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Abstract: This research work develops new and better prognostic markers for pre-
dicting Childhood MedulloBlastoma (CMB) using a well-defined deep learning
architecture. A deep learning architecture could be designed using ideas from
image processing and neural networks to predict CMB using histopathological
images. First, a convolution process transforms the histopathological image into
deep features that uniquely describe it using different two-dimensional filters of
various sizes. A 10-layer deep learning architecture is designed to extract deep
features. The introduction of pooling layers in the architecture reduces the feature
dimension. The extracted and dimension-reduced deep features from the arrange-
ment of convolution layers and pooling layers are used to classify histopathologi-
cal images using a neural network classifier. The performance of the CMB
classification system is evaluated using 1414 (10× magnification) and 1071
(100× magnification) augmented histopathological images with five classes of
CMB such as desmoplastic, nodular, large cell, classic, and normal. Experimental
results show that the average classification accuracy of 99.38% (10×) and 99.07%
(100×) is attained by the proposed CNB classification system.

Keywords: Brain tumour; childhood medulloblastoma; deep learning;
histopathological images; medical image analysis

1 Introduction

Medulloblastoma is a cancerous tumor that starts in the cerebellum (brain’s lower back part) in children.
The main functions of the cerebellum are muscle movement, balance, and coordination. Over the past few
years, most children will die due to CMB despite the advances in chemotherapy and radiation therapy.
Currently, the interest involved in cancer research is focused on medical image analysis. An efficient deep
learning architecture for CMB classification is discussed in [1]. It uses average pooling layers and an
error correcting code classifier for the classification. The final prediction is based on the ensemble of
selected pre-trained networks.
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Transfer learning-based CMB classification is described in [2]. Different deep learning architectures,
such as AlexNet and Visual Geometric Group (VGG), are analyzed using augmented images by the
transfer learning approach. Both architectures employ the softmax function in the output layer for the
prediction. A Support Vector Machine (SVM) classifier is also used for the classification. CMB
classification by gene expression is discussed in [3]. It uses a single-layer neural network to reduce the
genes for effective classification by applying thresholds to the weights. For brain cancer classification,
artificial neural networks and logistic regression are employed in [4].

Texture analysis for CMB classification is described in [5,6]. Five different texture features include co-
occurrence features, histogram features, run length features, Tamura features, local binary pattern features,
and five different classifiers; SVM, K-nearest neighbour (KNN), distance-based classifier, decision tree,
linear and quadratic discriminant classifiers are employed. The Texton-based classifier for the
classification of anaplastic in CMB is described in [7]. The bag-of-word approach is utilized to model the
Texton-based features extracted from the Haar wavelet and MR8 filter bank. The KNN classification
system is employed for the classification.

Texture features are extracted from Laws, Lai et al. in [8] to classify MBs into anaplastic and non-
anaplastic. The classification is based on random forests, and patch-based. A segmentation approach is
discussed in [9] for the nodular type of MB. It uses a normalized cut algorithm and a random walk for
better segmentation. Deep learning and textural-analysis based CMB classification are described in
[10,11]. Three deep learning architectures, including MobileNet, DenseNet, and ResNet-50, are employed
with wavelet features for effective classification. Discrete cosine transform and principal component
analysis are used with the architectures for binary and multi-class classification.

A combination of learned features for the classification of histopathological images is discussed in [12].
It uses wavelet features learned using a supervised approach and Topographic Independent Component
Analysis (TICA) features known from an unsupervised approach. A softmax classifier is used for the
classification. Two different CNN architectures are employed in [13] for CMB classification. The
architecture consists of 2-layer and 16-layers for extracting the deep features, and a softmax classifier is
used for the classification.

A comparison of supervised and unsupervised techniques is discussed in [14] for the representation and
classification of CMB. Different autoencoders, such as TICA, are used to represent the histopathological
images in an unsupervised manner and convolution neural networks are employed in a supervised manner
for the representation. A visual latent approach is discussed in [15] for interpreting CMB
histopathological images. A Haar wavelet-based bag of histogram features is extracted, and then the
latent-topic analysis model is developed using a semantic approach from the bag of features. This model
can show the higher-level patterns in the histopathological images.

