Cross-compiler is used to combine the CMSIS-NN library
and neural network kernels with all generated files by the backend to create the application file, called *.Bin
file for the ARM Cortex-M devices. All the scripts are implemented by the command “mbed compile–t
GCC_ARM–m target_device”, in which “mbed compile” calls the mbed compiler, and GCC_ARM calls
the compiler tool for the ARM device. Finally, the *.Bin file is moved to the device to implement
computation.

4 Experimental Configuration

4.1 Hardware and Software Platform

The hardware platform used for these experiments was a Desktop-6TDMGP4 computer with an Intel
Core i5-7500 processor and 8.00 GB RAM. The operating system was 64-bit Windows 10 and the
programming language used was Visual C++. The Linux 16.04 LTS OS and tools were installed to
compile the CortexM backend of the ONNC compiler. The experiments were performed on a
NUMAKER_PFM_NUC472 device with 512 KB of flash memory and 64 KB of SRAM.

4.2 Experiment

This section discusses the two experiments performed to assess the efficacy of the new backend: (1)
handwritten digit recognition on the MNIST model and (2) image classification on the CIFAR-10 dataset
with the AlexNet-Light model. The details of each model and dataset are introduced in Section 5. These
two experiments were implemented separately. However, they have the same implementation diagram
which is shown in Fig. 7.

On the left of Fig. 7 is the input image of the system; these images are transmitted to the ARM board
through software called Processing. In the middle is the ARM Cortex-M board containing the CortexM
backend and the information of a model and its executive functions. On the right is the integer type’s
output result because the handwritten digits and the labels of images are integer numbers. These parts are
connected together by the UART port as a USB port. The selected models were first compiled with the
ONNC compiler by the CortexM backend to create the *.Bin file for the experiment. Then the system
was configured and a new window appeared along with a folder of the ARM board; this meant that the
ARM Cortex device and PC were connected successfully. All tools and required programs must be put in
the folder of the ARM Cortex-M device. After this, the processing software was started and the program
was executed. At this time, a new window popped up to show that the Processing software and the

Figure 7: A diagram outlining the experiments to recognize the handwritten digits in the MNIST data and to
predict the labels of images in the CIFAR-10 data
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system were connected successfully. The input data were sent from this software to the ARM board for
computing. Finally, the results were displayed on the PC in a different new window.

5 Evaluation

5.1 Recognition of the MNIST Dataset

5.1.1 Dataset and Model Architecture
The MNIST [17] data and model were used for the first experiment and the model’s original structure

and order of layers were kept. The detailed model architecture is shown as in Table 1. The input data were
created by writing digits on the Processing software, and they were not trained with the MNIST model during
the experiment so the validation data did not contain any information from the input data. The obtained result
was the inference from validation data of the MNIST model.

5.1.2 Sample Images
The system was designed and developed for ARM Cortex-M devices with limited memory space and

computation speed. Only one image sent from processing software was recognized each time. Due to the
limited recognition speed of the system, the sample dataset of 1,500 images for each digit were created
by many people with different writing styles and did not follow any particular rules, as shown in Fig. 8.
They contained all edges of a digit written.

5.1.3 Recognition Results
Digit recognition was implemented in the system using the sample image set shown in Fig. 8, and the

results of recognizing each digit are shown in Table 2. The recognition accuracy was determined as follows:
the handwritten digits were loaded into the system and the output was checked: if the output result showed
the correct input digit then the recognition result was deemed correct. Digit recognition was conducted on
different handwriting styles to give a more objective accuracy score. The average accuracy achieved was
98.90% across the various cases in the recognition process, including small and large digits,

Table 1: MNIST model architecture for handwritten digit recognition

Layer type Output shape Parameters

Conv-1 1 × 8 × 28 × 28 (6.125 KB) 200

Add-2 1 × 8 × 28 × 28 (6.125 KB) 0

ReLu-3 1 × 8 × 28 × 28 (6.125 KB) 0

MaxPool-4 1 × 8 × 14 × 14 (1.531 KB) 0

Conv-5 1 × 16 × 14 × 14 (3.06 KB) 3.200

Add-6 1 × 16 × 14 × 14 (3.06 KB) 0

ReLu-7 1 × 16 × 14 × 14 (3.06 KB) 0

MaxPool-8 1 × 16 × 4 × 4 (0.25 KB) 0

Reshape-9 (two layers) 256 × 10 (2.5 KB) 0

MatMul-10 1 × 10 0

Add-11 1 × 10 2.560

Total 31.836 (KB) activations 5.960
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superimposed digits, and two digits written together. The results were impressive for a small device with
limited memory.

