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Abstract: Every day, more and more data is being produced by the Internet of
Things (IoT) applications. IoT data differ in amount, diversity, veracity, and velo-
city. Because of latency, various types of data handling in cloud computing are not
suitable for many time-sensitive applications. When users move from one site to
another, mobility also adds to the latency. By placing computing close to IoT
devices with mobility support, fog computing addresses these problems. An effi-
cient Load Balancing Algorithm (LBA) improves user experience and Quality of
Service (QoS). Classification of Request (CoR) based Resource Adaptive LBA is
suggested in this research. This technique clusters fog nodes using an efficient
K-means clustering algorithm and then uses a Decision Tree approach to categorize
the request. The decision-making process for time-sensitive and delay-tolerable
requests is facilitated by the classification of requests. LBA does the operation
based on these classifications. The MobFogSim simulation program is utilized to
assess how well the algorithm with mobility features performs. The outcome
demonstrates that the LBA algorithm’s performance enhances the total system per-
formance, which was attained by (90.8%). Using LBA, several metrics may be
examined, including Response Time (RT), delay (d), Energy Consumption (EC),
and latency. Through the on-demand provisioning of necessary resources to IoT
users, our suggested LBA assures effective resource usage.
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1 Introduction

In this technology world, the number of Internet of Things (IoT) devices reach up to 75 billion in
2025 and the amount of data volume created by these devices may reach 79.4 zettabytes [1]. The number
of connected devices is increasing in the ratio of 25% to 50%, and in the upcoming years it may reach up
to 150 billion in 2030 [2]. The traditional computation process of using IoT devices like traffic light
controllers, smart homes, health monitoring, etc. was done in cloud computing. The time taken to send
requests and responses is more because of the distance between the device and the cloud server, which
causes delay. This delay and latency affect many time-sensitive applications. A new computing paradigm
has been introduced to reduce the latency by extending the cloud computation near the source node in the
name of fog computing. Fog computing architecture consists of three layers: large volume, wide variety,
and high velocity of data generated from the IoT device layer 1. In layer 2 any device that has the
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capability of computation, storage, and networking is defined as a fog node. The long-term storage and huge
computation data are forwarded to the cloud server in layer 3 [3]. IoT devices are deployed with the IPv6
(Wireless Low-Power Personal Area Network (6LoWPAN)), sensor nodes keep monitoring the
environmental values like patient heartbeat and forward sensed data to fog node through the gateway by
using Constrained Application Protocol (CoAP). In the CoAP post method that utilizes the User
Datagram Protocol (UDP) in the transport layer [4]. Content Caching scheme in the application layer
improves the speed of delivery and solves the energy efficiency problem while transferring the data from
the sensor to the fog node [5]. Fog node that receives the data from both homogenous groups like (cluster
of Raspberry Pi) and the heterogeneous group like (Thinker, Udoo, Nvidila Jeston nano, Personal
computers, Mobile, etc.). When the number of IoT devices increases, the devices need to be clustered to
perform efficiently [6]. Overloaded fog servers may decrease the Quality of Service (QoS) and increase
the latency, this affects many time-sensitive applications. If one server’s capacity for handling requests is
overloaded then the upcoming request may be given to a nearby fog node that can handle the request [7].
In general load balancing is divided into two types static and dynamic. Prior server information is
gathered based on that load is distributed among the server, the current status of the server is unknown in
the static load balancing (Ex. Min-Min, Min-Max). In dynamic load balancing, load distribution is based
on the current status of server workload (Ex. Agent-Based, Hybrid, Real-Time, Nature-inspired).
Handling load balancing techniques with priority-based execution that reduce the latency. While
submitting the user request its classify with Higher Priority (HP) and Lower-Priority (LP). Load
balancing with priority request handling improves the response time for many time-sensitive applications
[8]. Request arriving at the fog server can be classified by Classes of Service (CoS) based on the basic
principle component like bandwidth, reliability, location, storage, delay, etc., and executed many machine
learning algorithms for better classification. Decision Tree (DT) provides a better classification for the n
number of an attribute with a minimal amount of time [9].

