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Abstract: At present, deep learning has been well applied in many fields. How-
ever, due to the high complexity of hypothesis space, numerous training samples
are usually required to ensure the reliability of minimizing experience risk. There-
fore, training a classifier with a small number of training examples is a challen-
ging task. From a biological point of view, based on the assumption that rich
prior knowledge and analogical association should enable human beings to
quickly distinguish novel things from a few or even one example, we proposed
a dynamic analogical association algorithm to make the model use only a few
labeled samples for classification. To be specific, the algorithm search for knowl-
edge structures similar to existing tasks in prior knowledge based on manifold
matching, and combine sampling distributions to generate offsets instead of
two sample points, thereby ensuring high confidence and significant contribution
to the classification. The comparative results on two common benchmark datasets
substantiate the superiority of the proposed method compared to existing data
generation approaches for few-shot learning, and the effectiveness of the algo-
rithm has been proved through ablation experiments.

Keywords: Few-shot learning; manifold matching; analogical association; data
generation

1 Introduction

Artificial intelligence algorithms represented by deep learning have achieved advanced performance in
image classification [1–3], biometric recognition [4,5], relation extraction [6–8] and medical assisted
diagnosis [9–10] by virtue of ultra-large-scale datasets and powerful computing resources. It is worth
noting that although the complex hypothesis space easily contains the real mapping, it is also more
difficult to find the target mapping. Therefore, deep neural networks usually require a large number of
supervised samples for training.

Unfortunately, it is hard to obtain large-scale trainable data in most real scenarios because of the high
cost of data labeling and the inability to obtain large amounts of data in some specific areas. In order to
be able to learn in the case of limited supervised information, the research of few-shot learning has
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sprung up. In few-shot classification, the model is trained on a set of classes with sufficient samples, which
are called base classes. When evaluating performance, further training and testing are carried out on another
set of novel classes with small samples. It is worth mentioning that testing on novel classes that have not been
seen before in training is called zero-shot learning.

As is known to all, human beings have rich prior knowledge and superb ability of association and
analogy, so human beings can distinguish novel things from just a few or even one example. For
example, as shown in Fig. 1, when people need to distinguish killer whales, doves and cats that they have
never seen before, but if they have seen sharks, sparrows and dogs, people can make analogical
associations and make full use of prior knowledge for classification. In other words, people can use the
knowledge structure in the familiar category to make analogical associations, since some elements of the
latent semantic structure already exist in other already familiar categories. Specifically, fins, wings and
ears are the most obvious distinguishing features in the classification of sharks, sparrows and dogs,
considering killer whales, doves and cats also have the similar structures, so people need to pay attention
to these characteristics as well.

The Fig. 1 shows the importance of analogical association in humans’ rapid recognition of novel things.
The positive represents the knowledge structure similar to the anchor, on the contrary, the negative represents
the knowledge structure not similar to the anchor.

At present, the existing researches for few-shot learning mainly focus on representation learning
[11–13], data generation [14–19] and learning strategies [20–34]. These methods alleviate the problem of
insufficient training samples, but only consider the use of rich priors and ignore the importance of
analogy and association.

Therefore, in order to make rational use of analogies and associations, the dynamic analogical
association algorithm is proposed to search for knowledge structures that are similar to the current task
and exist in prior knowledge. The in-depth exploration of the knowledge structure combined with the
observation distribution of the current task can generate a sample that not only has high confidence but
also can make the significant contribution to the classification. Our main contributions in this paper are as
follows:

1. The data generation framework which ensures the high confidence of the generated samples and
significant contribution to the classification is proposed.

2. The comparative results substantiate the superiority of the proposed method to existing data
generation approaches for few-shot learning, and the effectiveness of the algorithm has been
proved through ablation experiments and synthetic experiments.

Figure 1: The similarity of knowledge structure
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3. More importantly, we explained the importance of analogical association based on prior knowledge.
Researchers need to re-examine how to make better use of prior knowledge.

