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Abstract: Crop protection is a great obstacle to food safety, with crop diseases
being one of the most serious issues. Plant diseases diminish the quality of crop
yield. To detect disease spots on grape leaves, deep learning technology might be
employed. On the other hand, the precision and efficiency of identification remain
issues. The quantity of images of ill leaves taken from plants is often uneven.
With an uneven collection and few images, spotting disease is hard. The plant
leaves dataset needs to be expanded to detect illness accurately. A novel hybrid
technique employing segmentation, augmentation, and a capsule neural network
(CapsNet) is used in this paper to tackle these challenges. The proposed method
involves three phases. First, a graph-based technique extracts leaf area from a
plant image. The second step expands the dataset using an Efficient Generative
Adversarial Network E-GAN. Third, a CapsNet identifies the illness and stage.
The proposed work has experimented on real-time grape leaf images which are
captured using an SD1000 camera and PlantVillage grape leaf datasets. The pro-
posed method achieves an effective classification of accuracy for disease type and
disease stages detection compared to other existing models.

Keywords: Feature extraction; neural network; disease; segmentation; pattern
analysis

1 Introduction

People depend on plants for their food, fuel, and other needs. So, researchers and businesses related to
agriculture are putting a lot of effort into research to keep farming going for a long time without stopping.
Plant phenotyping meets the needs of rural areas without any limits. One of the most important needs in rural
areas is to increase agricultural output, which takes a lot of research. Plant phenotyping, which uses image
analysis to look at how plants look, is used to predict crop yield. Plant image analysis is a way to measure
things about plants, like their development, physiology, structure, area, etc., by looking at pictures of their
leaves, roots, and other parts. The first comprehensive annotated datasets for computer vision tasks in
plant phenotyping were produced by Minervini et al. [1]. A few attempts like histogram thresholding and
multi-level thresholding [2] were prepared for the leaf segmentation from plants. Several machine
learning and imaging technology [3] have been put forward to expand the outcome of non-destructive
plant phenotyping.
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In the field of plant phenotyping, a lot of important research has been done. This includes research on
plant diseases, leaf augmentation, leaf segmentation, and watching the growth and development of plants by
analyzing images of them. Plant testing has been done in a controlled lab setting, a greenhouse, and in the
field in latest years. Yunli et al. [4] came up with a way to automatically tell the species of a plant. Brochier
et al. [5] showed how different segmentation methods were used to pull tree leaves out of natural images. De
Almedia et al. [6] came up with a way to find the leaf area in an image with a complicated background. Some
segmentation systems use information about infrared light or depth [7] to do their job. The effectiveness of
the segmentation relies on the training data or templates for plant area segmentation and preprocessing
software for picture improvement. A novel technique that incorporates a graph-based leaf area extraction
method has been developed to address the shortcomings of exact segmentation.

The accuracy of plant disease detection and identification jobs has substantially increased since
conventional approaches were replaced with artificial intelligence technologies. Deep learning is presently
the best approach to utilize systems to diagnose plant infections. Deep learning has been used to diagnose
plant disease based on images [8]. Aquila optimizer (AO) and arithmetic optimization algorithm (AOA)
are used for deep learning and image processing problems including illness detection [9]. A pathogen
detection method for greenhouse cucumbers was developed using a deep convolutional neural network
(DCNN) [10]. Hybrid feature selection may be used to supervise feature selection other than picking
redundant and relevant features [11]. In addition to the identification of features, hunger game search
stabilizes features and efficiently solves unconstrained and constrained problems [12]. These approaches
for detecting plant diseases have shown to be effective. Deep learning, on the other hand, needs a vast
number of pictures to train models. For model learning, a stable and appropriate database for leaf disease
detection must have enough critical information. Small datasets, particularly those with unequally
distributed illness samples, may easily produce overfitting, making it impossible to train an effective
identification model. There are thousands of healthy images in the PlantVillage database [13], but just a
few hundred or perhaps dozens of problematic examples. For the investigation of leaf disease
identification, the PlantVillage database made a note of the problem of the uneven sample distribution.,
which employed the techniques of flipping and translating to enrich the data set [14]. Expanding the
original data set, as opposed to regularization and other approaches, may enhance model performance and
reduce overfitting. Because they may produce extra data, generative adversarial networks (GANs) [15]
have been extensively investigated. There are several overview studies on GAN applications [16–18],
covering image synthesis, semantic picture modification, style transmission, image super-resolution, and
grouping. These studies also highlight outstanding issues in GAN theory and implementation. GAN can
create high-quality pictures as a novel approach to expanding data sets, making it particularly valuable
for image processing. Deep convolutional generative adversarial networks (DCGANs) combine the
Convolutional model and GANs as shown in the study “DCGAN Based Data Generation for Process
Monitoring” [19].