The approach of this paper creates a CortexM backend for ONNC and implements the handwritten digit
recognition with the MNIST model. When compared with some other state-of-art techniques it showed
superior results for handwritten digit recognition, as shown in Table 3. All these studies used the same
database and feature extraction method. The study in [18] used a convolution layer with 28 kernels/filter/
patches and kernel sizes of 5 × 5 and 3 × 3 to extract the features. The neural network structure was
deeply optimized and implemented in MATLAB 2018b. Their experiments were implemented on an
NVIDIA 1060 GTX GPU device; their model size is also larger than the model size in this paper.
Another study [19] used a deep learning model to recognize handwritten digits; however, it only obtained
an accuracy of 96.63% with a larger and deeper network than in the present study. The studies in [20,21]
implemented digit recognition on an embedded system. In both studies, the input digits were written on a
whiteboard and transmitted to the board by a camera, but they only achieved accuracies of 98.23% and
98.00%, respectively. These models all needed to be trained with the MNIST model before implementing
the experiment, which improved their accuracy. The model structures in [18–21] were more complex than
in the present study; they used the convolutional neural network method and deep optimization of these
networks after training with the MNIST dataset.

Figure 8: A sample image set of the handwritten digits, which was used to test the proposed backend

Table 2: The recognition accuracy for each digit

Type of digits 0 1 2 3 4 5 6 7 8 9

Accuracy (%) 99.79 99.64 99.15 98.91 99.49 99.32 99.16 98.54 98.04 97.02

Table 3: Comparison with other state-of-art techniques for handwritten digit recognition

Reference Method/techniques Database Features Accuracy (%)

Ahlawat et al. [18] CNN MNIST Pixel and geometrical based 99.89

Our method CNN based on backend MNIST Pixel and geometrical based 98.90

Bendib et al. [19] CNN MNIST Pixel and geometrical based 96.63

Min et al. [20] Deep learning N/A Pixel-based 98.23

Pratt et al. [21] CNN MNIST Pixel and geometrical based 98.00
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In contrast, the proposed system achieved a higher accuracy with a more straightforward structure. Some
researchers used ensemble architectures for the same dataset to improve recognition accuracy, but the
computational cost and testing complexity of these approaches were high because their databases had to
be trained with the input data before implementing digit recognition. As a result, they achieved different
accuracies for different ratios. The model size in these studies was larger than in the proposed model.
Nevertheless, the accuracy of these models was not particularly high. In contrast, the approach of this
paper achieved a recognition accuracy of 98.90% for the MNIST model without employing an ensemble
architecture and without training on the input data.

In the experiment, it was found that the size and weight of the digits changed each time the input images
were written or drawn using the computer mouse. Since these input images were not trained before the
experiment, the validation dataset in the MNIST model did not contain any information about the input
data. However, the accuracy of each digit after each recognition was almost consistent. It is clear that the
difficulty in handwritten digit recognition is due to differences in writing styles and sizes. To overcome
this difficulty, input images were created with different marker sizes and written styles to obtain more
objective results in this experiment. In addition, whether the inference in the handwritten recognition
system is true or not depends on the contrast of handwritten digits and the ambiguity of the digits in an
image. If the images are less ambiguous, then the accuracy rises and vice versa. One of the typical
ambiguities in the inference of handwritten digits is the similarity between digits. If digits are unclear or
too similar to other digits, then the accuracy will be different.

During the experiment, it was discovered that some digits are easily confused even by the human eye.
Fig. 9 shows that ‘1’ is very similar to ‘7’ while ‘4’ is very similar to ‘9’. This poses a significant challenge to
researchers and developers in the development of handwriting recognition systems. It certainly affects the
accuracy of these systems. Furthermore, inaccurate recognition can be caused by digits being written in
unusual writing styles or sizes, handwriting mistakes, or the writing window being too small. In addition
to the input data, the accuracy also depends on other factors such as the depth and the model’s weight
due to quantization.

Figure 9: Examples of easily confused handwritten digits
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5.2 Classification of the AlexNet-Light Model

5.2.1 Dataset and Architecture
CIFAR-10 [22] is a well-known dataset for object classification with 60,000 natural RGB images,

divided into a training set of 50,000 images and a testing set of 10,000 images. It comprises 10 classes of
images: airplanes, automobiles, birds, cats, dogs, deer, horses, frogs, ships, and trucks. The AlexNet-Light
model used for the second experiment was created based on the AlexNet [23] model and trained with the
CIFAR-10 dataset. The architecture of the model is shown in Table 4.

5.2.2 Sample Images
In the CIFAR-10 dataset, each class is assigned a label and a corresponding integer, as listed in Table 5.

The proposed system was used to classify the images according to these labels. Some sample images from the
CIFAR-10 dataset and their corresponding labels are shown in Fig. 10.

