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Abstract: The computational techniques are a set of novel problem-solving meth-
odologies that have attracted wider attention for their excellent performance. The
handling strategies of real-world problems are artificial neural networks (ANN),
evolutionary computing (EC), and many more. An estimated fifty thousand to
ninety thousand new leishmaniasis cases occur annually, with only 25% to
45% reported to the World Health Organization (WHO). It remains one of the
top parasitic diseases with outbreak and mortality potential. In 2020, more than
ninety percent of new cases reported to World Health Organization (WHO)
occurred in ten countries: Brazil, China, Ethiopia, Eritrea, India, Kenya, Somalia,
South Sudan, Sudan, and Yemen. The transmission of visceral leishmaniasis is
studied dynamically and numerically. The study included positivity, boundedness,
equilibria, reproduction number, and local stability of the model in the dynamical
analysis. Some detailed methods like Runge Kutta and Euler depend on time steps
and violate the physical relevance of the disease. They produce negative and
unbounded results, so in disease dynamics, such developments have no biological
significance; in other words, these results are meaningless. But the implicit non-
standard finite difference method does not depend on time step, positive,
bounded, dynamic and consistent. All the computational techniques and their
results were compared using computer simulations.
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1 Introduction

In 2017, Boukhalfa et al. presented a mathematical model which describes the dynamics of visceral
leishmaniasis in the dog population. They observed the effect of primary reproduction numbers and
showed global stability using the Lyapunov function [1]. In 2020, Coffeng et al. predicted the impact of
reduced detection delays and increased population coverage on observed visceral leishmaniasis cases
using a mathematical model [2]. In 2020, Gandhi et al. discussed the delayed visceral leishmaniasis
model’s dynamical characteristics and presented the steady states’ global stability [3]. Zamir et al.
formulated well known mathematical model with the help of deterministic techniques [4]. In 2019,
Nadeem et al. constructed a mathematical model of zoonotic cutaneous leishmaniasis, including vector
populations, reservoirs, and humans. Based on sensitivity analysis of threshold number, they proposed
some strategies for eliminating the disease [5]. Rutte et al. studied the infectiousness of kala-azar dermal
leishmaniasis [6]. In 2019, Adamu et al. presented a mathematical model with time delay for zoonotic
visceral leishmaniasis transmission dynamics. They concluded that the incubation period significantly
affects the stability of the equilibrium points [7]. Zamir et al. proposed a mathematical model of visceral
leishmaniasis disease with a saturated infection rate. They recommended different control strategies based
on sensitivity analysis to manage the spread of this disease in the community [8]. In 2017, Shimozako
et al. proposed a new model for zoonotic visceral leishmaniasis using a modified set of differential
equations on Brazilian human data. They recommended that sandfly population control be prioritized to
eliminate the disease in Brazil [9]. Ghosh et al. proposed a compartmental model of visceral
leishmaniasis cases from South Sudan in 2013. They also performed a cost-effectiveness study and cost
sensitivity analysis on different interventions [10]. In 2017, Lmojtaba et al. proposed the visceral
leishmaniasis dynamics with seasonality’s effect. They applied two control, treatment, and vaccination, to
the model that forces the system to be non-periodic [11]. Biswas studied disease dynamics to analyze the
seasonal visceral leishmaniasis incidence data from South Sudan. He also discussed the optimal control
strategy using vaccination and possible treatment of infective humans [12]. In 2017, Debroy et al. studied
vector-borne diseases and collected challenges and successes related to modeling transmission dynamics
of visceral leishmaniasis [13]. In 2017, Rutte et al. presented three transmission models of visceral
leishmaniasis in the Indian subcontinent with structural differences regarding the disease stage [14]. In
2017, Zou et al. developed a mathematical model to study the transmission dynamics of visceral
leishmaniasis considering three populations: dogs, sandflies, and humans [15]. In 2016, Siewe et al.
developed a mathematical model to explain the evolution of the disease and used the model to simulate
treatment by existing or potential new drugs [16]. Rock et al. presented the next-generation matrix
methods of visceral leishmaniasis with clinical infection [17]. In 2015, Roy et al. considered a
mathematical model of cutaneous leishmaniasis with a time delay effect in the disease transmission [18].
In 2015, Subramanian et al. developed a compartmental-based mathematical model of zoonotic visceral
leishmaniasis transmission. They analyzed the model for positivity, boundedness, and stability around
steady states indifferent to diseased and disease-free scenarios and derived the primary reproduction
number [19]. In 2015, Medley et al. used empirical data on health-seeking behavior and health-system
performance from the Indian state of Bihar, Bangladesh, and Nepal to parametrize a mathematical model
[20]. Some well-known mathematical models are studied through different aspects [21–29]. The paper’s
strategy is as follows: Section 2 goes to the formulation, and Section 3 states the fundamental properties
of the model. Section 4 goes to the model’s numerical results, and the last quarter delivers the results,
discussion, and concluding remarks.
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2 Variables and Parameters