2 Related Work

2.1 The Difficulty of Few-shot Learning

Suppose a problem to be learned, it has a from X to Y optimal mapping h?.D is the joint distribution on
X � Y. The D is the train dataset which contains the observation samples in D. The expected risk on D and
the empirical risk on D are as follow [35].

Rðh;DÞ ¼ Eðx;yÞ�Dð‘ðhðxÞ; yÞÞ (1)

R̂mðh;DÞ ¼
1

m

Xm
i¼1

‘ h xið Þ; yið Þ (2)

Assuming hm ¼ argminh2H R̂mðhÞ and h0 ¼ argminh2H RðhÞ, whereH is the given hypothetical space.
The error can be decomposed [36–38] according to the following formula, as visualized in Fig. 2.

E R hmð Þ � R h?ð Þ½ � ¼ E R hmð Þ � R h0ð Þ½ � þ E R h0ð Þ � R h?ð Þ½ � (3)

E R hmð Þ � R h0ð Þ½ � is called generalization error. The upper bound of generalization error is determined
by model complexity and sample size. In general, it can be reduced by having a larger number of examples.
Therefore, the difficulty of few-shot learning is that minimizing empirical risk becomes unreliable.

E R h�ð Þ � R h0ð Þ½ � is called approximation error, which is mainly determined by h� and hypothesis space
H. It is worth noting that if the hypothesis space is sufficiently complex, such as h? 2 H, then the
generalization error will increase while reducing the approximation error.

The above analysis explains the reason why the algorithm is difficult to generalize with small samples, and
explains the design motivation of the few-shot learning algorithm. Based on the design motivation, the existing
algorithms can be divided into three categories: representation learning, data generation and learning strategy.

2.2 Representation Learning

The motivation of representation learning is to change the original data into embedding which has lower
dimensions and semantic information obtained according to a priori knowledge to reduce the difficulty of
learning in the latent semantic space, which can reduce the approximation error and generalization error
at the same time.

The simplest idea is to learn a feature extractor through a large number of base-class dataset, so that it
can adapt to the limited differences between base-class dataset and novel-class dataset, and then recognize it
through a classifier. Although the pretraining and fine-tuning method [25] is intuitive and concise, it is hard to
learn general features.

With the continuous development of self-supervised technology [39,40], the backbone network based on
self-supervised learning can learn better representation, so as to improve the performance of few-shot

Figure 2: Illustration of the error decomposition
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learning. The augmented multiscale deep infomax algorithm (AMDIM) [11] can learn more generalized
representations of images based on maximizing mutual information and achieve advanced results, which
proves the importance of self-supervised learning in few-shot learning [12].

It is worth noting that robust representation is beneficial for few-shot learning. Therefore, the use of
regularization technology in representation learning can improve the performance of few-shot learning.
Puneet Mangla et al. [13] proposed self-supervised manifold mixup method (S2M2) that uses
regularization technology based on manifold mixing, which significantly improves the performance of
few-shot learning. In addition, there are some regularization techniques [41] which are beneficial for few-
shot learning, such as adding penalty items, stopping early, etc.

2.3 Data Generation

The motivation of data generation is to generate non-trivial and diverse samples to increase the sample
size, which can reduce the upper bound of generalization error and make the empirical risk more reliable.

Wang et al. [14] proposed a general generation algorithm based on generation network. Its motivation is
to generate samples that is useful for learning classifiers, which is different from the traditional image
reconstruction. Weinshall et al. [15] proposed the generation hidden condition optimization algorithm
(GLICO), which generates new samples by hyperspherical interpolation of any two intra-class samples
and restores them to images.

Taking into account the difficulty of image reconstruction, it is also a good choice to generate samples
directly from the latent semantic space. Schwartz et al. [16] proposed Delta Encoder to generate samples
through offset learning. It is worth noting that generating samples from the semantic space is dependent
on the performance of the representation model.