A strategy for amplification of a limited dataset based on the GAN [20] corresponding prototypical has
been presented. Based on GAN [21], a facial expression recognition approach has been presented.
Conditional deep convolutional generative adversarial networks have been presented as a solution for
picture recognition [22]. A semi-supervised generative adversarial network has also been developed to
increase picture classification accuracy [23]. With generative adversarial networks (GANs), an image
super-resolution approach has been presented that can raise the firmness of a low-quality picture by
16 times to obtain a good super-resolved (SR) copy of an image [24]. As a result, GAN may be utilized
to not only increase model performance but also to supply an infinite amount of useful data. However,
with a limited number of photos, it is challenging to build large-scale clear images using GAN. Because
the current dataset of sick plant leaf photos is small and contains an imbalanced spreading of data, it is
simple to ruin for GAN to create images. Although DCGANs can create high-quality small-scale pictures
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[25] when largescale pictures are created by growing the deepness of the prototypical, issues such as loss of
feature and image distortion occur. The training isn’t consistent, and the harm function doesn’t show the
training process effectively. To address these issues, we suggested an E-GAN-based wine leaf disease
detection approach with restricted training samples that can make use of deep learning models’ great
representational ability while not being constrained by a shortage of training data.

Convolution neural networks (CNN) have previously been used to identify grape leaf infections. Wagh
et al. [26] suggested an AlexNet-based automated grape leaf disease diagnosis system. The model has a
98.23% accuracy in detecting powdery mildew and bacterial spots. The grape leaf sickness may be
recognized using Raza’s [27] mathematical model of rotavirus disease, since the infections on grape
leaves will likewise be little black rounds. For the recognition of grape leaf infections, Liu et al. [28]
developed an enhanced CNN. Black rot, mites, anthracnose, downy mildew, brown spot, and leaf blight
are all identified with this method, according to the authors. Instead of using normal convolutional layers,
this approach uses depth separable convolution. As a result, the convergence speed and accuracy of this
approach are improved. A deep learning fast finder method was suggested for grape leaf infections. This
technology extracts disease spot characteristics automatically and is capable of detecting four prevalent
grape leaf infections with great accuracy and speed.

When looking at the literature, it’s clear that CNN-based algorithms are widely employed to detect plant
diseases. However, many CNN models are still limited by the intrinsic complexity of plant pictures and need
a huge dataset. The already existing GAN methods like DCGAN and leaf generative adversarial network
(LeafGAN) have the problem of expanding the dataset with exact local features. The goal of this work is
to construct a grape leaf capsule network model [29] to detect disease by expanding the dataset by E-GAN.

The following are the primary contributions of this work:

1. A graph-based approach is suggested for grape leaf area separation, and the Circular Hough
Transform (CHT) is employed to find the leaves count.

2. For sample features-based data augmentation, an E-GAN is developed; first, the local features from
the sick pictures are segmented using CNN, and the new pictures are created with local characteristics
from photographs that were combined with healthy images.

3. A unique deep learning-based technique called CapsuleNet was created for diagnosing grape leaf
plant diseases and classifying stages of the disease with excellent accuracy.

The three main components of the suggested work are shown in Fig. 1. They are segmentation,
augmentation, and illness type identification with disease stage.

Segmentation: For high-throughput plant phenotypic data processing and quantitative studies of
complex features, leaf segmentation is by far the most direct and efficient method. To separate the regions

Figure 1: Overall architecture of proposed work
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with leaves from those without, the circular Hough transform is used with the graph-based leaf extraction
approach.

Augmentation: A method for artificially expanding the data collection is image augmentation. This is
useful when we are provided a data set with a small number of data samples. When we train a Deep Learning
model on a small number of data samples, the model tends to over-fit. With the E-GAN approach, illness
traits are extracted from the photos and combined with healthy images.