5.2.3 Classification Results
The image classification diagram is shown in Fig. 7. Although the architecture was the same as in the

previous experiment, the input data were replaced by the CIFAR-10 dataset. The *.Bin file contained the
information of the AlexNet-Light model to perform classification. Random images were selected for each
label to obtain objective results. The image classification accuracy was determined as follows: the input
image for a given label (e.g., the Airplane label) was loaded and the output was checked. If the output
showed the correct number (‘0’ in this case) then the classification result was deemed correct. The
classification accuracy for each label is shown in Table 6—the overall accuracy was 90.55%.

Table 4: Architecture of the AlexNet-Light model for object classification in the CIFAR-10 dataset

Layer type Output shape Parameters

Conv-1 1 × 16 × 16 × 16 (4 KB) 423

ReLU-2 1 × 16 × 16 × 16 (4 KB) 0

MaxPool-3 1 × 16 × 8 × 8 (1 KB) 0

Conv-4 1 × 32 × 8 × 8 (2 KB) 4.608

ReLu-5 1 × 32 × 8 × 8 (2 KB) 0

MaxPool-6 1 × 32 × 4 × 4 (0, 5 KB) 0

Conv-7 1 × 32 × 4 × 4 (0, 5 KB) 9.216

ReLu-8 1 × 32 × 4 × 4 (0, 5 KB) 0

Conv-9 1 × 64 × 4 × 4 (1 KB) 18.432

ReLu-10 1 × 64 × 4 × 4 (1 KB) 0

Linear-11 1 × 10 2.560

Total 14.5 KB activations 34.248

Table 5: Labels and their integer values in the CIFAR-10 dataset

Labels in CIFAR-10 Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Corresponding label value 0 1 2 3 4 5 6 7 8 9
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The image classification only took 0.58 ms, and it was straightforward to implement with limited
memory. The architecture is ideal for use in embedded systems or small devices. Based on Table 6, the
system achieved higher accuracy for the images labeled “Ship” and “Truck” than for “Dog”, “Bird”, and
“Frog”. Note that the inference method predicted the output image using the pixel values. Therefore, if
one image has many corresponding objects, then the prediction may be wrong. For example, if an image
contains many objects similar to the background color, this “noise” will reduce the accuracy. That is a
challenge in embedded systems because of their small memory.

The model used was a small model with four convolution layers and one fully connected layer. Its
accuracy was high when compared to other studies, as shown in Table 7. The result in [24] used the
location property method of convolutional neural networks to classify images. This means that it had to
find the optimal feature embedding location of the layer before the softmax operation. Its result had to be
moved between the principal embedding direction and the secondary embedding direction before
implementing classification. However, the accuracy was lower than the proposed system. In another
branch of [24], the author used the optimization method in their model to classify the images. However,
the model size was larger than in the proposed system, and their accuracy only achieved 85.90%. In the
study [25], the models were challenging to implement for an embedded system due to memory overflow.
It had three perceptron convolution multi-layers, and there was a three-layer perceptron within each
multi-layer. Therefore, this model architecture is more complex than the model in this paper. In addition,
some aspects of image classification used in popular methods such as feature extraction, adam, and
dropout were taken into account in the proposed model. The results can be compared with another set of
methods. Table 8 shows the accuracy compared with the work by Kaggle [26]. Although the accuracy
achieved in this paper is not in the top 10 like that of Kaggle, it should improve with reduced label noise
or a larger model structure. Furthermore, their models have a very complex model architecture with a
large number of weights, making them infeasible for use in an embedded system. In contrast, the

Figure 10: Example images and their corresponding labels in the CIFAR-10 dataset 1

Table 6: The accuracy achieved for each class of images

Labels in CIFAR-10 Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Accuracy (%) 91.11 89.60 88.15 90.45 89.11 87.50 88.90 89.17 96.04 95.47

1 Notice that the original resolution is 32 × 32. To show this image clearly for readers, we use a higher resolution one instead.

CSSE, 2023, vol.46, no.1 1015



performance of the proposed system is higher for the classification system on small devices based on the
pixel values of an input image.

5.3 Discussion

This section discusses the proposed CortexM backend for the ONNC compiler by comparing it with
other backends such as the C, NVIDIA Deep Learning Accelerator (NVDLA) [27], and LLVM backends.
First, measured by the number of lines of source code, the proposed implementation is less complex than
the others. Consequently, it is easier to port applications to it. Moreover, the proposed backend can save
significant memory space and improve computational performance for target applications. The other
approaches also generate more complicated code than the proposed system, especially when generating
C++ code from an ONNX model. This complexity is mainly due to the efforts to maintain and increase
the accuracy of the system after the compilation process. This is discussed in further detail in the
following sub-sections. Because the memory of the target device is very small, applying auto transferring
tools [28,29] to generate binary files may cause overflow. In addition, the operator structure of auto
transferring tools is always fixed during compilation. In contrast, the proposed backend is more flexible
and allows for the addition of operators into the binary file if necessary.

