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Abstract: White blood cells (WBC) are immune system cells, which is why they
are also known as immune cells. They protect the human body from a variety of
dangerous diseases and outside invaders. The majority of WBCs come from red
bone marrow, although some come from other important organs in the body.
Because manual diagnosis of blood disorders is difficult, it is necessary to design
a computerized technique. Researchers have introduced various automated strate-
gies in recent years, but they still face several obstacles, such as imbalanced data-
sets, incorrect feature selection, and incorrect deep model selection. We proposed
an automated deep learning approach for classifying white blood disorders in this
paper. The data augmentation approach is initially used to increase the size of a
dataset. Then, a Darknet-53 pre-trained deep learning model is used and fine-
tuned according to the nature of the chosen dataset. On the fine-tuned model,
transfer learning is used, and features engineering is done on the global average
pooling layer. The retrieved characteristics are subsequently improved with a spe-
cified number of iterations using a hybrid reformed binary grey wolf optimization
technique. Following that, machine learning classifiers are used to classify the
selected best features for final classification. The experiment was carried out using
a dataset of increased blood diseases imaging and resulted in an improved accu-
racy of over 99%.

Keywords: White blood cells; augmentation; deep features; feature selection;
classification

1 Introduction

Clinical imaging is the strategy and interaction of making outline portrayals of the inside of a body [1–3]
for clinical examination and clinical intercession. Clinical imaging tries to uncover inward designs covered
up by the skin and bones [4–6], just as to analyze and treat infection. Medical images are frequently got to
give the procedure of tactics that Non-invasively produce images of the internal part of the human body [7,8].
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In the limited sense, the clinical images can be viewed like the arrangements of numerical back problems
[9,10]. This implies that reason emerges as a result of the effect (the noticed sign). According to a clinical
ultrasound account, the test consists of ultrasonic pressing force waves and repeats that go through tissues
to reveal the underlying structure. Red blood cells, platelets, and white blood cells make up the majority
of the cells in the blood [11]. White Blood cells likewise take significant capacities used for the
insusceptible framework and are the primary guard of body against contaminations and diseases [12,13].
There are many types of white blood cells as illustrated in Fig. 1. In United States (USA), one person is
diagnosed every three minutes with leukemia or myeloma. In year 2021, estimated 186,400 peoples are
diagnosed with leukemia. Every 9 min, one person is died with blood cancer in US. Due to blood cancer,
the estimated deaths in year 2021 are 57,750 [14].

Monocytes: They have a more extended lifecycle than many of the white blood cells (WBC) and it help
to breakdown the bacteria [15–17].

Lymphocyte: They make antibodies to battle against microbes, infections, and other possibly
destructive trespassers [18–20].

Neutrophils: They eliminate and digest bacteria and fungi. They are the most various kind of WBC and
your first line of safeguard when contamination strikes [21–23].

Basophils: These little cells appear to sound a caution when irresistible specialists attack your blood.
They emit synthetic substances like histamine, a marker of unfavorably susceptible infection, that assist
with controlling the body’s immune response [24–26].

Eosinophils. They assault and kill parasites and cancer cells and help with unfavorably susceptible
reactions [27–29].

The classification of WBC diseases from images is a common task. Manual inspection is a time-
consuming and stressful process. As a result, computerized techniques are widely required, and many
techniques used in the literature are based on some important steps such as preprocessing of original
images, features engineering, feature reduction or optimization, and finally classification [31]. Traditional
computer based techniques also used segmentation to obtain more informative features, but the addition
of middle steps always increases a system’s computational time. Furthermore, the manual feature
extraction process did not perform well when the available dataset size was large and complex in nature [32].