Disease Detection: CNN plays a major role in recognizing plant leaf diseases. The capsule neural
network is used to identify the disease types and their stages. It finds the basic features which are formed
as capsules. The disease types and disease stages are identified by processing basic features of spatial and
frequency information.

2 Methods and Material

2.1 Segmentation

With the least amount of human intervention possible, the segmentation model suggested in this research
can extract leaves from the provided plant photos. Fig. 2 displays the suggested technique. The process
involves three steps: leaf extraction, image improvement, and leaf counting. The statistical approach for
removing the lighting effect, the graphing model for extracting the leaves, as well as the CHT for
counting the leaves have all been used in the suggested technique.

2.1.1 Image Enhancement
The probability distribution value of an image may be used to analytically compute the statistical

features of a picture in statistical research of contrast enhancement [30]. The proposed research assumes
that the brightness distribution follows the Weibull distribution. The probability density function (pdf) of
the Weibull distribution is provided by recognizing an image [31]. In the suggested work, the plant’s red-
green-blue (RGB) picture is first transformed into a hue-saturation-value (HSV) image. Since the V plane
of an HSV picture correlates to the luminance of the image, image enhancement is done there. Let’s say
that the V-plane pixels are represented as {x11, x12,…xmn}, where m and n are the plane’s corresponding
row and column numbers. Calculations are made to determine the probability distribution of the skewness
(Sk) and the V plane (provided in Eq. (1)).

Figure 2: Leaf region segmentation
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Sk ¼ E xij � l
� �3� �

=r3 (1)

where xij is the (i, j) th pixel value in the original HSV picture’s V plane, E stands for the expected value, l
stands for the mean value, and r stands for the standard deviation. The V plane’s augmentation is necessary
to eliminate the lighting impact whether the V plane’s skewness (Sk) is positive or negative.

2.1.2 Leaf Extraction
The suggested technique segments the leaf area using a graph-based algorithm, which improves

segmentation accuracy while preserving resilience to reflection and shades. The efficiency of the
suggested leaf separation technique is determined by the rows and columns count in the picture, The leaf
extraction procedure is divided into two stages. They are (a) building a graph and (b) identifying leaf regions.

(a) Graph Construction

The graph is built using an improved HSV picture, which is segmented into leaf regions. The graph
Gr = (U, E) for an improved HSV picture is created as seen in Fig. 3. The first point of the improved
HSV picture serves as the starting point for the graph formation process, while the final pixel serves as
the finishing point. The edges in a graph may be divided into two categories: (i) edges connecting two
adjacent pixels, and (ii) edges connecting a pixel with a source or terminal. The edge cost determines
how the HSV image’s pixels are related to one another. An edge cost is given to each edge in the graph.

The edge costs Cs,ij (between the pixel uij and the source node sg), Cij,ij+1 (between the two adjacent
pixels uij+1 and uij), and Cij,t (between terminal node tg and the pixel uij) may be computed to partition
the leaf area.:

Cs;ij ¼ 0; if Pij is true
1; otherwise

�
(2)

The edges cost between the pixel (uij) and the source node (sg) is Cs,ij. The association among pixels is
predicted using the Pij. If there is indeed a connection between the pixels, the Pij is made to true; otherwise, it
is set to false.

Cij;ijþ1 ¼ 0; if Pij ^ Pijþ1

1; otherwise

�
(3)

Figure 3: Graph construction from the original image
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where Pij and Pij+1 are the edge cost expectation parameters for the adjacent pixels uij and uij+1, respectively,
and Cij,ij+1 is the edge cost among the pixels uij and uij+1.

Cij;t ¼ 1; if Pij is true
0; otherwise

�
(4)

where Cij,t denotes the edge cost among the terminal node (tg) and the pixel (uij). The graph for fragmenting
the leaf area of the provided plant picture is built using Eq. (2) through (4).