The objective of this research is to produce a solution for the classification of CMB using
histopathological images. A novel, well-defined deep learning architecture with 10-layers is designed to
achieve this goal. Also, three fully connected layers are employed to classify CMB into multi-classes.
The organization of this research article is as follows: Section 2 explains the classification technique
based on the proposed deep learning architecture without using a separate feature extraction module.
Section 3 shows the preliminary results obtained by the proposed classification system and Section 4
presents the conclusions of the work and some suggestions for further work.

2 Methods and Materials

The proposed CMD classification system has two parts. In the first part, texture features are used to
quantify the texture of histopathological images. The extracted texture features are used to design a
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classifier. The convolution filters in the deep learning architecture will extract defining features from each
histopathological image. Each image is assumed to have distinctive characteristics that depend mainly on
the sub-type of CMB. Supervised pattern recognition classifiers will be designed to identify the sub-type
of CMB based on such features. In conventional deep learning architecture, a neural network in the fully
connected layer acts as a pattern recognition classifier. The high-dimensional extracted features will be
transformed into low-dimensional using the max pooling layer to improve the performance. Different
optimization and error functions are employed to optimize the grading results and reduce the uncertainty
associated with the neural network classifier. A 10-layer deep learning architecture is designed for CMB
classification. Fig. 1 shows the proposed CMB classification system.

Pattern recognition methods are divided into two categories: supervised classification (in which the
labels or classes of the input samples are known), and unsupervised classification (in which the labels or
classes of the input samples are unknown). A supervised classification system makes decisions on
unresolved cases by learning from a group of samples that have already been classified. The primary
objective of the CMB classification system is to convert a feature vector obtained via the proposed deep
learning architecture into one of the five classes of CMB, such as desmoplastic, nodular, large cell,
classic, and normal, with the highest possible degree of precision. As the proposed CMB system is a
whole image classification image, the final output from the architecture is a class of CMB, not an image.

2.1 Function of Convolution Layer

Textures in histopathological images are deterministic by assuming that the neighborhood pixels are
from macro texture elements, such as lines, spots, waves, and edges. To characterize deterministic texture
in an image, different two-dimensional filters are employed. It is well known that different filters provide
different texture patterns when convolving the input image with the convolution filters. The texture
features extracted by the convolution operation have the exact dimensions as the input image when zero
padding is applied. The convolution operation is defined by
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Figure 1: Proposed CMB classification system
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yði; jÞ ¼
X1

m¼�1

X1

n¼�1
hðm; nÞ � xði � m:j � nÞ (1)

where h is the convolution filter and y is the resulting matrix obtained by convolving hwith the input image x.
For a 3 × 3 convolution filter, m and n vary from [−1, 1]. In this work, the height and breadth movements are
carried out using the default stride (1, 1) in two dimensions.

2.2 Function of Pooling Layer

The pooling layer in the deep learning architecture maps the high-dimensional feature vectors from the
convolutional layers to low-dimensional space. This work uses the max pooling layer to reduce the feature
dimension. Introducing a pooling layer in any deep learning architecture has two purposes. First, it reduces
the computation burden needed for classification by reducing the amount of data used to describe the image.
Second, it simplifies the process of designing an accurate classifier. The max pooling layer has a stride of 2,
which equals the layer’s depth. As a result, the input size has been reduced by half compared to its initial size.
Fig. 2 shows the max pooling layer process. Fig. 3 shows the output of the convolved image and the max
pooling layer output for a sample input image.

2.3 Function of Fully Connected Layer

This is the final layer where the classification takes place by a neural network classifier. Fig. 4 shows a
fully connected neural network [16]. Depending on the categorization task, various neural network designs
are used for classification purposes [17–20].

