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Abstract: Hyperspectral imaging is gaining a significant role in agricultural
remote sensing applications. Its data unit is the hyperspectral cube which holds
spatial information in two dimensions while spectral band information of each
pixel in the third dimension. The classification accuracy of hyperspectral images
(HSI) increases significantly by employing both spatial and spectral features. For
this work, the data was acquired using an airborne hyperspectral imager system
which collected HSI in the visible and near-infrared (VNIR) range of 400 to
1000 nm wavelength within 180 spectral bands. The dataset is collected for nine
different crops on agricultural land with a spectral resolution of 3.3 nm wave-
length for each pixel. The data was cleaned from geometric distortions and stored
with the class labels and annotations of global localization using the inertial navi-
gation system. In this study, a unique pixel-based approach was designed to
improve the crops' classification accuracy by using the edge-preserving features
(EPF) and principal component analysis (PCA) in conjunction. The preliminary
processing generated the high-dimensional EPF stack by applying the edge-pre-
serving filters on acquired HSI. In the second step, this high dimensional stack
was treated with the PCA for dimensionality reduction without losing significant
spectral information. The resultant feature space (PCA-EPF) demonstrated
enhanced class separability for improved crop classification with reduced dimen-
sionality and computational cost. The support vector machines classifier was
employed for multiclass classification of target crops using PCA-EPF. The classi-
fication performance evaluation was measured in terms of individual class accu-
racy, overall accuracy, average accuracy, and Cohen kappa factor. The proposed
scheme achieved greater than 90 % results for all the performance evaluation
metrics. The PCA-EPF proved to be an effective attribute for crop classification
using hyperspectral imaging in the VNIR range. The proposed scheme is well-
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suited for practical applications of crops and landfill estimations using agricultural
remote sensing methods.

Keywords: Hyperspectral imaging; visible and near-infrared; edge preserving
feature; dimensionality reduction; crop classification

1 Introduction

Remote sensing technology can provide high-definition spectrum pictures, allowing for the detection of
minor spectral characteristics of varied soil coatings. Regardless of this edge, hyperspectral imaging sensing
is widely employed in a wide range of tasks, including target recognition [1,2], spectral spectrum mixing,
environmental monitoring [3,4], and scene classification. Such applications include the categorization of
Hyperspectral Images (HSI) which has received a lot of interest because of its usefulness in precision
agriculture, urban research, and environmental monitoring [5,6]. In the agriculture sector, HSI is used to
classify crops and land covers. Highly precise crop categorization is a typical need for agricultural
accuracy including crop area calculation, crop yield projections, precision crop management, and so on.
Crop mapping is a key component of agricultural resource monitoring by remote sensing. Hyperspectral
data are becoming more commonly employed [7] with the application of hyperspectral remote sensing for
crop categorization [8]. Crop and soil cover detection is regarded as critical for agricultural and crop
production activities unlike typical land-occupancy classification approaches [8,9]. The crop classification
goal is to apply a unique class mark to every pixel in the HSI, making it much harder to identify the
scene's main components. To accomplish this goal, classic methodologies namely the Bayesian estimate
method [10], the Support Vector Machines (SVM) [11], and sparse interpretation techniques [12] were
successfully used in the HSI classification along with other machine learning-based classification studies
[13]. However, owing to the curse of dimensionality, many of the above-mentioned classifiers cannot
achieve good classification performance with insufficient labeled data. Furthermore, neighboring noise-
free hyperspectral bands are often closely linked, and a high spectral component frequently incurs a
proportionally increased computational cost of the classification process. To address these issues, it has
been shown that eliminating features is an effective strategy to decrease data dimension while keeping or
enhancing the class separability of diverse objects [12]. Classical signal processing methods such as
Principal Component Analysis (PCA), Independent Component Analysis (ICA) [14], Singular Spectrum
Analysis [15], and Manifold Learning [16], are successfully applied for HSI feature extraction. However,
many of these methods have lower efficiency due to the use of spectral features only for material
retrieval. The spectral-spatial properties of HSI are created via edge-conserving filtering, which removes
noise, poor edges, and unimportant detail while keeping general architecture, solid edges, and image
borders [17]. The resultant Edge-Preserving Features (EPF) were proven to be effective in representing
the main spectral-spatial components [18]. However, one common requirement of edge-conserving
smoothing operations is that it helps to eliminate spectral variances across various class objects.
Furthermore, the degree of filter smoothing has a considerable influence on categorization performance.
EPF produced by changing a single parameter cannot properly capture the dynamic spatial composition
inside the hyperspectral imaging in this scenario.