The parameters and variables of the leishmaniasis model are described as follows: S1 tð Þ: Susceptible
(uninfected) dogs at any time t. L1 tð Þ: Latent (infected but not infectious) dogs at any time t. I1 tð Þ:
Infectious dogs at any time t. R1 tð Þ: Uninfected dogs at any time t.Q1 tð Þ : Infected dogs at any time t.
D tð Þ : Total dog population. d: Natural death rate in dogs. a: represented the birth rate, b: the natural
birth rate of dogs, r: designated the rate of latent dogs to infectious dogs, and C: defined vectorial
capacity of the sandfly population. The 1st order, nonlinear, and coupled ordinary differential equations of
the visceral leishmaniasis epidemic model are as follows:

dS1
dt

¼ abD� CI1S1
D

� dS1: (1)

dL1
dt

¼ CI1S1
D

� rþ dð ÞL1: (2)

dI1
dt

¼ rL1 � dI1: (3)

dR1

dt
¼ 1� að ÞbD� CI1R1

D
� dR1: (4)

dQ1

dt
¼ CI1R1

D
� dQ1: (5)

Following non-negative initial conditions, S1 0ð Þ � 0; L1 0ð Þ � 0; I1 0ð Þ � 0; R1 0ð Þ � 0; Q1 0ð Þ � 0
and S1 tð Þ þ L1 tð Þ þ I1 tð Þ þ R1 tð Þ þ Q1 tð Þ ¼ D tð Þ.

2.1 Normalization

The system (1–5) can be normalized by subsidizing variables to avoid complications S ¼ S1
D
; L ¼ L1

D
;

I ¼ I1
D
; R ¼ R1

D
; Q ¼ Q1

D
as follows:

dS

dt
¼ ab� CIS � dS: (6)

dL1
dt

¼ CIS � rþ dð ÞL: (7)

dI1
dt

¼ rL� dI : (8)

dR1

dt
¼ 1� að Þb� CIR� dR: (9)

dQ1

dt
¼ CIR� dQ: (10)

with nonnegative initial conditions S 0ð Þ � 0; L 0ð Þ � 0; I 0ð Þ � 0; R 0ð Þ � 0; Q 0ð Þ � 0 and S tð Þþ
L tð Þ þ I tð Þ þ R tð Þ þ Q tð Þ ¼ 1.

CSSE, 2023, vol.45, no.3 2937



The feasible region of the model as follows:

H ¼
�

S; L; I ; R; Qð ÞER5
þ: S tð Þ þ L tð Þ þ I tð Þ þ R tð Þ þ Q tð Þ ¼ D tð Þ � b

d
;

S � 0; L � 0; I � 0; R � 0; Q � 0

�
:

2.2 Positivity of Model

Theorem 1: For any time, t, the system (6–10) admits a positive solution.

Proof: By letting the system,

dS

dt

����
S¼0

¼ ab � 0;
dL

dt

����
L¼0

¼ CIS � 0;
dI

dt

����
I¼0

¼ rL � 0;
dR

dt

����
R¼0

¼ 1� að Þb � 0

dQ

dt

����
Q¼0

¼ CIR � 0, as desired.

2.3 Boundedness of Model

Theorem 2: For any time, t, the system (6–10) admits a bounded solution and lies in the feasible region.

For considerable time t, the following inequality satisfies lim
t!1

Sup D tð Þ � b
d
.

Proof: Consider the population function as follows:

D tð Þ ¼ S tð Þ þ L tð Þ þ I tð Þ þ R tð Þ þ Q tð Þ:
dD

dt
¼ b� d S þ Lþ I þ Rþ Qð Þ

dD

dt
� b� dD

D tð Þ � D 0ð Þe�dt þ b
d
; t � 0

lim
t!1

Sup D tð Þ � b
d
, as desired.