(b) Leaf Region Identification

The suggested graph-based approach (Algorithm 1) is used to separate the leaf area from the background
once a graph for the source plant picture has been built as shown in Fig. 3. The route discovered in the
proposed approach to divide the leaf area starts at the source vertex. Two distinct search trees source (Sr)
and terminal (Tr), both from the terminal vertex and the source vertex, is formed to determine the route.
When there are surrounding edges linking the internal vertices apart from the source and terminal with
equal weights, these trees are utilized again to partition the leaf area and non-leaf region to prevent
discovering the route beginning from the source vertex or terminal vertex. The search trees Sr and Tr are
empty at the beginning and all of the vertices in a graph are assumed to be unmarked. The unmarked
vertices are chosen as the starting vertex for the search tree Sr. This chosen vertex is now a “leaf margin”
vertex for the Sr tree. Next, the “leaf margin” node’s neighbor edges are investigated; if the edge cost is
zero, the specific neighbor vertex is added to the Sr tree. Otherwise, it is added to the Tr tree, and it is
then deemed to be a marked vertex. If a new vertex is added to the Sr, the leaf margin vertex will change
to a leaf non-margin vertex and the newly added vertex will take the place of the leaf margin vertex. The
edge cost of the recently marked edge of the “leaf margin” vertex is combined with the edge cost of the
unseen adjacent edges of the “leaf margin” vertex, and if the total edge cost is zero, makes the unmarked
adjacent vertices as “leaf margin” vertices of the Sr. If not, the Tr is expanded with the relevant unmarked
adjacent vertices to “leaf margin” vertices. The leaf margin vertex changes to the “leaf non-margin”
vertex after all of its adjacents have been searched, and the newly inserted vertex changes to the “leaf
margin” vertex if at least one adjacent vertex is inserted into the search tree Sr. The non-leaf region
border and the interior non-leaf region, respectively, are represented by the non-leaf region vertices in the
search tree Tr, which contains two kinds of vertices similar to the Sr: “non-leaf margin” vertices and
“non-leaf non-margin” vertices. When a leaf margin vertex in the search tree Sr discovers a neighbor
vertex that is a part of the search tree Tr, a path is discovered. The leaf area and the non-leaf area are
represented by the vertices in the search trees Sr and Tr, respectively. When each vertex in the graph is
added to the Sr_tree or Tr_tree, the algorithm converges. The graph-based leaf area separation is
described by algorithm 1.

Algorithm 1: GRAPE LEAF AREA SEGMENTATION

Input: Graph G which is formed from real-time Image

Output: Leaf AreaTree and non-leaf Area Tree

Sr = The tree that goes with leaf Area

Tr = The tree that goes non-leaf Area

1: Set Sr and Tr to empty and Unmarked for all vertices.

2: Select a Leaf Area vertex uij (l) from Unmarked such that Cs,ij = 0

3: LeMa = l.

4: Unmarked = Unmarked-{l}
(Continued)
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5: While (Unmarked ==Ø)

6: For each adjacent vertex (q) of LeMa

7: if q is already marked

8: CLeMz, q = CLe, nq ; LeMa = q; q = nq.

9: end if

10: CLeMa, q = CLeMa, q + edge cost of recently marked edge of LeMa.

11: if CLeMa, q = 0

12: Include the vertex q to Sr.

13: LeNMa = LeMa

14: LeMa = q.

15: Unmarked = Unmarked-{q}
16: else

17: CLeMa, q = 0

18: Include the vertex q to Tr.

19: Unmarked = Unmarked-{q}
20: end if

21: end for

22: end while

23: end procedure

In the above algorithm, where uij denotes intermediate vertex, LeMa denotes Leaf_margin vertex,
LeNMa denotes Leaf non-margin vertex, Cs,ij denotes edge cost/weight between uij (l) and the source
vertex, CLeMa,q denotes edge cost/weight between LeMa and the neighbor vertex (q) of uij, nq denotes
non marked nearest Leaf area vertex and CLe,nq denotes edge cost/weight among nq and its unmarked
neighbor vertex.

2.1.3 Leaf Count
Circular Hough Transform [32] is used to count spherical grape leaves. The leaf numbering phase gets

the extracted leaf region. Circular Hough Transform is employed across the leaf area. Each leaf is counted by
its circular area. The circle shows the plant’s leaf area.

2.2 Augmentation

E-GAN, a local grape leaf feature-based data augmentation approach, was suggested in this work.
Object identification, picture segmentation, and generative adversarial networks were all combined in the
new technique. Because the leaf backdrop is a healthy picture, CNN was utilized to identify and segment
grape leaf disease features. The suggested E-GAN may be separated into two steps, as indicated in Figs.
4 and 5. The leaf disease feature localization and segmentation then data augmentation.