To overcome the shortcomings of the conventional crop classification schemes, this paper introduces a
hybrid pixel-based approach to enhance the classification performance of hyperspectral data for Taiwan
agriculture by employing PCA-treated EPF (regarded as PCA-EPF) with the SVM classifier. The airborne
Hyperspectral Imager System (HSIMS) with a concave grating spectrometer is used to collect the
hyperspectral data with a higher spectral resolution of 3.33 nm bandwidth and spatial resolution of
1384 pixels × 1032 pixels. The dataset contains HSI in the Visible and Near-Infrared (VNIR) range of
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wavelength 400 to 1000 nm divided into 180 spectral bands. Additionally, acquisition systems include
Global Positioning System (GPS), Inertial Navigation System (INS), and flight data recordings for
geometric corrections and localization annotations. Initially, the standard EPF with varying parameter
values is created by applying edge-preserving filters to the acquired data, and the resultant EPF are
stacked together. Then the PCA is implemented to this EPF stack to represent them in the mean squared
sense and to illustrate the spectral specificity of the image pixels. This step generated a low-dimensional
feature stack of PCA-EPF. These two feature sets were classified using the SVM classifier with two
distinct pre-split approaches for the training and testing data folds. When using classification frameworks
that include extracting spatial information from nearby pixels, it is necessary to keep training and testing
data separate to prevent test data contamination. The PCA-EPF stack attained promising results for the
effective and highly accurate classification of the crops/classes, particularly with the limited number of
labeled samples available. The rest of the paper is distributed as follows: Section 2 includes the
experimental setup and dataset preparation detail, Section 3 illustrates the adopted methodologies, Part 4
explained the results and discussion, and Part 5 concludes this study.

2 Experimental Setup and Dataset Preparation

2.1 Dataset Collection

The HSIMS utilized in this research is being developed with the help of the National Space Organization
for the construction of an airborne experimental platform. Table 1 displays the characteristics of the VNIR
spectrum. The plane with the onboard GPS and Inertial Measurement Unit (IMU) glides at the height of two
kilometers over Yulin city in Taiwan. The location, route, position, and velocity of the flight are recorded
simultaneously throughout the working process. This data will be executed in the post-processing stage.
Corning’s Hyperspectral Airborne Remote sensing Kit (HARK) was used to capture the hyperspectral
dataset. The VNIR and Short-Wave Infrared (SWIR) line scanning spectrometers were used to capture the
data, whereas only the VNIR band data is investigated in this study. The INS along with the central
computer system was used to gather, annotate, and store the picture feed from the aerial platform. The
VNIR and SWIR spectrometers operate between 400–1000 nm and 900–1700 nm ranges, respectively.
Fig. 1a shows the HSIMS block diagram in its entirety, and Fig. 1b shows the HSI data storing system.

Table 1: Parameters of hyperspectral imager system

Characteristics Visible and near-infrared band

Type of sensor Line imager

Spectral graph Solid block

Grating Blazed with hi-efficiency reflective

Spectral range limit 400 to 1000 nm

FPA format 1384 pixels × 1032 pixels, 6.45 μm pitch EX view HAD CCDII

Spatial swath 692 pixels (2× binning)

Focal length, F/# 32.7 mm, f/2.0

Full FOV 15°

Spectral resolution 3.3 nm (2× binning), 180 bands

Typical spectral readout 10 nm (6× binning), 60 bands

Frame rate 84 or 100 Hz
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The Taiwan Agricultural Research Institute (TARI), Taiwan provided the ground truth for this research
region in Quantum Geographic Information Systems (QGIS) data format with the local survey preceding the
remote sensing by a one-month interval. The collected dataset from the study area has a 331 pixels ×
696 pixels dimension with a total of 230,376 pixels and is composed of 9 distinct imbalance classes, as
shown in Table 2. It is a high-resolution spectral dataset with 3.33 nm bandwidth in the selected VNIR
range. The spatial resolution of the dataset is higher which is beneficial for academic research as well as
real-world applications such as area mapping and classifier algorithm performance testing.