Deep learning recently demonstrated outstanding performance for classification tasks in a variety of
applications, including object detection [33], agriculture [34], medical imaging [35,36], surveillance [37],
and a few others [38,39]. Deep learning is used in the medical domain for skin lesion classification
[40,41], brain tumor classification, lung cancer classification [42], covid classification [43], and stomach
disease classification [44]. As mentioned in [45], the authors have tackled with the issue of identifying

Figure 1: Types of WBC [30]

108 CSSE, 2023, vol.46, no.1



white blood cells. With the help of a feed-forward neural network, they have classified the white blood cells
into 5 classes. At first, blood cells were segmented from the microscopic images. Then, the neural network
was fed, 16 of the most important features of the cells as input. After the segmentation, half of the images
obtained, out of 100, were used to train the neural network, while the other half was used for testing purpose.
In [46], the authors presented a sequential deep learning framework in order to identify and classify white
blood cells into their 4 types. For the pre-processing phase, this study has offered three successive
calculations. These calculations are named as, bounding box distortion, color distortion and image
flipping mirroring. In the next step, Inception and ResNet models are used to perform feature extraction
of the white blood cells. In [47], the authors have proposed a technique called Leishman-stained multi
directional transformation-invariant deep classification (LSM-TIDC), to tackle the issue of white blood
cells classification. The authors have used this method due to the fact that it utilizes interpolation and
Leishman-stained function because they not only removed false areas of several input images but also
they need no special segmentation. In the next step, multi-directional feature extraction is applied on the
preprocessed images for the optimal and relevant feature extraction. By implementing transformation
invariant model, in order to detect and classify blood cells, a system is designed shown in Fig. 2. As a
result, the nucleus is extracted and then the system performs classification by applying convolutional and
pooling properties of the system. Wang et al. [11] presented an three dimensional (3D) attention module
for white blood diseases classification. The presented method extracted the spatial and spectral features
instead of single type features and shows improved performance of 97.72%. Khan et al. [48] presented an
automated framework for white blood diseases classification using classical features selection and
extreme learning machine (ELM). They initially performed augmentation process through pixel stretch
technique and then extract some classical features. Further they opted a maximum relevance approach for
redundant features reduction. At the end, they used ELM for final classification. They used two datasets
and achieved an improved accuracy of 96.60%.

However, for WBC illness categorization, there are a few strategies that use deep learning. Furthermore,
to our knowledge, there is no technique for optimizing deep learning features for WBC illness categorization.
The main goal of optimization is to extract the best features from the generated deep learning features in order
to improve classification accuracy while saving time. Convolutional layers, pooling layers to alleviate the
problem of overfitting, activation layers, normalization layers, fully connected layer, and a SoftMax
classifier are all common layers in a simple deep learning model. A few researchers start from scratch

Figure 2: Proposed deep learning and optimization of features based architecture for white blood diseases
classification
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with a pre-trained model, while others freeze some layers and train using transfer learning. However, each
phase has its own set of difficulties.

The following issues for WBC disease classification have been discussed in this article: i) In comparison
to deep learning, traditional image processing techniques are slow and inaccurate; ii) Manual classification is
a difficult process due to a number of factors, including time consumption, the availability of an expert, and
the experience of an expert; iii) In the traditional technique, they must first extract the region of interest (ROI)
and then extract feature, which is time consuming and increases the chance of classification error; and iv) the
presence of irrelevancies. In this work, our main objective is to performed data augmentation and obtained a
better trained model for accurate WBC diseases classification. Our major contributions in this work are listed
as follows:

• Balance the imbalance classes using data augmentation, whereas the selected operations are flipping
horizont on al and vertical directions.

• Modified a pre-trained deep learning model and freeze 50% layers. The fine-tuned model is later
trained through transfer learning and performed features engineering on average pooling layer.

• A hybrid binary gray wolf optimizer algorithm is developed based on fixed ratio for the selection of
best features. The neural network is employed as a fitness function instead of fine-K nearest neighbor
(Fine-KNN).

The rest of the manuscript is organized in the following order. Section 2 of this manuscript is presented
the proposed methodology. Results and detailed discussion added under Section 4. Finally, Section 5
conclude the manuscript.