2.4 Equilibria of Model

The model admits two types of equilibria as follows:

Leishmaniasis free equilibrium point LnFE � D1ð Þ ¼ S1; L1; I1; R1; Q1ð Þ ¼ a; 0; 0; 1� a; 0ð Þ and
Leishmaniasis existing equilibrium point LnEE � D2ð Þ ¼ S�; L�; I�; R�; Q�ð Þ.

S� ¼ d rþ dð Þ
Cr

; L� ¼ abCr� d2 rþ dð Þ
Cr rþ dð Þ ; I� ¼ abCr� d2 rþ dð Þ

Cd rþ dð Þ ; R� ¼ 1� að Þ rþ dð Þbd
abCr� d2 rþ dð Þ þ rþ dð Þd2 ;

Q� ¼ 1� að Þb abCr� d2 rþ dð Þ� �
d abCr� d2 rþ dð Þ þ d2 rþ dð Þ� � :
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2.5 Reproduction Number

In this section, the calculation of the infection force ratio by using the next-generation matrix method
and the leishmaniasis-free equilibrium of the model as follows:

L0

I 0

� �
¼ 0 CS

0 0

� �
L
I

� �
� rþ d 0

�r d

� �
L
I

� �

where F ¼ 0 CS
0 0

� �
; V ¼ rþ d 0

�r d

� �
. F and V are the transmission and transition matrices,

respectively.

FV�1 ¼ 1

d rþ dð Þ
CrS rþ dð ÞCS
0 0

� �
:

The largest eigenvalue of FV�1 is called reproduction number and is defined as Ro ¼ Cra
d rþ dð Þ

3 Local Stability

Theorem 3: The leishmaniasis free equilibrium LnFE� D1ð Þ D1 ¼ S1; L1; I1; R1; Q1ð Þ ¼
a; 0; 0; 1� a; 0ð Þ for the system (2.6–2.10) is locally asymptotically stable (LAS) if Ro , 1.

Proof: The Jacobian matrix at D1 as follows:

JLn jD1
¼

�d 0 0 0 0
0 � rþ dð Þ Ca 0 0
0 r �d 0 0
0 0 �C 1� að Þ �d 0
0 0 C 1� að Þ 0 �d

2
66664

3
77775

Consider, JLn jD1
� kI

��� ��� ¼ 0

�d� k 0 0 0 0
0 � rþ dð Þ � k Ca 0 0
0 r �d� k 0 0
0 0 �C 1� að Þ �d� k 0
0 0 C 1� að Þ 0 �d� k

����������

����������
¼ 0

k1 ¼ �d, 0; k2 ¼ �d, 0; k3 ¼ �d, 0

k2 þ a1kþ a0 ¼ 0:

where a1 ¼ rþ 2d; a0 ¼ drþ d2 � rCa.

Since a1; a0 . 0 if R0, 1, it is stable with the reference Routh-Hurwitz properties.

Theorem 4: The leishmaniasis existing equilibrium LnEE� D2ð Þ; D2 ¼ S�; L�; I�; R�; Q�ð Þ for
the system (6–10) is locally asymptotical stable (LAS) if R0 . 1.

Proof: The Jacobian matrix at D2 as follows:

JLn jD2
� kI

��� ��� ¼ 0
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�abCr
d rþdð Þ�k 0

d2 rþdð Þ�abCr
d rþdð Þ 0 0

abCr�d2 rþdð Þ
d rþdð Þ � rþdð Þ�k

d rþdð Þ
r

0 0

0 r �d�k 0 0

0 0
�C 1�að Þ rþdð Þbd

abCr�d2 rþdð Þþ rþdð Þd2
d2 rþdð Þ�abCr�d2 rþdð Þ

d rþdð Þ �k 0

0 0
C 1�að Þ rþdð Þbd

abCr�d2 rþdð Þþ rþdð Þd2
abCr�d2 rþdð Þ

d rþdð Þ �d�k

2
66666666666664

3
77777777777775

¼0

k1 ¼ �d, 0; k2 ¼ d2 rþ dð Þ � abCr� d2 rþ dð Þ
d rþ dð Þ , 0; if R0 . 1

k3 þ b2k
2 þ b1kþ b0 ¼ 0;

where b2 ¼ abCrþ d rþ dð Þ rþ 2dð Þ
d rþ dð Þ ; b1 ¼ abCr

rþ 2d
d rþ dð Þ

� �
; b0 ¼

r abCr� d2 rþ dð Þ� �2
d2 rþ dð Þ2

Applying Routh-Hurwitz Criterion for 3rd order, b2. 0; b0 . 0; and b1b2 . b0, if R0. 1: Therefore,
the LnEE� D2ð Þ of the given system (6–10) is locally asymptotically stable.