2.2 Geometric Correction

Geometric correction is performed to prevent geometric distortions caused by distorted images. This is
accomplished by establishing a relationship between the image and the geographic coordinate system using
sensor calibration, measured position, attitude data, ground control points, atmospheric conditions, etc. The
Ellipse-N tiny INS with an integrated Global Navigation Satellite System (GNSS) receiver is used in this
system. This lightweight sensor combines a Microelectromechanical System (MEMS)-based IMU with
three gyroscopes and three accelerometers. It employs an upgraded Extended Kalman Filter (EKF) that
combines inertial data with GNSS and Differential Global Positioning System (DGPS) information. The
Ellipse-N provides position and attitude data 200 times per second. The navigation information linked
with the moment of image capture is kept in two separate files before the image data is saved to the

Figure 1: Block diagram of hyperspectral: (a) imager system, (b) data storage system

Table 2: Specifications of the collected dataset

Class number Class name Pixel distribution per
class (count in thousands)

1 Miaoyuan 33,128

2 Soil 51,781

3 Grass 30,085

4 Unfarmed 3,984

5 Garlic 48,633

6 Onion 12,540

7 Corn 30,232

8 Groundnut 13,641

9 Lettuce 6,352
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storage. First is a text file in which the navigation information having location and attitude data is recorded
for each line of the image data.

2.3 Geo Referencing

The second is an Input Geometry (IGM) file of the Environment for Visualizing Images (ENVI) software
which comprises the latitude and longitude of each pixel in the image. It includes an optimized process that
will create geo-registered data while providing the image data and IGM script. Georeferenced image
mapping information is recorded in two bands, one for x-coordinate (longitude or easting) and the other
for y-coordinates (latitude or easting)/ (latitude or northing). Several bands of longitude and latitude are
included with certain datasets which provide the georeferencing information for every raw pixel in the
original raw image. The file is used to generate (on-the-fly) a Geographic Lookup Table (GLT) file that
contains information about which starting pixel corresponds to which output pixel in the final image. It is
possible to rectify distortions such as roll, pitch, and yaw effects using this form of geographical
assessment premised on the flight track. Some datasets include specified geographical coordinates bands
which are combined to form the IGM file. This file is not georeferenced itself, but it includes the
georeferencing metadata for each source pixel. Following procedures must be executed to do geometric
corrections on the HSI dataset.

• To begin, open the required VNIR image in ENVI Software.

• Select IGM’s geometric correction > geo-reference from the toolbox. The file dialogue for data input
appears.

•After choosing an input file, execute the optional spectral sub-settings by selecting the appropriate IGM
file, where band 2 and 1 contains x and y geometry coordinates, respectively.

• Choose the type of projection in the source perspective list of geometric bands. Select the
georeferencing and generate GLT File parameter projection in degrees from the georeferencing
outcome projection list to enter the output pixel size. If a north-up picture is desired, set the output
rotation to zero. Change the filenames of the GLT and the output georeferenced files and save the
picture.

2.4 Region of Interest Creation

Regions of Interest (ROI) are subsets of a raster designated for a specific reason which is the area of
crops in this scenario. These are processed to derive categorization statistics. It is indicated which pixels
of the image will be included or excluded from the ROI during its specification. After the geometric
corrections, a region with a spatial dimension of 696 pixels × 331 pixels is created by using the
coordinates indicated in Table 3. A new vector layer is created and transformed vector-shape file into an
ROI by making a subset of this raster and masking the leftover pixels with zero values.