Most of the existing data generation methods usually only consider the high confidence of the generated
samples and ignore its weak contribution to the classification, or consider the significant contribution to the
classification and ignore its low confidence. Therefore, we have the motivation to propose a data generation
framework which ensures the high confidence of the generated samples and significant contribution to the
classification.

2.4 Manifold Matching

Manifold matching usually refers to getting a distribution closest to a given distribution through
optimization or selection.

How to measure the difference between distributions is very important, which can usually help model
training, such as cross entropy, Kullback-Leibler divergence (KL divergence), Wasserstein distance and so
on. As a special case of the optimal transport cost, the Wasserstein distance has the advantage over KL
divergence in that even if the two distributions do not overlap, the Wasserstein distance can still reflect
their distance, which can be used as a very suitable loss in the generative model.

Genevay et al. [42] introduced the sinkhorn loss which is the optimal transport cost with entropy
regularization into the generative model and achieved better results.

Dai et al. [43] proposed a generative model based on metric learning and manifold matching. Different
from the traditional method which only considers the optimal transmission distance, it performs matching
based on geometric descriptors.

In addition, manifold matching is not exclusive to generative tasks, which is also commonly used in
document matching [44], image-set matching [45] and other tasks. For example, Arandjelovic et al. [46]
proposed an image-set matching method based on the similarity between Gaussian mixture distributions.
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In this work, based on the assumption that the feature distribution of latent semantic space can reflect the
knowledge structure after reasonable representation learning, manifold matching is used to select the
knowledge structure in prior knowledge closest to the current task, rather than generate samples directly.

3 Dynamic Analogical Association Algorithm

3.1 Problem Definition

In the few-shot learning classification benchmark, the classes in the dataset are usually divided into
two non-overlapping class sets. One class set with rich sample size is called base-class set Cbase, while the
other class set with only a small number of samples is called novel-class set Cnovel, Cbase \ Cnovel ¼ [.
Then the dataset D can be divided according to the class set Dbase ¼ fðx; yÞjðx; yÞ 2 D; y 2 Cbaseg,
Dnovel ¼ fðx; yÞjðx; yÞ 2 D; y 2 Cnovelg.

In few-shot classification, Firstly, the model is trained on the base-class dataset Dbase with abundant
examples to obtain appropriate prior knowledge. Then the few-shot learning methods are evaluated using
N-way K-shot classification framework.

For each task instance of N-way K-shot T i, including support set and query set. The labeled support set
contains N classes randomly sampled from the novel-class datasetDnovel with K examples for each class. The
query set contains unseen samples similar to support set. The evaluation method of few-shot learning is
mainly to accurately classify unlabeled unseen query sample set through the learning of support set.

3.2 Overview

Biologically speaking, the ability of human beings to quickly understand new things mainly comes from
the fact that human beings have rich prior knowledge and superb ability of association and analogy.
Therefore, they can distinguish new things from only a few or even one examples.

Based on this assumption, the dynamic analogical association algorithm in the way of sample generation
for few-shot learning is proposed. Most of the existing sample generation methods usually only consider the
high confidence of the generated samples and ignore its weak contribution to the classification, or consider
the significant contribution to the classification and ignore its low confidence.

Different from these methods, our method tends to search for knowledge structures similar to existing
tasks in prior knowledge based on manifold matching, and combine sampling distributions to generate offsets
instead of two sample points, thereby ensuring the high confidence of the generated samples and significant
contribution to the classification. The overall structure of algorithm is shown in Fig. 3.

Figure 3: Framework of the proposed dynamic analogical association algorithm
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The algorithm includes two core parts: manifold matching module and data generation module. The
manifold matching module is responsible for finding the knowledge structure similar to the current task in
the prior knowledge. The data generation module is responsible for generating the offset with the help of
the knowledge structure.