Algorithm 1 (continued)
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2.2.1 Leaf Disease Area Location and Segmentation
The Convolution neural network was used to locate and segment grape leaf spot areas in this

investigation. Local entity characteristics such as tiny circle patches, large circle patches, and yellow-
colored patches are discovered by the CNN layer. As input into generators, the suggested E-GAN
attempted to partition the similar size of major disease area bounding box.

2.2.2 Local Features Data Augmentation
The E-GAN emphasizes sickness spot image information and minimizes background interference. The

intended E-GAN is described in full below.

1. As the unmarked image parts L, choose the partitioned sub-images whose backdrop does not include
leaf boundary background data. Assume that L = {l1, l2, l3… ln }is a dataset that contains the leaf
disease object classifications

Lf ¼ Fi � Hsð Þ (5)

Figure 4: Flowchart of E-GAN

Figure 5: Disease area location and segmentation
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where Lf denotes the leaf disease portion of the picture, Fi denotes the whole image, and Hs denotes
the image’s healthy parts.

2. Stage 2 is the augmentation stage. The suggested technique now mixes the grape leaf disease spot with
the healthy photos and uses the generator to create new images (Ge). The discriminator (De) then
determines if the freshly produced pictures are legitimate or fraudulent. The generator value and
discriminator value are modified using the error or loss function.

Ge ¼ Lf � H
� �

(6)

where Lf denotes the section of the leaf affected by the disease, i.e., Lf ¼ Fi � Hsð Þ, and H denotes
healthy pictures.

Algorithm 2: EFFICIENT GENERATIVE ADVERSARIAL NETWORK (E-GAN)

Input: Original Grape Leaf Images D1 and D2

Where D1 is the PlantVillage dataset

D2 is the Segmented dataset

Output: New Augmented Grape Leaf Images ND

Where ND is the new augmented dataset

1: Read the images from D1 and D2

2: Identify the Leaf disease spot or features from the diseased images of D1 and D2

Lf = Fi-Hs
Where Lf denotes the leaf disease portion of the picture,

Fi denotes the whole image, and

Hs denotes the image’s healthy parts.

3: Merge the leaf diseased spot with healthy images of the Dataset

Ge = Lf + H

Where Ge is Generator

Lf denotes the section of the leaf affected by the disease, and

H denotes healthy pictures.

4: Compare the images generated with step3 using real images and identify the E from

De

Where E is Error Value or Loss Value

De is the Discriminator

5: Generate the new images until the E value is very low.

The E-GAN algorithm started with reading the images from the public dataset. The local features are
extracted from the images and these features are passed to the generator with healthy images. Then the
generated images are compared with the original images using a discriminator. The discriminator gives
the loss value or error value which is used to adjust the generator function. GANs, as we know, can get
the distributions of actual and produced pictures, and their purpose is to make the two distributions as
similar as feasible.
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2.3 Plant Leaf Disease and Disease Stage Detection

Capsule Networks were introduced by Hinton and his colleagues as an alternative to CNN. Capsules are
non-comparable networks of neurons that accept and output vectors rather than scalar values like CNNs. This
feature determines a capsule’s ability to learn about a picture’s properties, as well as its distortions and
inspecting circumstances. Each capsule in a network of capsules is constructed from a network of cells,
each of whose outputs represents a unique surface with a related attribute. This has the benefit of
allowing us to recognize the entire thing by first recognizing its components.

The capsule network is defined using three layers: an input layer, a hidden layer, and an output layer. Pre-
processing procedures are found in the input layer. To save time, the picture is downsized to 256 by
256 pixels. A convolution layer with a kernel size of 9 is referred to as a hidden layer. The filter’s dot
product and portions of the input pictures are used in the convolution layer. Capsules are made using
convolution and the primary caps layer. Capsules are made up of layers of neural tissue that are layered
on top of each other. The probability distribution is determined by the neural network’s last layer, which
consists of a fully connected layer followed by softmax activation. In the linked layer, every neuron in
one layer is coupled to every neuron in another one.

The softmax equation is as follows:

softmax ¼ SFðxÞi ¼
eyiPn
j¼1 eyi

(7)

where xi represents the i-th item of the vector.

Finally, categorical cross-entropy assesses the prediction loss of the deep learning model.

loss L; eð Þ ¼ �
X
y

p yð Þ log e yð Þð Þ (8)

where L is a true probability distribution.