Table 3: Coordinates of the region of interest in hyperspectral images

Top left coordinates Top right coordinates

Lat: 23°44′28.61″ N, Lon: 120°20′59.01″ E Lat: 23°44′28.61″ N, Lon: 120°21′14.02″ E

Bottom left coordinates Bottom right coordinates

Lat: 23°44′21.50″ N, Lon: 120°20′59.01″ E Lat: 23°44′21.50″ N, Lon: 120°21′14.02″ E
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3 Methodology

Fig. 2 depicts a broad diagram of the overall design of the experiment and the proposed scheme adopted
for the multiclass classification of crops. The procedure of feature extraction and classification from the
preprocessed data is explained below.

3.1 Edge-Preserving Filters

Edge preserving filtering is a technique for image processing that reduces the noise while keeping crucial
parts of the image, such as borders and other visual cues. Over the last two decades, the image analysis and
computer vision fields have paid a lot of attention to these methods. Hyperspectral remote sensing techniques
have successfully used certain powerful edge-preserving filters [18,19]. It was used for the first time to make
the best use of spectral and spatial information in the post-processing of pixel-wise categorization results
[18]. This filtering technique is good for post-processing purposes, though it is not the best option. A
method for isolating the smallest sections of the HSI is presented in [20] to further increase its
interpretability. The image classification characteristics are enhanced using edge-preserving filtering and
ensemble classifier after deconstructing the HSI with ICA.

Anisotropic diffusion and the bilateral filter in terms of edge preservation are the most used filters with
high computational costs [21]. An iterative solution is required for anisotropic diffusion, in contrast to
bilateral filtering, which employs a spatial variability weighting function. Although other methods for
accelerating anisotropic diffusion or bilateral filtering have been developed, the bulk of these solutions
are limited to grayscale pictures or rely on temporary procedures [22,23]. The guided filter [24], the
domain transform filter [25], and the deep edge-aware filter [26] are other techniques for edge-preserving
filtering. The domain morph recursive filter works in real-time and is particularly helpful in improving the
performance of the HSI classifier [25]. In this work, the Domain Transform Recursive Filter (DTRF) is

Figure 2: Experimental scheme and proposed approach for remote sensing
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initially used to apply an estimated distance-conserving adjustment (a simple estimate is the sum of the
spatial distance and the variation in brightness between each pixel).

Ui ¼ Io þ
Xi

j¼1
1þ ds

dr
Ij � Ij�1

�� ��� �
(1)

The notations ds and dr represents the procedure to change the degree of filter smoothness for the domain
transformed signal denoted as U , and I denotes the one-dimensional (1D) signal used for DTRF. The input
signal is then analyzed as follows via recursive filtering:

Ji ¼ 1� ab
� �

Ii þ abJi�1 (2)

where Ji is the ith pixel’s filter result, a = exp (� ffiffiffi
2

p
=ds) ∈ [0,1] is the feedback parameter, and b is the

distance in the transform domain between two data points/samples Ui and Ui�1. When b decreases, ab
decreases to zero, completing the propagation cycle and recreating edges in the signal, and vice versa.
This edge-preserving filter processed the image in 1D operation to reduce the computational cost and
increase the processing time. According to experimental findings, a single pass of this 1D operation
generates filtered pictures with no objects. Three passes of this 1D filtering are required to get the
considerable edges in the 2D images. The DTRF is applied to the test images to obtain the edge-
preserved filtered image I ; ds; drð Þ, where I represents the input band and ds and dr are smoothness
adjustment parameters. Fig. 3 represents the procedure of the proposed PCA-EPF approach.

3.2 Principal Component Analysis

PCA is the fundamental technique for a wide range of remote sensing-based pattern recognition
applications. It is simple, non-parametric, and effective to extract the key information from the HSI [17].
The PCA is used in this study for dimensionality reduction. The EPF generated by varying parameter
values includes a significant amount of redundant information for which the PCA is the effective method
to eliminate the redundancy. Image denoising effectively minimized the spectral variations between pixels
of the same class along with the elimination of small information. This smoothing operation also
decreased the distinction between pixels of the different classes which affects the classification
performance. PCA is an excellent answer to this issue since it can extract the most critical features from
the EPF stack while effectively highlighting spectral variations between the pixels of distinct classes.

The essential equation for PCA-based sparse representation is encoded in the data matrix S, which
consists of N observations and M variables. In the image processing domain, N is the total number of
pixels in an image, and M represents the values of each pixel feature.