3.3 Manifold Matching Based on Optimal Transportation

We regard the distribution of labeled samples in the latent semantic space in each task support set as a
sampling of the knowledge structure of N-way entities. The q refers to the corresponding latent overall
distribution of the data in T , which is usually assumed to be the Gaussian mixture model with unknown
parameters.

The distribution with unknown parameters is difficult to sample directly. However, samples of support
set can be regarded as observation data sampled from latent distribution, which is also called the observed
manifold M , and M ¼ sampleðqÞ.

TheM is a matrix, each row of which represents the feature of a sample in the support set. Therefore, for
the N-way K-shot task, its dimension is NK � d, where d represents the dimension of the feature.

The optimal transportation cost between the two distributions l; v is used to define the distance between
the two distributions in the latent semantic space, so as to approximate the similarity of knowledge
structure.

Cðl; vÞ :¼ min
c2�ðl;vÞ

Z
X�Y

cðx; yÞdcðx; yÞ (4)

In the above formula, cðx; yÞ represents the transportation cost function and cðx; yÞ represents the joint
distribution.

Furthermore, the sinkhorn algorithm [47] is used to solve the optimal transport problem. Specifically,
sinkhorn algorithm uses L2 distance as the cost function and takes the manifold of the current task and
the reference manifold as the input to obtain the distance, which reflects the similarity of their knowledge
structure. The specific algorithm process is shown by Algorithm 1.

Algorithm 1 Calculate the distance between two knowledge structures

Input: current manifold MNK�d ¼ ½m1;…;mNK �T ,
reference manifold M 0NK�d ¼ ½m01;…;m0NK �

T , parameter e; L

Output: distance dist, transport probability matrix P

1: 8ði; jÞ;Ci; j ¼ mi � m0j
�� ��

2

2: K ¼ e�
C
e

3: b 1n

4: for ‘ ¼ 1; 2; . . . ;L do

5: a 1n
Kb

; b 1n
K>a

6: end for

7: dist ¼ hðK � CÞb; ai
8: P ¼ hKb; ai
9: return dist;P
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After the definition of knowledge structure similarity is completed, we hope to seek similar knowledge
structure from prior knowledge to assist in the learning of current tasks. Therefore, T base

i from base-class
dataset Dbase and corresponding manifold set fMbase

i jMbase
i ¼ sampleðqbasei Þg are generated.

Mbase
? ¼ arg minMi

base CðM ;Mbase
i Þ (5)

According to the optimal transport distance between manifold sets, we can find the T base
? closest to the

current T , and trace back to the corresponding category with rich samples in the base-class dataset, which
can assist in sample generation. In other words, each time learning from novel-class information, the similar
knowledge structure in the base-class can be referred to for knowledge transfer. For example, samples of the
novel task are generated by learning the offset.

It is worth mentioning that the proposed method usually chooses Topk closest manifolds instead of only
considering the closest one, which is similar to ensemble approach to make the algorithm more stable.

3.4 Data Generation Method

Based on manifold matching, for each new task T , one or more matching tasks T base
? and its

corresponding feature manifold of a large number of samples in the base-class dataset are obtained.

The traditional data generation methods in semantic space mainly utilize a pair of intra-class sample points
to generate offsets. For example, methods such as Delta-Encoder [16] and DTN (Diversity Transfer Network)
[17] do not consider the distribution of samples. If an offset is added to the sample points at the boundary of the
distribution, it is easy to generate wrong samples, so it only considers the significant contribution to the
classification and ignores its low confidence. In contrast, another type of method, such as GLICO [15], uses
interpolation between two sample points to generate the new samples. The new samples exist in the convex
area, with high confidence, but it is difficult to improve the classification performance. The shortcomings of
the two types of existing methods are shown in Figs. 4a and 4b.

Fig. 4a shows that the interpolation of the convex area is difficult to affect the interface, and Fig. 4b
shows that simply considering the offset learning is easy to produce sample points that do not belong to
the current distribution.