4 Numerical Results

Using the command-built software such as Matlab and simulating the system (1–6) at both equilibria of
the model using scientific literature presented in Tab. 1 as follows:

4.1 Euler’s Scheme

The Euler method could be applied to the system (1–5) as follows:

Snþ1 ¼ Sn þ h ab� CInSn � dSnð Þ (11)

Lnþ1 ¼ Ln þ h CInSn � rþ dð ÞLnð Þ (12)

Inþ1 ¼ In þ h rLn � dInð Þ (13)

Rnþ1 ¼ Rn þ h 1� að Þb� CInRn � dRnð Þ (14)

Qnþ1 ¼ Qn þ h CInRn � dQnð Þ (15)

where h is any time step size?

Table 1: Values of parameters

Parameters %LnFE � D1 %LnEE � D2

a 0.50 0.50

b 0.50 0.50

d 0.50 0.50

r 0.40 0.40

C 0.15 3.15
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4.2 Diagrams

The Euler’s method graphs are plotted for both equilibria of the model as follows:

(a)

(b)

(c)

(d)

Figure 1: (Euler simulations) subpopulation at LnFE � D1 for h ¼ 0:01 (b) subpopulation at LnFE � D1

for h ¼ 1 (c) subpopulation at LnEE � D2 for h ¼ 0:01 (d) subpopulation at LnEE � D2 for h ¼ 1
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4.3 Runge-Kutta Scheme

The Runge Kutta method could be applied to the system (1–5) as follows:

Stage I

J1 ¼ h ab� CInSn � dSnð Þ

K1 ¼ h CInSn � rþ dð ÞLn½ �
L1 ¼ h rLn � dInð Þ
M1 ¼ h 1� að Þb� CInRn � dRn½ �
N1 ¼ h CInRn � dQnð Þ

Stage II

J2 ¼ h ab� C In þ L1
2

	 

Sn þ J1

2

	 

� d Sn þ J1

2

	 
� �

K2 ¼ h C In þ L1
2

	 

Sn þ J1

2

	 

� rþ dð Þ Ln þ K1

2

	 
� �

L2 ¼ h r Ln þ K1

2

	 

� d In þ L1

2

	 
� �

M2 ¼ h 1� að Þb� C In þ L1
2

	 

Rn þM1

2

	 

� d Rn þM1

2

	 
� �

N2 ¼ h C In þ L1
2

	 

Rn þM1

2

	 

� d Qn þ N1

2

	 
� �

Stage III

J3 ¼ h ab� C In þ L2
2

	 

Sn þ J2

2

	 

� d Sn þ J2

2

	 
� �

K3 ¼ h C In þ L2
2

	 

Sn þ J2

2

	 

� rþ dð Þ Ln þ K2

2

	 
� �

L3 ¼ h r Ln þ K2

2

	 

� d In þ L2

2

	 
� �

M3 ¼ h 1� að Þb� C In þ L2
2

	 

Rn þM2

2

	 

� d Rn þM2

2

	 
� �

N3 ¼ h C In þ L2
2

	 

Rn þM2

2

	 

� d Qn þ N2

2

	 
� �

Stage IV

J2 ¼ h ab� C In þ L3ð Þ Sn þ J3ð Þ � d Sn þ J3ð Þ½ �

2942 CSSE, 2023, vol.45, no.3



K2 ¼ h C In þ L3ð Þ Sn þ J3ð Þ � rþ dð Þ Ln þ K3ð Þ½ �
L2 ¼ h r Ln þ K3ð Þ � d In þ L3ð Þ½ �

M2 ¼ h 1� að Þb� C In þ L3ð Þ Rn þM1

2

	 

� d Rn þM3ð Þ

� �

N2 ¼ h C In þ L3ð Þ Rn þM3ð Þ � d Qn þ N3ð Þ½ �
Final Stage

Snþ1 ¼ Sn þ 1

6
J1 þ 2J2 þ 2J3 þ J4ð Þ (16)

Lnþ1 ¼ Ln þ 1

6
K1 þ 2K2 þ 2K3 þ K4ð Þ (17)

Inþ1 ¼ In þ 1

6
L1 þ 2L2 þ 2L3 þ L4ð Þ (18)

Rnþ1 ¼ Rn þ 1

6
M1 þ 2M2 þ 2M3 þM4ð Þ (19)

Qnþ1 ¼ Qn þ 1

6
N1 þ 2N2 þ 2N3 þ N4ð Þ (20)

where h is any time step size.