From the above observations, clustering is one of the major contributions to fog nodes when it supports
the mobility of IoT users. Based on the mobility of the user, a grouping of fog nodes can be done. Clustering
of the fog nodes with the minimum number based on the number of IoT users. In general, not all IoT
applications are time-sensitive, so without a precise classification of the IoT request, LBA can be less
than optimal because of the complexity of dealing with the diversity of resources. The proposed method
should satisfy both resource provisioning and QoS. The novel contribution of this work beyond the load
balancing to minimize the response latency on the server-side are as below

� Clustering of fog nodes using the Optimized K-Means elbow clustering algorithm is proposed. In this
method, the optimization of the clustering can be evaluated by the elbow method. Better clustering
provides the minimum migration of nodes takes place.

� Classification of Request (CoR) is proposed for the IoT request. A Decision Tree machine learning
algorithm is used to classify the request. Based on the user input characteristics the requests are
divided into two types Class 1 (C1) and Class 2 (C2).

� CoR-based resource adaptive load-balancing algorithm is proposed to minimize the server-side
latency problem. This algorithm first classifies the individual server characteristics. If the server
capacity can handle the request then the load balancer assigns the task, otherwise, it searches for
another server.

The rest of the paper is organized as follows. Section 2 discussed the related work based on various load
balancing algorithms, Section 3 Optimized K-means clustering is done in the distributed fog computing
environment, Section 4 describes the CoR using the decision tree algorithm, Section 5 describes the
proposed load balancing algorithm, in Section 6 evaluated simulation results are described in the
graphical representation.
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2 Related Work

This section discusses the existing Load Balancing (LB) techniques. LB techniques improve the server
capacity to handle the request by distributing the request across the multiple available servers.

� Load Balancing and optimized strategy (LBOS): LBOS uses dynamic resource allocation with
reinforcement learning to continuously monitor the server load. If it exceeds its capacity load will
be distributed to the remaining server. LBOS achieved (85.7%) level [10].

� Dynamic Energy-Efficient Resource Allocation (DEER): in this strategy task managers and resource
schedulers dynamically allocate the. Information about the task and the resource is submitted to the
resource scheduler by the task manager. The resource can be allocated based on the descending order
as per the utilization. In this DEER minimize the energy consumption by 8.67% and computation cost
by 16.77% [11].

� Load Balancing for Big Data on Heterogeneous Software Defined Network (LBBHD): this algorithm
deploys the optimal assignment of data sharing in the heterogeneous network. They use the
classification of the real-time object to improve the workload throughput by 2.2%, and load
balancing error by 2.51% [12].

� Self-Similarity-Based Load Balancing (SSLB): load balancing concept is implemented in a large area.
The similar nodes are grouped and elected one node as a cluster head. The cluster head is responsible
for the communication for the load balancing process. Resource utilization of the node in the region of
1.7X and 1.2X of centralized and distributed under 100 nodes [13].

� Effective Load Balancing Strategy (ELBS): ELBS introduced fuzzy classification to make the priority
of task assignment. Based on the priority load balancing the Average Turnaround Time (ATT) 9.5 s
and CPU utilization is 99% [14].

� Fog Computing Architecture of Load Balancing (FOCALB): they proposed hybridizing by
combining Grey Wolf Optimization (GWO) and Ant Colony Optimization (ACO) to enhance
resource utilization by reducing execution time, cost, and energy. This proposed method reduces
25% the execution time and energy consumption by 14% [15].

� Workload Balancing Scheme (WBS): latency of the data flow in both communication and computing
by implementing the alpha distribution algorithm. In this method, the latency is reduced up to 25.1%
[16]. The proposed method parameters evaluation is compared with various existing methods
mentioned in Table 1.