Therefore, in order to ensure high confidence of the generated samples and significant contribution to the
classification at the same time, new samples are generated based on intra-class distribution. In Fig. 4c, the
advantages of the proposed method are clearly demonstrated, ~x is located in the convex region, while xnew

Figure 4: The figure (a) and figure (b) show disadvantages of the two existing methods. In contrast, the
figure (c) illustrates the advantages of our method
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adds an offset to ~x to make it possible to rush out of the convex area and close to the latent real sample that has
not been seen.

The data generation method is divided into two steps.

(1) The first step is to find the maximum variation direction within each class in base-class dataset
corresponding to T base

? and other offsets.

To be specific, assuming that there is the centralized intra-class data x, the corresponding w which is the
maximum variation direction can be obtained by solving the following problem.

max
w

VarðxÞ ¼ 1

n

Xn
i¼1

xTi w
� �2 ¼ wT 1

n

Xn
i¼1

xix
T
i

 !
w

s:t:jjwjj22 ¼ 1

(6)

The above problems can be solved by Lagrange multiplier method and transformed into solving the
eigenvector corresponding to the largest eigenvalue of covariance matrix. The w is the intra-class
maximum variation direction of prior knowledge structure.

Therefore, increasing training samples along this direction can effectively increase the diversity of
datasets. For example, in Fig. 5, adding an offset to a silver cat can generate a golden cat. In addition,
global manifold offset D1 and central attraction offset D2 are also noteworthy.

Specifically, the D1 refers to the offset between the center of the current manifold and the matched
manifold, and the D2 refers to the offset between the center of each category of the current manifold and
the matched manifold.

(2) In the second step, based on the Dirichlet distribution, the basic new sample is determined by the
weighted sum of intra-class sample points in current novel task to ensure that it must be inside the
convex area. Then, the generated data is generated by adding an offset to the basic new sample.

To be specific, assuming h obeys Dirichlet distribution. h � Dirichlet a1; a2; . . . ; amð Þ, and
Pm
i¼1

hi ¼ 1.

The basic new sample ~x is determined by the weighted sum of intra-class sample points in current novel

task to ensure that it must be inside the convex area, ~x ¼
P

hixi; ~x 2 convðxÞ.

Figure 5: The intra-class maximum variation contains rich semantic information
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After adding the offsets, the samples generated by this method ensure high confidence and significant
contribution to the classification, as shown in Fig. 4c. Therefore, the formula for our final sample
generation is as follows:

xnew ¼
X

hixi þ
X2
j¼1

ajDj þ bw (7)

3.5 Classifier

Here is a brief introduction to the PT-MAP (Power Transform-Maximum A Posteriori) algorithm [32],
which will be combined with the dynamic analogical association algorithm to verify performance.

The algorithm assumes that each class distribution is a Gaussian distribution with different means, and
the mean value is a prototype vector.

Therefore, the following problem needs to be solved, where f represents the representation vector of the
image and lk represents the prototype vector.

ŷif g; lkf g ¼ arg max
yif g lkf g

Y
i

P fijyið Þ

¼ arg max
yif g; lkf g

Y
i

e�
fi�lkð ÞT �kð Þ�1 fi�lkð Þ

2

¼ arg min
yif g lkf g

X
fi � lkð ÞT �kð Þ�1 fi � lkð Þ

(8)

If it is assumed that the covariance matrices are equal, then the above formula is transformed into the
following formula.

arg min
‘ f ið Þf g2C; lkf g

X
i;k

ðjjfi � lk jj2ÞPð‘ fið Þ ¼ kÞ (9)

For labeled data fðfi; yiÞg, Pð‘ fið Þ ¼ yiÞ ¼ 1, and its value is fixed, for unlabeled data fðfjÞg, Pð‘ fj
� �
Þ can

be learned. Therefore, this method is also a transductive inference. The above problem is transformed into an
optimal transportation problem, so it can be solved by the sinkhorn algorithm.