4.4 Diagrams

The Runge Kutta method graphs are plotted for both equilibria of the model as follows:

4.5 NSFD Method

The NSFD method that could be applied to the system (1–5) as follows:

Eq. (1)

Snþ1 ¼ Sn þ h ab� CInSnþ1 � dSnþ1
� �

Snþ1 ¼ Sn þ hab
1þ hCIn þ hd

(21)

Like, Eq. (21),

Lnþ1 ¼ Ln þ hCInSn

1þ h rþ dð Þ (22)

Inþ1 ¼ In þ hrLn

1þ hd
(23)

Rnþ1 ¼ Rn þ h 1� að Þb
1þ hCIn þ hd

(24)

Qnþ1 ¼ Qn þ hCInRn

1þ hd
(25)

where h is any time step size.
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(a)

(b)

(c)

(d)

Figure 2: (Runge-Kutta simulations) (a) subpopulation at LnFE � D1 for h ¼ 0:1 (b) subpopulation at
LnFE � D1 for h ¼ 2 (c) subpopulation at LnEE � D2 for h ¼ 0:01 (d) subpopulation at LnEE � D2 for
h ¼ 2
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4.6 Stability Results of NSFD Method

Considering the function for the system (3.11–3.15),

M ¼ S þ hab
1þ hCI þ hd

; P ¼ Lþ hCIS

1þ h rþ dð Þ ; U ¼ I þ hrL
1þ hd

; V ¼ Rþ h 1� að Þb
1þ hCI þ hd

and W ¼ Qþ hCIR

1þ hd

The partial derivatives of the Jacobean matrix,

J S; L; I ; R; Qð Þ ¼

1

1þ hCI þ hd
0

�hC Sþ habð Þ
1þ hCI þ hdð Þ2 0 0

hCI

1þ h rþ dð Þ
1

1þ h rþ dð Þ
hCS

1þ h rþ dð Þ 0 0

0
hr

1þ hd
1

1þ hd
0 0

0 0
�hC Rþ h 1� að Þb½ �

1þ hCI þ hdð Þ2
1

1þ hCI þ hd
0

0 0
hCR

1þ hd
hCI

1þ hd
1

1þ hd

2
666666666666664

3
777777777777775

(26)

At disease free equilibrium point S; L; I ; R; Qð Þ ¼ a; 0; 0; 1� a; 0ð Þ, Eq. (26) becomes

J a; 0; 0; 1� a; 0ð Þ ¼

1

1þ hd
0

�hCa 1þ hbð Þ
1þ hdð Þ2 0 0

0
1

1þ h rþ dð Þ
hCa

1þ h rþ dð Þ 0 0

0
hr

1þ hd
1

1þ hd
0 0

0 0
�hC 1� að Þ 1þ hbð Þ

1þ hdð Þ2
1

1þ hd
0

0 0
hC 1� að Þ
1þ hd

0
1

1þ hd

2
666666666666664

3
777777777777775

J � kIj j ¼ 0

1

1þ hd
� k 0

�hCa 1þ hbð Þ
1þ hdð Þ2 0 0

0
1

1þ h rþ dð Þ � k
hCa

1þ h rþ dð Þ 0 0

0
hr

1þ hd
1

1þ hd
� k 0 0

0 0
�hC 1� að Þ 1þ hbð Þ

1þ hdð Þ2
1

1þ hd
� k 0

0 0
hC 1� að Þ
1þ hd

0
1

1þ hd
� k

2
666666666666664

3
777777777777775

¼ 0

k1 ¼ 1

1þ hd

����
����, 1; k2 ¼ 1

1þ hd

����
����, 1; k3 ¼ 1

1þ hd

����
����, 1
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J a; 0; 0; 1� a; 0ð Þ ¼
1