2 Proposed Methodology

This section outlines the proposed deep learning-based methodology for classifying white blood cell
disorders. The suggested framework’s architecture is represented in Fig. 2. Data augmentation is done on
the original photos first, then sent to the DarkNet53 deep network, which has been fine-tuned for training.
The model is trained via transfer learning. After that, the trained model is used to extract features from
the global average pool layer. After that, a reformed grey wolf optimization algorithm is used to select the
best features. For the selection process, the number of iterations can be 50, 100, 150, or 200. Machine
learning classifiers are used to classify the best picked features, and the results are acquired.

2.1 Dataset Description

In this work, we combined two datasets–LISC and Dhruv for the experimental process [49]. The selected
datasets consists of four types of WBC diseases such as Eosinophil, Lymphocyte, Monocyte, and Neutrophil,
as illustrated in Fig. 3. Initially, the images in these datasets are limited and not enough to train a deep
learning model; therefore, we applied augmentation step to increase the number of images for better
training of a deep learning model. Three different operations are applied on each class such as horizontal
flip, vertical flip, and transpose. Mathematically, these operations are defined as follows:

Figure 3: Sample images of WBC imaging dataset
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Consider D represents the entire images database, k x; yð Þ represents each image in the database having
dimension 256� 256� k, where k ¼ 3. On each image k x; yð Þ, three operations are applied such as
horizontal pixels movement, vertical pixels movement, and transpose. Mathematically, these operations
are defined as:

kh x; yð Þ ¼ k xþ 1� yð Þ (1)

kv x; yð Þ ¼ k yþ 1� xð Þ (2)

kt x; yð Þ ¼ kyx (3)

where, kh x; yð Þ represents horizontal pixels movement operation, kv x; yð Þ represent vertical pixels
movement operation, and kt x; yð Þ represent pixels transpose. After these operations, the number of
images in each class increases to 4000 which are previously below 500. A few sample images are
illustrated in Fig. 4.

2.2 Modified Darknet-53 Model Features Extraction

Darknet is a neural network framework that is free and open source. It is a quick and highly accurate
framework for real-time object detection (accuracy for specific trained models is dependent on training
data, epochs, batch size, and other factors) and used for input images. The principal feature extraction
module of the real-time object detection network you only look once (YOLOv3) is Darknet-53, which
was introduced in 2018. The goal of Darknet-53 is to extract characteristics from input photos. YOLO
version 3 implements a 53-layered fully convolutional architecture with successive 3 × 3 and 1 × 1 fully
connected layers for feature extraction. The structure of modified Darknet-53 model is shown in Fig. 5.

For detecting purpose, 53 additional layers are added, giving YOLO v3 a 106-layer convolutional
architecture. After each convolution layer, the batch normalization (BN) layer and the LeakyRelu layer
are utilized. The name of this network architecture framework is Darknet-53. To determine the classes
that the boundary box may contain, YOLOv3 uses a separate logical classifier with a multi-label
classification for every prediction box. The network topology is expanded to layer 53 using continuous

Figure 4: Representation of data augmentation step
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3 × 3 and 1 × 1 convolutional layers. In terms of prediction methodologies, YOLOv3 predicts three border
boxes for each panel.

The convolutional neural network (CNN) uses convolution instead of regular matrix multiplication in at
least one layer, as indicated in Eq. (4). Convolution also permits for different input sizes. It is a mathematical
process that inputs two functions x ið Þ, and y ið Þ, and generates a third function that demonstrates how the
shape of one of the functions affects the shape of the other.

g ið Þ ¼ x � yð Þ ið Þ ¼
Z /

�/
x ið Þ y i� Dð ÞlD (4)