5.3.1 Implementation Complexity
Implementation complexity is defined as the workload needed to implement a backend, including the build

process, code generation, and extensibility. Each backend in ONNC can transform an instruction name into an
opcode. When finishing the compilation process, it finds a suitable virtual memory space to store the operands.
An ONNC backend consists of at least four phases (see Section 2.2.3). The proposed CortexM backend can be
evaluated by comparing it with the NVDLA, C, and LLVM backends via the source lines of code (SLOC), as
shown in Table 9. The code size of the CortexM backend is the smallest and that of the NVDLA backend is the
largest when transforming opcodes into binary codes for the ARM Cortex-M device.

Table 7: Comparing the proposed method with previous methods on the CIFAR-10 dataset

Reference Model Method Accuracy (%)

Liang et al. [24] Quick-CNN Quick-CNN-2 76.82

LPsoftmax,S-OFP (a2 ¼ 0:1Þ 79.95

Liang et al. [24] Moderate Model (NIN) Baseline 89.79

LPsoftmax,S-OFP (a2 ¼ 0:005Þ 90.83

Calik et al. [25] Model 5 CNN 85.90

Our method AlexNet-Light CNN 90.55

Table 8: Comparison of results with Kaggle [26]

Index Team Accuracy (%)

1 DeepCNet 95.530

2 Jiki 94.740

… … …

20 Our method 90.550

21 Yan 90.530
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5.3.2 Performance
Both the C and LLVM backends are challenging to compile directly with these AI models. Therefore,

the inference results can be affected by the conversion procedure between frameworks and backends. This
section only compares the performance between the proposed backend and the NVDLA backend because
they are all developed from the ONNC compiler with the same input data. To measure the performance,
the total inference time was measured for some models with the benchmark tool [31] in ONNC. This
benchmark tool only computes the compilation time of each layer in a model. The compilation time is
obtained by reading the input operators of each layer to produce the output of all operators. The inference
time of the two backends with the models is shown in Table 10. The inference time can change because
each image has different weight values, so the overall compilation time of a model was measured for the
two backends. Based on Table 10, the proposed backend is faster than the NVDLA backend by
approximately 0.5% with the same weight and memory. The performance of the NVDLA backend is
slower with larger memory than the proposed backend. In addition, since the structure of the NVDLA
backend is different, many operators, such as matrix multiplication, are supported by the proposed
backend but not by the NVDLA backend. For example, compiling the NVDLA backend with the MNIST
model results in an “Unsupports MatMul” error. The user must add this operator in that backend and
recompile the ONNC compiler to solve this problem.

Table 9: SLOC for different backends, including only the source code and header files. Other files are not
counted, such as CMake and text files

Backends Size (SLOC)

CortexM backend Total:
Code:
Header:

3.052
2.561
491

NVDLA backend Total:
Code (C, C++):
Header:

7.643
4.924
2.719

LLVM backend
David et al. [30]

Total:
Compiler:
LLVM module:

3.133
1.865
1.268

C backend
David et al. [30]

Total:
Compiler:
Includes:
Assembly Processor:

5.382
1.122
2.201
2.059

Table 10: The inference time of the two backends (in seconds)

Models CortexM backend NVDLA backend

Our_model 0.0073 Not Support

MNIST 0.0088 Not Support

AlexNet 0.8792 0.8901

GoogleNet 2.4565 2.4914

ResNet-50 5.9981 6.1075

VGG19 29.6516 30.1099
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6 Conclusion

A novel, highly efficient AI backend has been developed for the ONNC compiler for the ARM Cortex-
M series, combined with a method to infer the performance of a target application. A backend helps the
community to implement computations using an AI model on a target device. In the experiments on
handwriting recognition on the MNIST dataset and image classification on the CIFAR-10 dataset, the
proposed backend showed good accuracies of 98.90% and 90.55%, respectively, while the original
accuracy of the MNIST and AlexNet models were 98.9% and 96.20%, respectively. These results show
that the proposed system is not significantly less accurate than the original AI models. Furthermore, the
performance of the new backend was evaluated by comparing it with the NVDLA, C, and LLVM
backends to demonstrate that it is simpler and more efficient in terms of structure and code size.
Although the proposed backend was developed for ARM Cortex-M devices, it can be applied to other
boards and the ONNC compiler’s support. Users could deploy this backend widely on other small device
series (e.g., the SMT32 and ARM Cortex-a devices) and mobile devices to validate the efficiency of the
system. A docker image [32] is provided on GitHub for the research and development community.
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