Table 1: Comparative analysis

Reference Response
time

Network
management

Request
classification

Energy
consumption

Delay Mobility
Features

[10] ✓ ✗ ✗ ✓ ✓ ✗

[11] ✓ ✗ ✗ ✓ ✗ ✗

[12] ✓ ✓ ✗ ✗ ✓ ✗

[13] ✓ ✓ ✗ ✗ ✗ ✗

[14] ✗ ✗ ✓ ✗ ✓ ✗

[15] ✓ ✗ ✗ ✓ ✗ ✗

[16] ✓ ✓ ✗ ✓ ✓ ✗

[17] ✓ ✗ ✓ ✓ ✓ ✗

(Continued)
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3 Optimized K-Means Elbow Clustering

To solve the traditional centralized fog scenario we propose an efficient way of grouping the nodes and
making them more efficient in the distributed heterogeneous environment. Self-Similarity-based clustering is
implemented in [24] but fog computing contains heterogeneous systems similarity-based grouping is not
suitable. K-means++ clustering-based grouping is used in [25] but the optimization of the algorithm is
not verified. The optimized K-means clustering is implemented to make an effective clustering. The
network contains n number of fog nodes that can be grouped into n number of C clusters. The cluster can
be formed based on the K-Means clustering algorithm. The form of a cluster in the network is adjacent
nodes combined as one cluster created on the minimum distance between each node. in each group, one
cluster head is selected to communicate the fractal. Cluster head selection criteria based on fog node
range between the fog gateway and validate the threshold.

Algorithm 1: Optimized K-means Clustering

1: Initialization

2: fn(1….n) ← number of fog nodes

3: C (C1,C2,….Cn) ← number of clusters

4: G ← Fog Gateway

5: for n number of nodes from (1…n) do

6: Euclidean Distance(G,n)

7: Minimum distance d[fn(x,y), fn(a,b)]

8: C1 ← n

9: end for

10: for n number of clusters (c1…cn) do

11: C ← d(fnC1)

12: end for

The number of nodes in the network fn ai ¼ 1 . . . nð Þ, these nodes can form n number of cluster
C ¼ C1;C2; ::Cnf g The number of cluster in the network is calculated by the elbow method
Ci; iE 1 . . . 10f g. To find the minimum distance between two fractals Euclidean distance is calculated.

Table 1 (continued)

Reference Response
time

Network
management

Request
classification

Energy
consumption

Delay Mobility
Features

[18] ✓ ✓ ✗ ✗ ✗ ✗

[19] ✗ ✗ ✗ ✓ ✓ ✗

[20] ✓ ✗ ✗ ✓ ✓ ✗

[21] ✓ ✗ ✗ ✓ ✓ ✗

[22] ✓ ✗ ✗ ✓ ✓ ✗

[23] ✓ ✓ ✗ ✗ ✗ ✗

Proposed ✓ ✓ ✓ ✓ ✓ ✓
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Step 1: Select two cluster canters centroid at random.

fn xi ¼ 1 . . . nð Þ and fn yi ¼ 1 . . . nð Þ (1)

Step 2: find the minimum distance between fractals.

d fn x; yð Þ; fn a; bð Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fn x� að Þ2

q
þ fn x� bð Þ2 (2)

Step 3: Group the fractals based on the minimum distance.

Step 4: After adding to the cluster, update the centroid value of the cluster.

C ¼ C1þ C2

2
(3)

Step 5: Repeat steps 2 to 4 until no more fractals are available.

The performance of the K-Means clustering algorithm is based on how high efficiency it forms the
cluster. To find the optimal value elbow method formulation is calculated.

C ¼ �fni in cluster 1 d fniC1ð Þ2 þ �fni in cluster 2 d fniC2ð Þ2 þ . . .þ �fni in cluster 10 fniC10ð Þ2 (4)

where �fni in cluster 1d fniC1ð Þ2 is the sum of the square of the distance between each fog node point and its
centroid within the cluster point. The cluster range between {1 … 10} forms the best cluster for
communication. If it exceeds 10 then the communication cost between the nodes is increased.

To find the optimal valve for the cluster, first it calculates the K-means clustering on given fog nodes, for
example, it ranges from (1–10), for each value of the K (1–10) it calculates the cluster sum of the square.
Then the values are plotted on the graph against number cluster (1–10) and cluster sum of square value.
In the plotted graph sharp blend point represent the optimal cluster value. In Fig. 1 the sharp bend point
3 represents the optimal cluster value.

The main advantage of K-means clustering is to find the optimal number of clusters in a particular region
using the elbow method. An optimal number of cluster improve the performance of fog nodes. The limitation
of the clustering is, cluster formation is based on the mobility nodes, so rapid changes can occur and re-
clustering takes place when the user is moving from one location to another location.