The input to the fully connected layer is patterns extracted from the combination of convolution and max
pooling layers, and the system’s output is the class label of the sub-type of CMB. As shown in Fig. 4, any
neural network architecture consists of input layers, hidden layers (learning process), and output layers
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Figure 2: (a) high dimensional input sample (b) reduced dimension by max pooling layer
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Figure 3: (a) Input image (b) convolution filter (c) convolved image (d) max pooling output
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(response or classification layer to the input pattern). Based on these layers, the neural network performs the
pattern recognition task in a non-linear manner. The input-output pair of a neural network is represented by a
point in a decision space. These decision spaces have been mapped out by the neural network, and they are
utilized for allocating inputs to the network that it has never seen before but which are characteristic of
patterns it has seen in the past. The term for this kind of process is generalization. Therefore, neural
networks may be able to handle new situations and may perform better than statistical classifiers.

The fully connected layer of the proposed system is made up of a multilayered feed forward neural
network. This type of network is characterized by its hierarchical structure, which is comprised of a large
number of simple processing units (nodes) that are connected to one another by adaptive weights (w).
When processing is complete, the pattern vector, also known as the deep features are applied to the input
layer. A weighted sum of the inputs is performed by each node in a hidden layer, and then a non-linear
modification of that total, coupled with a bias (b), is generated by that node. The succeeding layer makes
use of the previous layer’s outputs as its inputs. There is no guarantee that nodes in the output layer, also
known as the response, will be able to perform non-linear transformations. The replies that are produced
at the output layer are a forecast of the qualities possessed by the inputs. During the training phase, a
neural network acquires knowledge via an effort to identify an optimal set of values for the connection
weights by attempting to minimize the effects of some objective function at the network’s output.

Back propagation is employed to train (tuning of weights) the proposed network to produce the desired
output. It has two passes, such as forward and backward. The initial weights of neurons are drawn randomly
from Gaussian distributions. The cross entropy loss is the one of the main loss function used in many deep
learning approaches. Errors are determined by calculating the difference between what the network guesses
at the outputs as a response to the input patterns and what those responses should really be (the target
responses). It is defined as

Loss ¼ �
Xn

k¼1

Cn logðpkÞ (2)

where the probability for the kth class is pk and its true label is Cn. The optimization procedure, Stochastic
Gradient Descent (SGD) makes iterative changes to the weights in order to reduce those mistakes as much as
possible, continuing to do so until the outputs reach the values that were intended for them. The activation

Figure 4: Neural network architecture-fully connected with three hidden layers
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function in hidden layers constrains the input to a finite value. Many activation functions such as Rectified
Linear Unit (ReLU), Parametric ReLU (PReLU), Leaky ReLU, tanh, and sigmoid are available.

Compared to the tanh and sigmoid activation functions, the ReLU activation function is less susceptible
to the vanishing gradients issue. However, the ReLU algorithm has a dying problem. A little ascent in
elevation is introduced as a solution to the issue of dying. Thus, the proposed system uses the PReLU
function [19] instead of the ReLU function. Fig. 5 shows the PReLU and ReLU activation functions [20].
In this study, three fully connected layers are employed for the classification. Each fully connected layer
is designed with three hidden layers and five output layers.

In the forward pass, no adaptation of weights takes place, and the actual output is obtained layer by layer.
In the backward pass, the error (differences between the desired output and the actual output) is propagated
from the output to the input layers, and the weights are adjusted accordingly. This process is repeated until the
required responses are reached. Though activation functions such as tanh and sigmoid are used at the output
layer, they cannot keep up with the network’s training. The output layer uses the softmax function as the
proposed CMB classification system is a multi-class system. It is defined in Eq. (3) for a deep learning
architecture with n number of outputs.

OðmÞ ¼ eoutmP
n
eoutn

(3)

where outm is the output of mth layer. Fig. 6 shows the softmax output function, and Table 1 shows the
parameter settings for the proposed CMB classification system.