Sparse interaction, equivalent modeling and parameter sharing are three principles that CNN layers are
constructed on. The term “sparse interaction” refers to the network’s kernel size being smaller than the size of
input. This makes the network much more efficient because the matrix multiplication technique is an O nmð Þ
process, where the input size is denoted by n and the output size is denoted by m. Parameter sharing derives
from the fact that parameters in a CNN are reused in a way that they aren’t in traditional artificial neural
network (ANN). It really has no impact on the running time, but it does reduce the amount of memory
used, which is critical in large CNNs. Convolutional layers, like ReLU, have both a multiplication and a
non-linear input vector. In most cases, the CNN has more than one pooling layers. A pooling layer is a
type of layer that takes a large input and reduces it to a smaller size. This is accomplished by selecting
the mean or highest value of subsampled squares inside the input. The important layer in the CNN
architecture is fully connected layer. It connects all of the active spots in the layers that came before it. Its
output is an n-dimensional vector, where n denotes the number of classes for which the network has been
trained. We have four classes in our research. The likelihood that the object relates to the class is
represented by each member in the vector. The categorization result is the element with the maximum
probability. The architecture of CNN is shown in Fig. 6.

Figure 5: Structure of modified darknet-53 model
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The above model is fine-tuned and added few new layers and trained through transfer learning (TL) [50].
Visually, the working of TL process is illustrated in Fig. 7. Mathematically, the TL is described as follows:

Transfer learning worked to increase the learning of the target predictive function fTpð Þ in Td using the
knowledge in Sd and Tsl, where Sd 6¼ Td or Tsl 6¼ Ttl, given a source domain Sd and learning task Tsl, and
a target domain Td and learning task Ttl.

Figure 6: Architecture of convolutional neural network (CNN)

Figure 7: Representation of transfer learning
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A domain is defined as the pair d ¼ V ; f Vð Þ in the specification above. As a result, the criterion
Sd 6¼ Td implies that VS 6¼ Vt or ft Vð Þ 6¼ fs Vð Þ.

A task is also described as a pair t ¼ U ; f U jVð Þ. As a result of the constraint Tsl 6¼ Ttl, either
Us 6¼ Ut or f UsjVsð Þ 6¼ f UtjVtð Þ applies.

The learning problem becomes a conventional machine learning problem when the target and source
domains are about the same, that is Sd ¼ Td, and their learning tasks are the same, that is Tsl ¼ Ttl.
When the domains are dissimilar, one of two things can happen:

The feature spaces are distinct between the domains, that is VS ¼ Vt.

The feature spaces are the same between domains, but the marginal probability distributions between
domain data are not; that is f Vsð Þ ¼ f Vtð Þ, where Vsi 2 Vs and Vti 2 Vt.

After the training of fine-tuned models, the activation is applied on global average pooling layer and
extract features. The dimension of extracted features of this layer is M � 1280. The extracted features are
analyzed and found some redundant information that need to be remove before final classification.

2.3 Best Feature Selection

Feature Selection is the process of minimizing the number of input variables. The set of input variables
should be reduced to lower the computation complexity of modeling and, in some situations, to increase the
model’s performance. Data redundancy is eliminated through feature selection step. In this work, we utilized
an improved optimization algorithm named reformed gray wolf for best feature selection. After applying the
improved gray wolf optimization algorithm, the original deep extracted feature vector is reduced toM � 435,
where M represents the number of images utilized in the testing process.

To dynamically search the feature map for the optimal feature combination, the binary gray wolf
optimization is applied. The various feature reducts for a feature vector of size n would be 2n, which is a
big space of features to be explored accurately. The feature combination with the best classification
performance and the fewest number of selected features is the best. Equation shows the fitness function
being used binary gray wolf optimization to assess specific gray wolf placements.

fitness function ¼ @dL Sð Þ þ q
N � Lj j
N

(5)

where dL Sð Þ is the classified quality of condition characteristic set L similar to decision S, L is the length of
the selected subset of features, N is the total numbers of features, and @ 2 0; 1½ � and q ¼ 1� @ are two
parameters related to the prominence of classification performance and subset length. The function of
fitness improves classification quality @dL Sð Þ, and the ratio of randomly selected features to total features
N � Lj j
N

. By using error rate instead of classification quality and selected feature ratio instead of

unselected feature size, the preceding equation can simply be transformed into a sub problem.

fitness function ¼ @eL Sð Þ þ q
Lj j
N

(6)

where eL Sð Þ is the condition attribute set classifier’s error rate, the length of the selected feature subset is
denoted by L, and the total number of features is represented by N.