The recommended design is unique for datasets related to grape plants. Increased parameters may be
utilized to further extend the model, allowing us to address issues with grape plants. The recommended
architecture can be regarded as shown in Fig. 6. The proposed design includes an encoder and decoder.
The encoder’s first three layers turn the input image into a vector. The initial layer of the encoder’s
convolutional neural network collects tiny circle patches, big circle patches, and yellow patches. The
secondary capsule searches for detailed patterns among the essential features. It may sense spatial
relationships between strokes. The grape leaf photo dataset in PrimaryCaps Network has 32 capsules. The
third layer is capsule processing, and its number varies. After these phases, the encoder generates a 4-
dimensional vector. The decoder has two layers. It utilizes the 4-dimensional vector to reconstruct the
picture from scratch and match it with the illness type and stages. The network’s capacity to make expert-
based predictions makes it more robust.

Algorithm 3: DISEASE STAGE DETECTION

Input: Grape Leaf Images

Output: BS, ES, DT, and DS

Where BS denotes Beginning Stage,

ES denotes End Stage

DT denotes Disease Type

DS denotes Disease Stage

(Continued)
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1: Apply CNN layers over the Images

2: Extract the Basic Features from images,

form it as primary capsules SC, LC, and YP

Where SC denotes a Small circle

LC denotes a Large circle

YP denotes Yellow Patches

3: Process the spatial information of basic features

4: Based on the frequency and spatial information of capsules find the overall

features DT and DS

if FSP < T then

return DT and BS

else

return DT and ES

Where FSP denotes frequency and spatial values of Local Features

T denotes threshold Value

Algorithm 3 shows how the disease types and stages are identified. Capsules are neuronal groupings that
store spatial and frequency information as well as the likelihood of an item being there. In a capsule network,
for each entity in a picture, there is a capsule that provides the possibility that the entity exists as well as the
spatial parameters of that entity. The CNN layer finds local entity features such as small circle patches, Big
circle patches, and yellow-colored patches. The capsule layer is used to collect the overall features such as
“disease type” and “disease stage,” using the low-level features frequency and spatial information.

Cap ¼ CNNðIÞ: f ðSC; LC; YPÞ (9)

Algorithm 3 (continued)

Figure 6: Capsule network architecture for grape plant leaf disease and stage detection
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FSP ¼ FrðCapÞ þ SpðCapÞ (10)

Eq. (9) represents the capsules that are formed by extracted features like small circles (SC), large circles
(LC), and yellow patches. In Eq. (10), The frequency and spatial information of each capsule or basic features
are determined by combining the frequency of the capsule and spatial details of the capsule.

3 Dataset and Experimental Design

There are two kinds of datasets used for this proposed work. The first datasets, which are used for the
proposed segmentation work captured using a Canon SD1000 camera in the Theni district, Tamilnadu, India.
Images for the dataset are taken once every six hours throughout the day for three weeks. It is made up of 112
(500,530 pixels) photos with dynamic backgrounds. The segmented pictures are created from real-time
photos as seen in Fig. 7.

The segmented images of 500 from real-time images and the second kind of dataset known as
PlantVillage grape datasets are used for augmentation and disease detection. This augmentation and
disease detection required a high-performance computing platform for training and testing. 1000 healthy
leaf pictures and 1500 grape leaf disease images were sorted into three categories in the PlantVillage
dataset and 500 real-time images which are segmented using graph-based segmentation were used as the
dataset. The three kinds of grape leaf disease images are black measles, black rot, and late blight. The
grape leaf disease spots are identified from the three disease categories of the dataset and segmented
grape leaves. Then synthesized diseased grape leaf pictures dataset was created by embedding disease
spots with healthy images with the E-GAN method. Black measles is caused by a variety of fungi.
“Striping” is the most common symptom of black measles. A fungus causes black rot in grapes. The
black rot disease signs appear on infected leaves, tiny brown round scratches appear on occasion. When
the weather is hot and humid, grape leaves are susceptible to leaf blight. This disease may create huge
lesions on fresh grape leaves with black or dark red patches, resulting in catastrophic loss. Fig. 8 shows
four typical pictures from the PlantVillage [33] grape data set, with the variations between the four types
of pictures readily visible.