1þ h rþ dð Þ
hCa

1þ h rþ dð Þ
hr

1þ hd
1

1þ hd

2
664

3
775

A ¼ Trace of J ; B ¼ Determinant of J

A ¼ 2þ 2hdþ hr
1þ hdð Þ 1þ h rþ dð Þ½ � ; B ¼ 1� h2Car

1þ hdð Þ 1þ h rþ dð Þ½ �
For stability, to prove the following conditions as follows:

i) 1� Aþ B. 0
ii) 1þ Aþ B. 0
iii) B, 1
iv) 1� Aþ B. 0

1� 2þ 2hdþ hr
1þ hdð Þ 1þ h rþ dð Þ½ � þ

1� h2Car
1þ hdð Þ 1þ h rþ dð Þ½ � . 0

1þ hdð Þ 1þ h rþ dð Þ½ � � 2� 2hd� hrþ 1� h2Car. 0

1þ hrþ hdþ hdþ h2rdþ h2d2 � 2� 2hd� hrþ 1� h2Car. 0

h2 rdþ d2 � Car
� �

. 0

h2. 0:

h. 0

Since the step size is never zero, so the condition is satisfied.

(ii) 1þ Aþ B. 0

1þ 2þ 2hdþ hr
1þ hdð Þ 1þ h rþ dð Þ½ � þ

1� h2Car
1þ hdð Þ 1þ h rþ dð Þ½ � . 0

1þ hdð Þ 1þ h rþ dð Þ½ � þ 2þ 2hdþ hrþ 1� h2Car. 0

1þ hrþ hdþ hdþ h2rdþ h2d2 þ 2þ 2hdþ hrþ 1� h2Car. 0

h2 rdþ d2 � Car
� �þ 2h rþ 2dð Þ þ 4. 0

h2aþ 2hbþ 4. 0

where a ¼ rdþ d2 � Car; b ¼ rþ 2d

h2 þ 2h
b

a
þ 4

a
. 0

h2 þ 2h
b

a
þ b

a

	 
2

þ 4

a
.

b

a

	 
2
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hþ b

a

	 
2

þ 4

a
.

b

a

	 
2

Hence, this condition is also satisfied.

(iii) B, 1

1� h2Car
1þ hdð Þ 1þ h rþ dð Þ½ � , 1

1� h2Car, 1þ hdð Þ 1þ h rþ dð Þ½ �
1� h2Car, 1þ hrþ hdþ hdþ h2rdþ h2d2

hrþ 2hdþþh2rdþ h2d2 þ h2Car. 0

h2 rdþ d2 þ Car
� �þ h rþ 2dð Þ. 0

h2cþ hb. 0

where c ¼ rdþ d2 þ Car

h2 þ h
b

c
. 0

h2 þ 2h
b

2c
þ b

2c

	 
2

.
b

2c

	 
2

hþ b

2c

	 
2

.
b

2c

	 
2

So, condition (iii) is also satisfied, as desired.

4.7 Diagrams

The NSFD method graphs are plotted for both equilibria of the model as follows:
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4.8 Comparison Section

(b)

(c)

(d)

(a)

 

Figure 3: (NSFD simulations) subpopulation at LnFE � D1 for h ¼ 0:01 (b) subpopulation at LnFE � D1

for h ¼ 100 (c) subpopulation at LnEE � D2 for h ¼ 0:01 (d) subpopulation at LnEE � D2 for h ¼ 100
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5 Results and Concluding Remarks

The simulation of the Euler method is presented in Figs. 1a–1d. Figs. 1b and Fig. 1d show that the
system violates the properties of the real-world problem like positivity, boundedness, and dynamical

(a)

(b)

(c)

(d) 

Figure 4: Comparison of methods (a) infected humans at LnEE � D2 for h ¼ 0:01 (b) infected humans at
LnEE � D2 for h ¼ 1 (c) infected humans at LnEE � D2 for h ¼ 0:01 (d) infected humans at LnEE � D2 for
h ¼ 2
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consistency by an increase in the time step size. The Runge Kutta method of order fourth depicts the
graphical representation in Figs. 2a–2d, but the technique is time-dependent and converges to the false
steady state of the model. The NSFD process depicts the graphical solution of the model in Figs. 3a–3d;
the NSFD method converges to proper equilibria of the model at any time step size and fulfils all the
model properties. The support comparison of the numerical methods is presented in Figs. 4a–4d. The
Euler and RK-4 schemes are dependent on time step size. These numerical schemes are convergent for
small step sizes while divergent for large step sizes. But the nonstandard finite difference method used for
communication dynamics of leishmaniasis disease is independent of the time step size. It is convergent
even for any time step size like hundreds and thousands. NSFD scheme shows positivity, boundedness,
and stability and behaves similarly to the behavior of the continuous model. Hence, the NSFD scheme is
more efficient, fast convergent, and reliable than the remaining method. In the future, the work will
extend to the field as presented in [30–33].
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