The agreed fog node uses the user’s past position with the appropriate speed and direction to calculate
the user’s future location under the assumption that each user updates their location every time t. The future
location is projected using this data. If the user’s anticipated position is outside of the current fog node, they

Figure 1: Optimized cluster value
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will locate the nearest one after making their location forecast. Users’ current location: l = t, previous location
l = t − θ, and future location l = t + θ. The future location that is dependent on the value is identified using the
user’s current location. The user-supplied X and Yvalues are used to determine the value. There are various
ways to forecast the position using these X and Y values.

4 Classes of Request (CoR)

Fog computing deals with different heterogeneous applications involving the mobility nature.
Improving the QoS with the integration of different environments is more challenging. To address these
issues efficient handling of resource management provides better QoS. Whenever the IoT devices
generate the request before handling the computation the request is classified based on their demand. To
classify the request Decision Tree (DT) is implemented as represented in Fig. 2. There are several
machine learning classifiers available like Artificial Neural Network (ANN), K-Nearest Neighbor (KNN),
and Support Vector Machine (SVM). This classification algorithm is complex in prediction, noise
sensitive, high prediction speed, and requires more memory.

While the IoT device is connected to the fog node at that time itself the device should mention the
response preference like time sensitivity and delay tolerance. If the IoT application belongs to time-
sensitive then the request is given to class 1 and the computation authority is given to the fog node.
Delay tolerance requests and large-size data like (5 GB) are classified as class 2 and the computation
authority is handled by the cloud. Based on the classification LBA distribution takes place.

By the analysis of the classification mechanism, the Decision Tree mechanism is the best fit for fog
computing. Because it supports doing computation with a heterogeneous device with minimal computing,
and minimal storage, and ensures real-time application. The Decision Tree classification technique gives
99.986% average accuracy and 0.029% average time compared with ANN, KNN, Naïve Bayes, random
forest, and SVM classification methods. DT takes less than 30 min to classify up to 1400 heterogeneous

Figure 2: Decision tree classification of request
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applications with the highest level of accuracy [26]. When the IoT device generates the request if the
requested data size is more than 5 MB and the bandwidth is 10000 Mbps request is forwarded to the
cloud server for huge computation and long-term storage. Otherwise, the request is handled by the fog
layer. Again the requested application is classified based on time sensitivity and delay tolerance. For
example, if the application is based on medical-related then it is based on On_time processing, it pushes
the fog nodes to do computation and gives an instant response. On the other hand, if the application is
delay tolerance, for example, based on an electric bill update, it requires a monthly update. CoR for IoT
request improve the efficiency of handling resource management and QoS. Classification of request is
represented in Table 2.

5 CoR Resource-Based Adaptive Load-Balancing Algorithm

This section introduces a proposed load balancing algorithm that supports users’mobility. As mentioned
in Fig. 3 fog nodes are clustered as a group in the distributed environment with the optimized K-Means
clustering algorithm with the elbow method. Then the user request from the IoT environment is classified
based on the Decision Tree algorithm, the request is classified ad class 1 and class 2. The proposed load
balancing algorithm effectively distributes the load to the server with minimum latency and also supports
time-sensitive applications.

5.1 Fog Node Classification

Classification of the fog node provides better load balancing. Load Balancing (LB) is the process of
distributing the workload among the servers. LB optimizes the response time and avoids the situation of
the server like some servers overloaded, remaining idle for a long period of time. The load balancer is
responsible for monitoring the system status, based on that LB decide which node is going to handle
the upcoming request. The server status can be obtained from the Server Characteristics Table (SCT). The
LB requires the system (i) Cache Size, (ii) total memory available, and (iii) System usage. To find
the system’s current status we need to calculate (1) the Capacity of the System (CoS), and (2) the
Average Capacity of the system. By calculating these values, it can be able to find them (i) Balanced
System, (ii) Underloaded system (iii) overloaded system.