For the feature selection challenge, a novel binary grey wolf optimization (bGWO) is presented in this
work. The updating equation for wolves is based on three position vectors. Particularly vs; v’; vx which
pulls each wolf to the first three optimal solutions. The pool of possibilities in the bGWO is binary at all
times; all solutions are on the edge of a hypercube.
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The major modifying equation in the bGWO technique could be written as follows: The s is a fittest
solution in the mathematical model for the grey wolf optimization (GWO). ’ and x are the names of the
second and third best solutions, respectively. 9 is considered for the remaining possible solutions. The
hunt is led by s; ’; x and 9 and these three candidates are followed. Before the pack can hunt a victim,
it must first encircle it. The following formulations are used to mathematically model encircling
behavior.

�v k þ 1ð Þ ¼ vq kð Þ þ �H :�J (7)

where �J is described as in equation

�J ¼ �G:vq kð Þ � �v kð Þ�� �� (8)

Coefficient of vectors are presented by �H and �J . And the positions of the gray wolf and the prey denoted
by �v and vq respectively. The values of �H and �G are computed by the following equations.

�H ¼ 2c:e1 � c (9)

�G ¼ 2e2 (10)

where c decreases gradually from 2 to 0 over iterations and e1, e2 are random vectors in the range [0, 1]. The
initial top three candidate solutions produced thus far force the remaining search agents (including the 9) to
update their locations in accordance with the best search agent’s positions. As a result, the wolves’ positions
are updated as follows:

�v k þ 1ð Þ ¼ v1 þ v2 þ v3
3

(11)

where v1 , v2 , and v3 can be determined by the following equations:

v1 ¼ vs � H1:Js
�� �� (12)

v2 ¼ v’ � H2:J’
�� �� (13)

v3 ¼ vx � H3:Jx
�� �� (14)

where the first three best solutions are denoted by vs, v’ and vx.H1,H2 andH3 are described in equation. And
Js, J’ and Jx can be determined by following equations:

Js ¼ G1:vs � �v
�� �� (15)

J’ ¼ G1:v’ � �v
�� �� (16)

Jx ¼ G1:vx � �v
�� �� (17)

The updating of the parameter c, which manages the ratio between exploration and exploitation, is a final
note regarding the gray wolf optimizaation (GWO). According to the Eq. (18), the parameter is linearly
modified on every iterations to ranging from 2 to 0.

c ¼ 2� k
2

maxiter
(18)
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Only the modified gray wolf position vector is constrained to be binary in this approach shown in
Eq. (19).

vkþ1
a ¼ 1 if sigmOid

v1 þ v2 þ v3
3

� �
� random

0 Otherwise

(
(19)

where random numbers are chosen from the uniform distribution that is belong to binary numbers 0 and 1.
vkþ1
a is representing the new binary location in dimension a at iteration k and sigmOid oð Þ is described as
follows:

sigmOid oð Þ ¼ 1

1þ r�10 v�0:4ð Þ (20)

Finally, a best selected feature vector is obtained of dimension N � 435. The final selected features are
classified using machine learning classifiers for classification. Several classifiers are employed in this work
such as support vector machine (SVM), Fine KNN, ensemble trees, and neural network.

3 Results and Comparison

The experiments performed on the best selected testing features after four different feature sets such as:
i) Classification using best selected features at 50 iterations; ii) Classification using best selected features at
100 iterations; iii) Classification using best selected features at 150 iterations, and iv) Classification using
best selected features at 200 iterations. The augmented dataset has four classes such that Eosinophil,
Lymphocyte, Monocyte and Neutrophil. Several classifiers are opted for the classification results and
neural network gives better performance. The results are computed with ratio 50:50 and cross validation
was 10. Several evaluation measures are employed such as sensitivity rate, precision rate, F1-Score, and
accuracy. The time of each classifier is also opted for the experimental process. All the simulations of the
proposed framework are conducted on MATLAB2021a using Intel Core i7 7700 processor, 8 GB of
RAM, and an Intel HD Graphics 630 graphics processing unit (GPU).