Figure 5: Input layer activation function: ReLU (left side) and PReLU (right-side)

Figure 6: Output layer activation function: Softmax
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3 Results and Discussions

The proposed CMB classification system is tested on 202 histopathological images from [21]. This
database has 10× and 100× magnified histopathological images with five different classes, such as
desmoplastic, nodular, large cell, classic, and normal. The 10× image has a resolution of 2048× 1536 pixels,
whereas the 100× image is 800× 600 pixels. For faster learning, the resolution of the input image is reduced
to 256× 256 pixels. The dataset in [21] does not have a label feature image corresponding to the sample,
which is required for segmentation-based approaches. The proposed system is a whole image classification
system, and the final output is only the name of the class (predicted class name). The database provides
each image class image as ground truth data (true or actual class name). Based on this information, the
images are categorized. Fig. 7 shows sample images with 10× magnifications in each CMB sub-type, and
Fig. 8 shows sample images with 100× magnifications. Table 2 indicates the number of images available for
the performance analysis of the CMB classification system.

The evaluation metrics, such as overall accuracy (Ac), sensitivity (Sn), and specificity (Sp) are computed
to assess the performance of the proposed CMB classification system. Table 3 shows the formulae used for
evaluating the metrics.

In Table 3, TP represents the correct prediction of Group-A (positive) samples, and FN is the
misclassification of the positive group samples. Similarly, TN represents the correct prediction of
Group-B (negative) samples, and FP is the misclassification of the negative group samples. First, the
performance of the proposed CMB classification system using 10× magnified images (no augmentation)
in the database is evaluated. Tables 4 and 5 show the evaluation metrics using 10× and 100× magnified
images (no augmentation), respectively.

The number of histopathological images in each sub-type of CMB is increased seven times using
augmentation. In augmented, the original image is rotated to predefined angles (900, 1800 and 2700),
flipped to the left and then rotated again to get more images. Table 6 shows the number of samples in the
CMB database after augmentation. Fig. 9 shows the augmented images.

Tables 7 and 8 show the evaluation metrics using 10× and 100× magnified images (augmented images),
respectively.

Table 1: CMB classification system network parameters

Network parameters Settings

Activation function (Hidden layer) PReLU

Classification function (Output layer) Softmax

Optimization function SGD

Learning rate 0.01

Loss function Cross-entropy

Momentum 0.9

Epochs 500
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It can be seen from Tables 4 to 5 and Tables 7 to 8 that the average Ac of the proposed CMB classification
system increases ∼10% when using the augmented images. As the number of images in the augmented
dataset is higher than the number of original images, the proposed architecture learns more discriminating
patterns from the augmented images than the original images while training. Thus, the performance of the
proposed CMB classification system increases from 88.32% to 99.38% for 10× magnified images and
from 85.10% to 99.07% for 100× magnified images. Fig. 10 shows the graphical representation of the
proposed CMB classification system.

It can be seen from Fig. 10 that the performance is better for the augmented histopathological images
than for using the original images. The sensitivity of the system using 10× is 69.75% (no augmentation)
and 98.10% (augmented images) and the specificity is 92.69% (no augmentation) and 99.61%
(augmented images). It is noted that the performances on 100× magnified images are less than 10× as the
number of images in nodular sub-type (2) is very few. A comparative study is provided in Table 9 to
show the superiority of the CMB classification system. All systems use 10× magnified images for
performance evaluation.

Figure 7: 10× magnified histopathological images (A) classic (B) desmoplastic (C) nodular (D) large cell
(E) Normal
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It can be seen from Table 9 that the CMB classification system has the highest performance than other
deep learning architectures, such as EfficientNets [1], VGG + SVM [2], AlexNet + SVM [2], composite deep
learning [11], and texture-based features [5].