Table 2: Classification of request

S.No. Data size Data requirement Data type Request classification Authority

Text Image Video Class 1 Class 2 Fog Cloud

1 5 MB Time sensitive ✗ ✓ ✗ ✓ ✗ ✓ ✗

2 3 MB Time sensitive ✗ ✗ ✓ ✓ ✗ ✓ ✗

3 4 MB Time sensitive ✓ ✗ ✗ ✓ ✗ ✓ ✗

4 2 MB Time sensitive ✗ ✓ ✗ ✓ ✗ ✓ ✗

5 7 MB Delay tolerance ✓ ✗ ✗ ✗ ✓ ✗ ✓

6 8 MB Delay tolerance ✗ ✗ ✓ ✗ ✓ ✗ ✓

7 4 MB Time sensitive ✗ ✓ ✗ ✓ ✗ ✓ ✗

8 5 MB Delay tolerance ✗ ✓ ✗ ✗ ✓ ✗ ✓

9 1 MB Time sensitive ✗ ✗ ✓ ✓ ✗ ✓ ✗

10 10 MB Delay tolerance ✓ ✗ ✗ ✗ ✓ ✗ ✓
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5.2 Calculating Capacity of System (CoS)

Calculating the capacity of the system plays an important role in load-balancing tasks. By this value,
only the server is classified as balanced, overloaded, and underloaded. Each fog node has a different
capacity based on the allocation of the work.

By using the mentioned parameters the capacity of the system is derived by

CoS ¼ Cache Size �Memory

Processor Usage
(5)

After finding the capacity of the system, need to find the Average Capacity of the System (ACoS), and
the threshold value of system capacity can be calculated by

ACoS ¼ CoSj Processor Usage � 12%ð Þ‘ (6)

By using a Genetic algorithm, to find the optimized system capacity can be evaluated by defining the
values of ACoS = 1.5 and TCoS = 2.3. If the Capacity of the system is greater than the average capacity
of the system then the system is in an overloaded condition. If the capacity of the system is greater than
or equal to threshold capacity then the system is in an underloaded condition. Based on these conditions
available system is selected for the load balancing.

Figure 3: CoR based adaptive resource LBA
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6 Experimental Setup

Many existing simulation tools are used to evaluate the application behavior and performance in the fog
computing environment. Fog computing supports only minimal mobility support. To evaluate the mobility-
based load balancing performance, we used the MobFogSim tool. To the best of our knowledge still, now no
one evaluated using this simulation. MobFogSim is extended from iFogSim and CloudSim. This tool has
additional mobility support features like mobile nodes, wireless connections, and migration features [27].
With this, we can achieve all mobility features supported by the fog computing environment. In this
simulation, a cloud with 4 data centers, and a set of 50 fog nodes, can be clustered based on their
properties. Each fog node is connected with IoT devices ranging from 10 to 15 devices through the
gateway. Fig. 4 illustrates that the simulation network consists of the user device, a fog node data center.
When the request arrives LBA selects the nearest node to execute the task. The performance of the CoR-
based Adaptive Resource LBA can be evaluated by the given parameters with mathematical calculations.
Simulation parameters are represented in the “Table 3”.

Figure 4: Fog node allocation in the region

Table 3: Simulation and system parameters

Parameters Value

Language Java

Development kit JDK 1.8

Mobility model Linear mobility model

Routing protocol Ipv6 AODV

Communication protocol IPv6

The initial energy of fog node (J) 40

Transmission range (m) 60–250
(Continued)

CSSE, 2023, vol.46, no.1 145



Algorithm 2: CoR Resource-Based Adaptive LBA

1: input: Request ← R

2: fn(1….n) ← Number of fog nodes

3: CS ← Cloud server

4: for all (1….n) in fn do

5: Initiate CoR for all task

7: if R ← Fog nodes then

8: C1 ← R

9: if CoS ≥ T CoS then

10: n ← R

11: else

12: Repeat Step 3 until finding the appropriate fn

13: Do Task For all CoR

14: if R ← Cloud Server then

15: Compute task execution

16: Output: Balance Load Distribution & Fast Response Time (RT).

6.1 Response Time (RT)

Parameters evaluation Response Time (RT), delay (d), Energy Consumption (EC), and Load Balancing
Rate (LBR) can be evaluated based on the classification of the request. The request is submitted to the fog
node and the response is given back to the source node in a minimal amount of time. By calculating the time
taken to compute the process, response time, delay, and load balancing rate can be evaluated.