Frechet Inception Distance (Fid) [34] was used to evaluate GAN designs. We produced 1000 real-time
segmented photos and 4000 PlantVillage images for this investigation. Table 1 displays GAN Fid. Table 1
shows that the suggested approach had the lowest score, suggesting it can produce superior photos.

The classification models used in this study were state-of-the-art, including visual geometry group −16
(VGG-16), AlexNet [35], and Xception [36]. Pre-trained models are networks that have been trained on large
datasets, usually images. We may use the pre-trained network as-is or transfer learning to customize it. We
may import a pre-trained version of these networks from the PlantVillage database. These networks can
classify photographs into 1000 categories, including sickness. Every one of these models conducted data
augmentation on the distinct training data sets: original images without data augmentation, DCGAN data

Figure 7: Segmented grape leaf images
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augmentation, and recently published data improvement approaches such as LeafGAN [37] and E-GAN data
augmentation. Table 2 shows E-GAN and classification model hyperparameters.

The loss value is one of the most significant methods for determining the difference between the network
output and the desired output. It was shown that the cross-entropy loss function and the softmax activation
function were both more convenient ways of dealing with the multi-classification issue in the loss layer and
output layer, respectively.

Figure 8: Four types of grape leaf images

Table 1: GANs Fid values

GANs Fid

DCGAN 309.376

LeafGAN 178.256

E-GAN 112.563

Table 2: The hyperparameters of E-GAN and classification models

Parameter Value

Input size 64*64*3

Batch size 32

Initial learning rate 0.0001

Optimizer method Adam

Activation method ReLU

Epochs 50

Loss function Cross-
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4 Experimental Results and Discussions

4.1 E-GAN

There were four different types of grape leaf graphics. 80 percent of the training dataset and 20% of the
test set were made up of three types of grape leaf pictures with sick, real-time segmented grape leaf images
and one kind of good grape leaf. The categorization findings from the testing set are given in Fig. 9 after
50 epochs employing VGG16, AlexNet50, and Xception with the original dataset. The four types of
grape leaf pictures are shown on the horizontal plane from 1 to 4. The data set was then expanded using
DCGAN and LeafGAN. The expanded data set includes 1000 images of each grape leaf, with 80% acting
as training data and 20% as test data. The classifying results for the testing dataset are displayed in Figs.
10 and 11 after 50 epochs employing VGG16, AlexNet, and Xception with DCGAN and LeafGAN. The
data set was expanded using E-GAN to the very same number of pictures and train modes as before.
Fig. 12 shows the categorization findings from the test set.

Figure 9: Classification result based on the original dataset

Figure 10: Classification result using DCGAN

Figure 11: Classification result using LeafGAN
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Table 3 shows the average results of three GANs for data expansion and no data augmentation as
training data for the three standard deep learning models, as well as the results of the three state-of-the-art
deep learning models. Most of these deep learning models, except for X-ception, are unable to yield
adequate results when no data expansion is performed, according to this finding. The fundamental reason
behind this is that various models, such as AlexNet, VGG-16, and X-ception, offended from overfitting
due to insufficient training data. As a result, they were unable to achieve the capability of feature
extraction and consequently performed poorly.

When GANs employed the data augmentation techniques, the accuracy of all three Generative
adversarial data augmentation methods was greater than the accurateness of none of the data expansion
methods when none of the data augmentation methods was used. However, other models, such as X-
ception, experienced worse performance as a result of data expansion using DCGAN, the primary
explanation for this approach was that the pictures created by DCGAN were of poor quality. We were
unable to adjust to the models we were given. On top of all that, the suggested method had reached
reasonable effects on the above-mentioned models, which demonstrated that the suggested method
possessed a more solid data augmentation capability than other GANs in terms of making disease features
more observable while simultaneously reducing background errors to a significant degree. In comparison
to typical data expansion approaches, the suggested approach combined local disease features with a
healthy image synthesis algorithm, resulting in more successful identification, particularly in sparse
distributions of tiny targets. The produced local disease area pictures were included in the original healthy
images for training in the grape leaf disease spot identification experiment, which improved the
generalization capacity of the classification models and improved the accuracy and robustness of the
prediction. In comparison to the previous GANs stated above, the suggested E-GAN was better in spot
localization and picture segmentation, and the hierarchical mask generation improved disease feature
representation. However, the suggested approach has the drawback of being limited to the instance of leaf
spots; when the plant leaf syndrome is not visible as spots, the method’s effectiveness is substantially
diminished. We will continue to research other phonemics in plant disease detection in the future.