3.1 Experiment No.1

The results of the first experiment are presented in Table 1. In this experiment, 50 numbers of iterations are
performed and obtained the best feature vector for classification results. In this table, eight different classifiers
performance has been discussed in terms of accuracy, sensitivity rate, time, and named a fewmore. The highest
accuracy of 99.6% is obtained for neural network (NN), whereas the sensitivity rate is 99.70, precision rate is
99.65, F1-Score is 99.67, false negative rate (FNR) is 0.30, and classification time is 9.261 (s). These values can
be further verified through a confusion matrix, illustrated in Fig. 8. The rest of the classifiers such as medium
Gaussian SVM (MGSVM), cubic SVM (CSVM), Medium K Nearest Neighbor (MKNN), weighted KNN
(WKNN), quadratic SVM (QSVM), cubic KNN (CuKNN), and cosine KNN (CoKNN) also achieved better
accuracies of 98.4%, 98.4%, 98.1%, 98.6%, 97.5%, 97.5%, and 98.2%, respectively. The computational
time of each classifier is also noted during the classification process and based on this table, it is observed
that the minimum noted time is 9.261 (s) for NN.

3.2 Experiment No.2

The results of the second experiment are presented in Table 2. In this experiment, 100 numbers of
iterations are performed and obtained the best feature vector for classification results. The highest
accuracy of 99.7% is obtained for neural network (NN), whereas the sensitivity rate is 99.75, precision
rate is 99.75, F1-Score is 99.77, FNR is 0.25, and classification time is 12.602 (s). These values can be
further verified through a confusion matrix, illustrated in Fig. 9. The rest of the classifiers such as
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medium Gaussian SVM (MGSVM), cubic SVM (CSVM), Medium KNN (MKNN), weighted KNN
(WKNN), quadratic SVM (QSVM), cubic KNN (CuKNN), and cosine KNN (CoKNN) also achieved
better accuracies, as listed in Table 2. The computational time of each classifier is also noted during the
classification process and based on this table, it is observed that the minimum noted time is 12.602 (s) for
NN. Moreover, the other classifier also not consumes more time but after the number of iterations, a little
time is increased due to more numbers of feature selections.

Table 1: Classification results of proposed method after 50 iterations of optimization algorithm using augmented
dataset

Classifier Sensitivity rate
(%)

Precision rate
(%)

F1 Score
(%)

Accuracy
(%)

FNR
(%)

Time
(s)

Neural
network

99.70 99.65 99.67 99.6 0.30 9.261

MGSVM 98.425 98.425 98.42 98.4 1.575 17.07

CSVM 98.425 98.425 98.42 98.4 1.575 12.369

MKNN 98.125 98.175 98.15 98.1 1.875 19.129

WKNN 98.65 98.65 98.65 98.6 1.35 19.401

QSVM 97.5 97.475 97.49 97.5 2.5 11.385

CbKNN 97.475 97.5 97.49 97.5 2.525 190.66

CoKNN 98.15 98.175 98.16 98.2 1.85 19.562

Figure 8: Confusion matrix of neural network for experiment 1

Table 2: Classification results of proposed method after 100 iterations of optimization algorithm using augmented
dataset

Classifier Sensitivity rate (%) Precision rate (%) F1 Score (%) Accuracy (%) FNR Time (s)

Neural
network

99.75 99.75 99.75 99.7 0.25 12.602

MGSVM 98.325 98.325 98.325 98.3 1.675 15.162

CSVM 98.5 98.525 98.5125 98.5 1.5 14.996
(Continued)
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3.3 Experiment No.3 and 4

The results of the third and fourth experiments are presented in Tables 3 and 4. In these experiments,
150 and 200 numbers of iterations are performed and obtained the best feature vector for classification
results. Table 3 presents the classification results of 3rd experiment and obtained the best accuracy of
99.6%, whereas the classification time is 15.39 (s). The confusion matrix of neural network (NN) for this
experiment is also illustrated in Fig. 10. Through this figure, the sensitivity, precision, and F1-Score can
be verified. Furthermore, the result of experiment four are given in Table 4 and obtained the best
accuracy of 99.5%. This accuracy can be verified through a confusion matrix, illustrated in Fig. 11. In
this experiment, the minimum noted computational time is 15.39 (s) that is little higher than the above
three experiments. Overall, the experiment 2 gives the better accuracy of 99.7% and based on the time,
experiment 1 is better.