P ¼ W 0S (3)

where P values are the main components built as a weighted average of the original sample vectors. The
components in P are designed to conserve more variance discovered in the previous components. W is
defined by the covariance matrix C:

Figure 3: Illustrative diagram of the proposed PCA-EPF method
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W ¼ EA
�
1

2 (4)

where A is a diagonal matrix containing the decreasing eigenvalues of C and E is a matrix containing the
increasing eigenvectors of C. Given that the nth column of the M by N matrix B is SN � l

B ¼ S1 � m; . . . ; SN � m½ � (5)

The average vector is found by plugging the numbers into the formula l ¼ 1=Nð Þ S1 þ � � � þ SNð Þ.
Covariance matrix C of size M �M may be found using the formula:

C ¼ 1

N � 1
BBT (6)

From Eq. (4), it is deduced that W is a scaling factor for E vector-matrix, such that the variance of each
independent variable Pm equals 1. Dimensions of the input data S are reduced by keeping the first L
significant components. The proposed process defines the trained framework as PCA S; Lð Þ where L is
the number of components to hold from the data matrix S. This part explains the basic theory and PCA
equations.

3.3 Spectral Dimensionality Reduction

A band averaging approach minimizes the hyperspectral dimensions. It reduces the computational cost
of extraction function and image denoising of the original HSI. The hyperspectral M -dimensional data I is
partitioned into K equal-sized subgroups along the spectral axis as I ¼ I1;…; IK . K is the reduced
dimensionality of the data corresponding to the number of bands. The final set of M=K½ � bands in HSI is
implemented by creating the K th subgroup if M is divisible by K. When M is indivisible by K then
M=K½ � is determined by the lowest integer which is greater than M=K number. It defines the number of
bands in each subgroup. The resulting dimension-reduced hyperspectral data is the sum of the averages of
the band subsets or ÎK ¼ Î1;…; Îk.

The reduced data retains sufficient detail of the original image in each pixel. This is a major advantage of
using the average-based dimensionality reduction technique. The edges and other essential spatial structures
in larger and separate components can be significantly distorted along with dimensionality reduction
advantage using transform-based techniques such as ICA and PCA. As a result, the effectiveness of the
subsequent edge-preserving filtering is decreased. The feature selection-based techniques may be adopted
in addition to transform-based methods to overcome this issue, but they require an extensive optimization
process. As shown in this study, a simple dimensionality reduction technique based on averaging function
provides satisfactory classification performance.

3.4 Feature Extraction with EPF Stack

The EPF of HSI can be computed and overlaid with previously collected k-dimensional hyperspectral
data as shown below.

Fx
k ¼ DTRF ÎK ; d

x
s; . . . ; d

x
r

� �
; x ¼ 1; . . . ;X ; k ¼ 1; . . . ; K (7)

F ¼ F1; . . . ;FX
� 	

(8)

where dxs and d
x
r are the x

th parameter specifications for a domain transform recursive filter. For the dimension-
reduced kth band, the EPF is constructed with various parameter values dxs ; d

x
r

� � � d1s ; d
1
r

� �
; . . . ; dXs ; d

X
r

� �� 	
.

The generated features are then layered together following Eq. (8).
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The main reason for this update is to capture the multi-scale spatial features already stored in EPF with
suitable parameter values. As seen in Fig. 3, modifying the domain transforming recursive filter parameters
might result in drastically different filtered images in terms of boundary and edge preservation. Excessive
blurring may reduce the spectral separability of pixels from distinct objects. To cater to these issues,
filtration with a significant level of smoothing may effectively decrease noise and increase the spectral
retention of pixels. This indicates that EPF obtained with variable degrees of smoothing operation has
benefits in representing certain objects or features at various scales. As a result, it is projected that
combining these features would increase classification performance by using the supplementary data
present in the stacked EPF.

The training process of the experimental setup is proceeded in two different approaches which are
regarded as 1st and 2nd way of training, respectively, as illustrated in Fig. 4. The number of training
samples are frequently changing from 1% to 10% and is randomly picked out of ground truth for 1st way
of training mode in ten folds. While each new training fold includes a percentage of training samples
from the previous experiment along with fresh randomly selected samples in the 2nd way of training.