Figure 8: 100× magnified histopathological images (A) classic (B) desmoplastic (C) normal (D) large cell
(E) Nodular

Table 2: CMB database description

#magnification Sub-type of CMB #images #magnification Sub-type of CMB #images

10x (202 images) Classic 59 100x (153 images) Classic 82

Desmoplastic 42 Desmoplastic 20

Nodular 23 Nodular 2

Large cell 28 Large cell 24

Normal 50 Normal 25

CSSE, 2023, vol.46, no.1 743



Table 3: Evaluation metrics

Overall accuracy Sensitivity Specificity

Ac ¼ TP þ TN

TP þ FN þ TN þ FP
Sn ¼ TP

TP þ FN
Sp ¼ TN

TN þ FP

Table 4: Performance of the proposed CMB classification system using 10xmagnified images (no augmentation)

Sub-types of CMB Classic Desmoplastic Nodular Large cell Normal Ac Sn Sp

Classic 40 4 6 5 4 85.15 67.80 92.31

Desmoplastic 3 30 4 2 3 89.60 71.43 94.38

Nodular 2 1 15 2 3 88.61 65.22 91.62

Large cell 3 2 2 18 3 89.60 64.29 93.68

Normal 3 2 3 2 40 88.61 80.00 91.45

Average performance 88.32 69.75 92.69

Table 5: Performance of the proposed CMB classification system using 100xmagnified images (no augmentation)

Sub-types of CMB Classic Desmoplastic Nodular Large cell Normal Ac Sn Sp

Classic 53 6 9 7 7 77.12 64.63 91.55

Desmoplastic 2 11 3 2 2 87.58 55.00 92.48

Nodular 0 0 1 0 1 88.89 50.00 89.40

Large cell 2 1 2 16 3 86.93 66.67 90.70

Normal 2 3 2 3 15 84.97 60.00 89.84

Average performance 85.10 59.26 90.80

Table 6: CMB database description (after augmentation)

#magnification Sub-type of CMB #images #magnification Sub-type of CMB #images

10x (1414 images) Classic 413 100x (1071 images) Classic 574

Desmoplastic 294 Desmoplastic 140

Nodular 161 Nodular 14

Large cell 196 Large cell 168

Normal 350 Normal 175
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Figure 9: Augmented images

Table 7: Performance of the proposed CMB classification system using 10x magnified images (augmented
images)

Sub-types of CMB Classic Desmoplastic Nodular Large cell Normal Ac Sn Sp

Classic 410 1 0 2 0 99.43 99.27 99.50

Desmoplastic 2 288 2 1 1 99.36 97.96 99.73

Nodular 2 0 156 2 1 99.22 96.89 99.52

Large cell 0 2 3 190 1 99.22 96.94 99.59

Normal 1 0 1 0 348 99.65 99.43 99.72

Average performance 99.38 98.10 99.61

Table 8: Performance of the proposed CMB classification system using 100xmagnified images (augmented
images)

Sub-types of CMB Classic Desmoplastic Nodular Large cell Normal Ac Sn Sp

Classic 568 2 1 2 1 98.88 98.95 98.79

Desmoplastic 2 134 1 2 1 98.97 95.71 99.46

Nodular 0 1 12 1 0 99.44 85.71 99.62

Large cell 2 1 2 161 2 98.79 95.83 99.34

Normal 2 1 0 1 171 99.25 97.71 99.55

Average performance 99.07 94.79 99.35
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4 Conclusions

The main contribution of this work is the development of an advanced deep learning architecture and its
application to classify CMB into five different classes. The CMB system is based on automated algorithms
that allow the accurate classification of histopathological images. Since each histopathological image
contains a considerable amount of redundant data, the relevant information or features are filtered using
convolution filters. Then their dimensions are reduced by the max pooling layers. The reduced features
are classified using a neural network classifier. It has been demonstrated that the proposed CMB
classification system offers a practical solution with an average maximum Ac of 99.38% to the problem of
classifying five different sub-types of CMB. The system achieves maximum average performances of
98.10% (Sn) and 99.61% (Sp). The proposed method automatically analyzes histopathological images,
yielding results that are not user-subjective. The high level of automation of the technique permits many
cases with relatively low labour-intensive procedures.
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