Comparison: The fine-tuned Darknet-53 deep learning model is utilized in this work for features
extraction that later optimized using improved optimization algorithm. For the best feature selection, the
optimization procedure is repeated with a different number of iterations such as 50, 100, 150, and 200.
The results of each experiment are given in Tables 1–4 and confusion matrixes are illustrated in Figs. 8–
11. Based on the results, NN gives better accuracy of 99.7% for 100 iterations. Moreover, the proposed
method accuracy is also compared with some recent techniques, as presented in Table 5. In this table, it is
observed that the proposed method accuracy is better than the recent techniques.

Table 2 (continued)

Classifier Sensitivity rate (%) Precision rate (%) F1 Score (%) Accuracy (%) FNR Time (s)

MKNN 98.025 98.025 98.025 98.0 1.975 16.589

WKNN 98.7 98.725 98.7125 98.7 1.3 15.788

QSVM 97.525 97.475 97.499 97.5 2.475 15.428

CbKNN 97.55 97.575 97.5625 97.5 2.45 18.19

CoKNN 97.525 97.575 97.549 97.5 2.475 15.268

Figure 9: Confusion matrix of neural network for experiment 2
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Table 3: Classification results of proposed method after 150 iterations of optimization algorithm using augmented
dataset

Classifier Sensitivity rate (%) Precision rate (%) F1 Score (%) Accuracy (%) FNR Time (s)

Neural
network

99.575 99.6 99.59 99.6 0.425 15.39

MGSVM 98.35 98.325 98.34 98.3 1.65 15.915

CSVM 98.475 98.45 98.46 98.5 1.525 16.748

MKNN 97.725 97.75 97.74 97.7 2.275 18.476

WKNN 98.65 98.625 98.62 98.6 1.35 17.412

QSVM 97.35 97.35 97.35 97.3 2.65 21.45

CbKNN 97.1 97.1 97.1 97.1 2.9 21.88

CoKNN 97.525 97.55 97.54 97.5 2.475 25.661

Table 4: Classification results of proposed method after 200 iterations of optimization algorithm using augmented
dataset

Classifier Sensitivity rate (%) Precision rate (%) F1 Score (%) Accuracy (%) FNR Time (s)

Classifier 99.5 99.5 99.50 99.5 0.5 18.035

Neural network 98.0 98.025 98.012 98.0 2.0 18.1843

MGSVM 98.15 98.175 98.16 98.2 1.85 20.9931

CSVM 97.95 97.975 97.96 97.9 2.05 21.748

MKNN 98.6 98.6 98.60 98.6 1.4 24.457

WKNN 96.97 96.975 96.97 97.0 3.02 28.5461

QSVM 97.30 97.35 97.32 97.3 2.7 23.1476

CbKNN 97.97 98.025 97.99 98.0 2.02 22.703

Figure 10: Confusion matrix of neural network for experiment 3
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4 Conclusion

A deep learning and features optimization based technique for WBC illness categorization is proposed in
this study. By conducting a data augmentation phase, the size of the selected dataset was enlarged, which was
then used to train a pre-trained deep model. Using an upgraded optimization technique known as improved
binary grey wolf optimization, features are retrieved and the best of them are chosen. After multiple
iterations, features are chosen and a neural network is used to make the final classification. The NN
achieved the best accuracy of 99.7% for 100 iterations on the supplemented dataset. Based on the results,
it is concluded that the augmentation process improved the accuracy but increased the time that was
reduced through selection technique. Moreover, the numbers of iterations increases the length of selected
feature vectors that only affects the classification time. In the future, more datasets shall be considered
and train some deep learning models from the scratch.
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