Response time is defined as the amount of time taken to submit a request and processed it by the server
and send a response back to the user. Response Time is calculated by the sum of time taken from submitting
the request (Rs) to the fog node and the total time taken to Completion of Request (CR). RT is evaluated by

Table 3 (continued)

Parameters Value

Bandwidth (KBs) 1000

Storage (GB) 1

Fog node range 100

Fog node computing capacity (MIPS) 1 to 15

Delay (ms) 1

Storage cost 0.001

Memory cost 0.05

Topology Fully connected

Receiving power (W) 1.1
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milliseconds (ms). In Fig. 5 RT is derived by increasing the number of fog nodes to reduce the response time
by sharing workload among the fog nodes.

RT ¼ Rsþ CR (7)

6.2 Delay (d)

Fig. 6 is estimated by the difference between the present time (Pt) of the request execution and starting
time (St) of request execution and it is represented by seconds (s).

d ¼ Pt � St (8)

6.3 Energy Consumption (Ec)

Energy consumption is denoted by the total amount of energy required to complete the request by fog
nodes. It is represented by the unit Joule (J) in Fig. 7

Ec ¼ Pecþ Pt � LEcUTð Þ (9)

where Ec represents energy consumption, Pec is the present energy consumption, Pt is the present time of the
request execution, and LEcUT is the last energy consumption updated time.

Figure 5: Response time

Figure 6: Delay
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6.4 Load Balancing Rate (LBR)

The load distribution rate is calculated to find the performance of the server, and how efficiently the task
is distributed among the fog nodes. The load balancing percentage was evaluated by calculating the total
number of requests (TNr) and a total number of available fog nodes (Tfn) are represented in Fig. 8.

LBR ¼ TNr=Tfn (10)

7 Comparison Analysis

The comparison is done with our proposed load balancing algorithm with the existing methods of all
performance metrics. The response time is the amount of time taken to complete the request, it is
represented by a millisecond (ms). The Time taken to complete the number of requests with several fog
nodes is compared with the Genetic algorithm, graph partitioning, and load balancing with ANN are
represented in Fig. 9. Load balancing has directly impacted the performance of the system and response
time. CoR-based load balancing effectively decreased the response time by 30% by comparing with [28–
30]. By improving the reliability and scalability of node performance. The main reason for the delayed
performance is the number of fog nodes. If the number of nodes is increased the number is decrease the
delayed performance and vice versa. The performance comparison is done with (Non-dominated Sorting
Gentic Algorithm) NSGA-II [31], and load balancing with ANN. By this comparison, almost 60% of the
delay is reduced because the number of fog nodes increased in the network is represented in Fig. 10.
CoR-based classification significantly reduces the energy consumption of the task execution.

Figure 7: Energy consumption

Figure 8: Load balancing rate
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The proposed work is compared with the advanced-cache method and DEER [32]. These existing
methods take 12000000 KJ even for less number of tasks, if the number of tasks is increased in the nodes
our method requires only 1400000 KJ to complete the execution as given in Fig. 11. CoR Resource-
Based load balancing algorithm increases the user efficiency in terms of QoS and Quality of user
Experience (QoE).

Figure 9: Response time

Figure 10: Delay comparison

Figure 11: Comparison of energy consumption
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8 Conclusion

This paper proposed CoR based Resource Adaptive load balancing algorithm in the distributed fog
computing environment. In the previous approach node failure, resource shortage, and storage allocation
problem reduces the performance of the LBA. Optimized K-means elbow clustering is used to group the
number of distributed fog nodes. A Decision tree is used to classify the type of IoT requests. By this
classification, the large size of data and delay-tolerant requests are moved to cloud computation. With this
separation load balancing performance improves the Quality of Service. CoR-based classification of
requests improves the better performance of server utilization to reduce the latency problem raised in
cloud computing. The simulation results show a better load balancing rate in the mobility user
environment. The parameters of response time, delay, latency, and load balancing rate can be evaluated in
this work. Classification-based load balancing improves the overall system performance in the mobile fog
computing environment.
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