4 Results and Discussion

The SVM classifier is implemented for multiclass crop classification from the HSI dataset of the VNIR
range. The dataset is further divided into ten distinct experimental configurations after the application of
geometric correction, localization annotation, and other post-processing operations. This dataset division
in experimental folds is based upon the pixel count values with consideration of each target or class
variable. The distribution of these pixels for each arrangement of the experimental work has been shown
in Fig. 5. The random dispersion of these pixels has been processed for each experimental arrangement
with minor changes in the pixel count for each class present in the dataset. The class-wise data is further
investigated as dimensionality reduced spectrum, stacked EPF spectrum, and PCA-EPF spectrum which is
the PCA-based dimensionality reduced feature stack. The spectrum analysis of class “Garlic” has been
investigated in Fig. 6 with the band number and the illuminance factor.

Figure 4: Training data adjustment for all ten experiments: (a) 1st way of training, (b) 2nd way of training
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The effectiveness of the proposed scheme for crop classification is evaluated with the SVM classifier by
utilizing two feature sets having the ordinary EPF stack and PCA-EPF stack, respectively. The classifier is
trained for both feature sets with both ways of the training described previously. Various classification
performance assessment metrics are computed for each feature set with each training method. The
primary goal of this collected dataset is to develop state of the art in hyperspectral (non-RGB)

Figure 5: The number of pixels per class for all the ten experimental arrangements

Figure 6: The spectral signatures of the “Garlic” class in the visible and near-infrared range
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categorization. This section will provide some benchmark results for future works in hyperspectral imaging-
based crop classification in agricultural remote sensing. The accuracy of the classifier with the proposed
methodology is measured in terms of the Average Accuracy (AA), Overall Accuracy (OA), and Cohen
Kappa (CK) coefficient [27,28].

OA ¼ 1

N
ð
XP

i¼1
niÞ (9)

AA ¼ 1

k
ð
Xk

c¼1
AcÞ (10)

CK ¼ Po � Pm

1� Pm
(11)

Pm ¼ 1

N2

X
k
nc1 nc2


 �
(12)

where N is the total number of samples, P is the total number of correct predictions, ni are total correct
predictions for pixel i, k is the total number of classes, AC is the accuracy of class c, Po is overall
accuracy, Pm is the probability of agreement between the correct predictions for two class pairs.

Fig. 7 represents the segmented ground truth class labels for each class along with pixel intensity
mapping. Fig. 8 illustrates the image segmentation results with the SVM classifier applied for both
feature sets. These results are obtained with the 1st way of training on pixel count-based three
experimental dataset distributions. It is clearly shown that the results generated with the standard EPF
stack originated many misclassifications due to the involvement of the salt and pepper noise in almost all
the classes. While the segmentation performance shown by the PCA-EPF is comparatively improved but
it still has errors and noise in comparison to the ground truth labels in Fig. 7.

An identical investigation has been generated with the 2nd way of training in which some percentage of
the data from the preceding experiment is added up to the following experimental data. For example, the 1%
data of experiment number 1 is added to the next 2% data to make the dataset (1% + 2%) for experiment
number 2. Fig. 9 illustrates the image segmentation results on the nine classes using 2nd way of training
for both feature sets in three experimental configurations. The 2nd way of training has also significantly
improved the pixel-based classification results using PCA-EPF as compared to the original EPF stack
against the ground truth labels of each class.

Fig. 10 represents the detailed classification results by using the EPF feature set with the first method of
training. The performance assessment metrics for each experiment have been illustrated in Fig. 10a. All the
metrics achieved more than 90% results in all the experiments, whereas the best scores were generated by
experiment number 10 with 92.29% OA, 93.5% AA, and 90.84% CK. The class-wise accuracies of each

Figure 7: Ground truth class labels
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class in all ten experiments have been shown in Fig. 10b. On average, all the classes are well classified with
more than 88.6% accuracy, whereas class 1 (Miaoyuan) achieved the best classification accuracy of 96.49%.
Similarly, Fig. 11 represents the detailed classification results by using the EPF feature set with the second
method of training. All the performance assessment metrics achieved more than 90% results in all the
experiments, whereas the best scores are generated by experiment number 10 with 95.13% OA, 95.66%
AA, and 94.21% CK as shown in Fig. 11a. On average, all the classes are well classified with more than
90.83% accuracy, whereas the class 6 (Onion) achieved the best classification accuracy of 97.95% as
shown in Fig. 11b. The comparative analysis of both ways of training reveals that the 2nd way of training
achieved better results while employing the original EPF feature stack for the crop classification.