Figure 12: Classification result using the E-GAN method

Table 3: The results of leaf disease classification accuracy

Original DCGAN LeafGAN E-GAN

VGG16 82.83 82.83 90.23 94.86

AlexNet 83.72 86.88 84.57 89.72

X-ception 80.33 79 89.03 91.23
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4.2 CapsuleNet Performance

It was intended to employ grape leaves in conjunction with the capsule network for categorization, and it
was successful. The first three investigations in Table 4 are all based on the CNN algorithm. As can be seen,
this capsule neural network model (CapsNet) works well. When comparing calculation times, it is clear that
CNN-centered algorithms are more efficient. When examining the table, the capsule neural network
approach produced a greater accuracy rate than other methods with disease stages information. It
calculates the disease stage just by comparing the threshold value with the frequency of features. In
comparison to other approaches, it takes longer to infer. The reason behind this is that the suggested
method’s multilevel features enhance the model’s complexity. It also needs to process the spatial
information of basic features. This is where the suggested model falls short, and it will need to be
modified in the forthcoming research.

The accurateness of this CapsNet model for grape plant leaf infection is identified as 97.63% based on
the confusion matrix which is given in Fig. 14. The accomplishment of the proposed approach for each class
is depicted in the confusion matrix in Fig. 14. This allows for a visual examination of the classifier’s
performance. The real class is specified by the columns, whereas the output class is determined by the
rows. Non-diagonal cells represent erroneously classed observations, whereas diagonal cells represent
mistakenly classified observations. The results were computed and reported as a percentage using the
indicated technique on the test data. When looking at Fig. 13, it is clear that all classes are categorized
with great accuracy. This demonstrates that the suggested approach has a high degree of discrimination.
Only second-grade black measles has a worse classification accuracy rate. The minimal number of
samples in this class is assumed to be the cause of this problem. A comparative study and research
employing the capsule neural network model for grape plant disease identification are presented in
Table 4. The stages of diseases are also identified based on the frequency of the features. All approaches
were applied to the data set utilized in this study for a fair comparison. The trials were carried out on the
same computer, which was programmed in Python.

Table 4: Existing methods performance and CapsNet performance

Model Accuracy Inference time (Sec)

AlexNet 96.25 0.052

VGG16 95.12 0.048

X-ception 95.32 0.102

CapsNet 97.63 (With disease stage) 0.658

Figure 13: Confusion matrices for ResNet18, VGG16 and GoogleNet
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The capsule neural network model initially identifies the local features from the images. Then it
processes the spatial information like frequency and direction of the extracted features. And based on the
frequency of local features which is mentioned in the disease stage identification algorithm, It returns the
output either as early-stage disease or end-stage disease.

The confusion matrix in Fig. 12 demonstrates the classification accuracy of the E-GAN approach using
four different forms of plant leaf diseases: black rot, black measles, late blight, and healthy leaves. When
combined with E-GAN, classic classification models such as Alexnet, VGG16, and X-ception provide
superior results. The capsule neural network that incorporates E-GAN produces results that are superior
to those of classic models. Additionally, it determines the stage of the illness that affects the grape leaves.
Using the local features threshold count condition, the Routh-Hurwitz stability criteria [38] may be used
to determine whether the leaves are well-infected. If the number of local characteristics that were
retrieved using the capsule model was larger than three, then the illness was judged to be at its end-stage,
as shown in Fig. 15. If the number of extracted characteristics is fewer than or equal to 3, this condition
will be classified as an early stage of the illness.

Figure 14: Confusion matrix for grape leaf disease detection using CapsNet

Figure 15: Early and end stages of diseases
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5 Conclusions

A new hybrid method for grape leaf disease detection and disease stage detection using segmentation,
augmentation, and a capsule neural network is proposed. The experimentations are carried out and evaluated
for grape leaf disease detection and disease stage detection using real-time images and the PlantVillage
dataset. The proposed method is compared with various existing CNN models. It achieves an accuracy of
97.63% which is higher than the existing model. In the future, this hybrid model will be able to be
further fine-tuned to discover the causes for, and solutions to, the identification of plant diseases.
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