P� ¼ SinkhornðC; u; v; kÞ
¼ arg min

P2Uðu;vÞ

X
ij

PijCij þ kHðPÞ (10)

When a new prototype is obtained, the original prototype vector can be updated. Then the algorithm
iterates many times to obtain a reasonable prototype.

4 Experiments

The standardized few-shot classification benchmark is used to evaluate the performance of the proposed
method. The effectiveness of the proposed method has been proved based on comparison with existing
methods and ablation experiments. It should be noted that the proposed method emphasizes the
importance of manifolds, so only experiments are conducted on 5-shot.

4.1 Implementation Details

The 1000 5-way 5-shot classification tasks on miniImageNet and CUB (Caltech-UCSD Birds) are
evaluated. It should be noted that our method emphasizes the importance of manifolds, so experiments
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are conducted only on 5-shot setting. Query set in task contains 15 images per class. The average accuracy of
these few shot tasks is reported along with the 95% confidence interval based on Gaussian distribution
hypothesis.

The WRN (Wide Residual Network), which is a wide residual network of 28 layers and width factor 10,
is used as backbone to obtain the features in experiments. The WRN is trained following the same settings as
S2M2 [13]. For each dataset, the feature extractor is trained on base-class dataset to learn the representation
of images and test the performance on novel-class dataset.

The tuned hyperparameters with validation classes for miniImageNet and CUB are shown in Table 1.

4.2 Quantitative Comparison

Following the standard setting, Table 2 provides the comparison results on the miniImagenet and CUB
with the 95% confidence interval. The comparative existing methods are categorized into two groups, Non-
DataGen (few-shot learning algorithm without data generation) and DataGen (few-shot learning algorithm
based on data generation). It can be clearly observed that the proposed method outperforms existing
methods in the 5-way 5-shot setting, with gains that are consistent across different datasets.

Table 1: The tuned hyperparameters on miniImagenet and CUB

Dataset a1 a2 b Topk

miniImagenet 0.1 0.1 0.025 2

CUB 0 0.1 0.02 2

Table 2: Few-shot classification accuracy on miniImagenet and CUB. The ± indicates 95% confidence
intervals over tasks. The 5w5s means 5way-5shot

Type Method Reference miniImagenet (5w5s) CUB (5w5s)

Non-DataGen MAML [26] ICML’2017 63.11% ± 0.92% 59.15%

RELATION NET [27] CVPR’2018 65.32% ± 0.70% /

Graph Neural Networks [28] ICLR’2018 66.41% ± 0.63% /

Baseline++ [25] ICLR’2019 66.43% ± 0.63% 79.34% ± 0.61%

Meta-transfer Learning [29] CVPR’2019 75.50% ± 0.80% /

Edge-labeling Graph
Neural Network [30]

CVPR’2019 76.37% /

LEO [22] ICLR’2019 77.59% ± 0.12% /

S2M2 [13] WACV’2020 83.18% ± 0.11% 90.85% ± 0.44%

LaplacianShot [31] ICML’2020 84.72% ± 0.13% 88.68%

PT-MAP [32] ICANN’2021 88.82% ± 0.13% 93.99% ± 0.10%

DataGen Delta-Encoder [16] NIPS’2018 69.7% 82.6%

Dual TriNet [19] TIP’2019 76.71% ± 0.69% 84.1%

Adversarial Feature
Hallucination Networks [18]

CVPR’2020 78.16% ± 0.56% 83.95% ± 0.63%

DTN [17] AAAI’2020 77.91% ± 0.62% 82.80%

DA+ PT-MAP (our) 89.10% ± 0.39% 94.06% ± 0.30%
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For instance, compared to well-known MAML (Model-Agnostic Meta-Learning) [26] and Delta-
Encoder [16], the proposed method brings improvements of nearly 26% and 20% respectively, under the
same standard setting. In addition, the WRN used in the proposed method is trained according to
S2M2 [13], and good representation can be obtained without complex meta learning. Combined with
dynamic analogical association, its performance is significantly better than LEO (Latent Embedding
Optimization) [32] and S2M2 [13], which also use WRN as the backbone network.