A similar approach is carried out for classification with the dimensionality reduced PCA-EPF feature set
using both ways of training. The classification results and performance assessment are shown in Fig. 12. All
the performance assessment metrics achieved more than 96% results in all the experiments, whereas the best
scores are generated by experiment number 8 with 97.24% OA, 97.23% AA, and 96.72% CK as shown in
Fig. 12a. On average, all the classes are well classified with more than 93.89% accuracy, whereas the class 9
(Lettuce) achieved the remarkable classification accuracy of 99.25% as shown in Fig. 11b. The comparative
analysis and comprehensive conclusion of the results show that the PCA-EPF feature set has significantly
improved the crop classification performance of the SVM classifier as compared to the EPF feature stack.

Figure 8: Comparative results of segmentation with both feature sets by using 1st way of training
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It has outperformed previous experimental results with an additional pixel count adjustment for experiment
number 8. It is observed that different training approaches for this feature set have not revealed any
noticeable differences in the results.

PCA-based approaches have been used with multiple remote sensing datasets and machine learning
classifiers in similar studies. The PCA was used for the cannabis plant detection in [29]. It is employed to
eliminate superfluous spectral data from multiband datasets. This study only focused on the detection of
the plants without any detailed analysis and the use of the classification method. The authors
implemented multiple PCA-based methodologies for the classification of HSI-based remote sensing data
in [30]. The best approach was a minimum noise fraction with less than 98% accuracy and 97% CK. In
[31], the PCA estimation method based on a geographical construction approach (gaPCA) is presented. It
is an alternative for computing the main components using a geometrically constructed approximation of
the PCA. The study used the SVM in combination with traditional PCA and gaPCA for its application to
HSI-based remote sensing. This approach attains 96% accuracy and 95% CK. The proposed PCA-EPF
approach in this study achieved the best results with greater than 98% accuracy and 97.14% kappa factor.

Figure 9: Comparative results of segmentation with both feature sets by using 2nd way of training
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Figure 10: Classification with the original feature set and 1st way of training: (a) Average and overall
accuracy, kappa statistics, (b) Class-wise accuracy for crop classification

Figure 11: Classification with the original feature set and 2nd way of training: (a) Average and overall
accuracy, kappa statistics, (b) Class-wise accuracy for crop classification
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5 Conclusions

In this work, a unique pixel-based approach is proposed and implemented to perform the crop
classification from hyperspectral remote sensing data of agricultural land by using Principal Component
Analysis-based Edge Preserving Features (PCA-EPF). In methodology, the edge-preserving filtering with
manually adjusted parameters is performed on hyperspectral images (HSI) of spectrally reduced
dimensions to extract the standard EPF stack. These extracted features are treated with PCA to illustrate
the stack in the mean square sense and to highlight the spectral differences among various classes. For
crop classification, the support vector machines classifier is used with the PCA-EPF to classify the
hyperspectral data in the visible and near-infrared (VNIR) range of 400–1000 nm wavelengths. The
remarkable classification results with less computational cost are achieved for assessment metrics like
individual class accuracy, average accuracy, overall accuracy, and kappa factor. The comparison with
existing studies has shown that the proposed scheme outperforms the existing methods with up to 99%
accuracy for agricultural target classification. As short-wave infrared (SWIR) data is also acquired with
VNIR, future research directions are to use the features from SWIR data and data fusion of both ranges.
Designing an automatic smoothing parameter selection approach to improve the classification accuracy
for the hyperspectral dataset would be interesting future work.
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Average and overall accuracy, kappa statistics, (b) Class-wise accuracy for crop classification
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