More importantly, because the core of our algorithm is data generation, we need to pay more attention to
the combination with state-of-the-art methods and whether it can further improve the performance. Our
method surpasses the PT-MAP algorithm [32] with the same representation and the same classifier, which
proves that the usefulness of dynamic analogical association. It also shows that it can be combined with
the state-of-the-art methods to further improve the performance in different few-shot learning scenarios
without relying on any additional information from other datasets.

4.3 Synthetic Experiments

Synthesis experiments show whether the proposed method can generate more meaningful data points.
For the 5-way 5-shot task, based on t-SNE (t-distributed Stochastic Neighbor Embedding), the samples of
the support set, the samples generated by the proposed method and the samples of the query set are
drawn on a 2D view, as shown in the Fig. 6, in which different colors represent different categories; forks
represent the samples of the support set; circles represent the synthetic samples; light colored pentagons
represent the samples of the query set.

As can be seen from the Fig. 6, the visualization of the synthesized samples reveals the following points:

1. The synthesized samples are not concentrated in the center of the support set samples and have a
certain tendency, and some synthesized sample points rush out of the convex region composed of
the support set samples. This shows that non-trivial samples are generated. In addition, the results
of the synthesis experiment are consistent with the expected results speculated in Fig. 4c.

2. More importantly, the green and purple synthesized samples which rush out of the convex region are
close to the samples of the query set (real latent samples) that are invisible to the proposed method,
which shows that manifold matching plays a positive role and the proposed dynamic analogical
association algorithm can generate meaningful samples.

Figure 6: Synthesized samples visualization
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4.4 Ablation Study

Considering that the proposed method is the simplest way to use prior knowledge by analogical
association, the performance improvement of existing algorithms combined with dynamic analogical
association should be paid attention to illustrate the importance of using prior knowledge more flexibly.

Therefore, in this subsection, the ablation studies are conducted to evaluate the performance of the
proposed algorithm with quantitative results.

By comparing the accuracy of no sample generation and sample generation based on dynamic analogical
association in Table 3, it can be clearly found that the proposed method improves the performance of two
common classifiers, which proves the generality and effectiveness of the algorithm.

4.5 Manifold Matching Does Work

In order to verify whether the manifold matching works, the most intuitive method is to see whether the
distance between our manifold sampling and the current task is significantly different.

Fig. 7 shows the maximum and minimum distances, indicating that the current task is only similar to
some knowledge structures, but is significantly different from other knowledge structures.

As we all know, traditional methods do not treat or use prior knowledge differently, but for a certain task,
the part of the knowledge structure of prior knowledge is only needed. Therefore, it is difficult to achieve
better results if only considering the use of all prior information without careful analysis.

Table 3: Ablation study for our method on miniImagenet and CUB. withDA: Use the dynamic analogical
association algorithm

Method withDA miniImagenet (5way5shot) CUB (5way5shot)

KNN
(K-Nearest Neighbor)

76.70 87.91

✓ 82.09 90.02

PT-MAP 88.90 93.95

✓ 89.10 94.06

Figure 7: The max-min manifold distance in the reference manifold set
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5 Conclusion

It can be observed that our method can lead to consistent improvement of few-shot learning tasks on
different image classification datasets. More importantly, we explained the importance of analogical
association based on prior knowledge. Relevant researchers need to re-examine how to make better use of
prior knowledge.

In the future, we believe that there will be other or more advanced methods combined with manifold
matching to further improve algorithm performance, such as meta-learning. This work opens up a path
for further exploration.
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