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Abstract: This article introduces a new medical internet of things (IoT) frame-
work for intelligent fall detection system of senior people based on our proposed
deep forest model. The cascade multi-layer structure of deep forest classifier
allows to generate new features at each level with minimal hyperparameters com-
pared to deep neural networks. Moreover, the optimal number of the deep forest
layers is automatically estimated based on the early stopping criteria of validation
accuracy value at each generated layer. The suggested forest classifier was suc-
cessfully tested and evaluated using a public SmartFall dataset, which is acquired
from three-axis accelerometer in a smartwatch. It includes 92781 training samples
and 91025 testing samples with two labeled classes, namely non-fall and fall.
Classification results of our deep forest classifier demonstrated a superior perfor-
mance with the best accuracy score of 98.0% compared to three machine learning
models, i.e., K-nearest neighbors, decision trees and traditional random forest, and
two deep learning models, which are dense neural networks and convolutional
neural networks. By considering security and privacy aspects in the future work,
our proposed medical IoT framework for fall detection of old people is valid for
real-time healthcare application deployment.

Keywords: Elderly population; fall detection; wireless sensor networks; internet of
medical things; deep forest

1 Introduction

World Health Organization (WHO) defines the accident of a fall as an event that occurs when the persons
unintentionally come to rest on the ground, floor, or any lower level [1]. Falls pose a threat to the health of
older adults and can limit their ability to stay independent. Moreover, some of the injuries caused by falls
might be deadly to an elderly person. According to WHO, compared to other age groups, adults over the
age of 60 account for the majority of fatal falls (with an estimated total of 684k fatal falls occurring each
year). Without a doubt, some of these lives could have been saved if the fall of the elderly person was
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timely detected by the caregiving/medical personal. This was one of the main motivations for the emergence
of many of the fall detection technologies that we witness today.

An important component of a fall detection system is the sensor(s) that collect(s) the physiological and/
or ambient data from the parson being monitored. Fall detection sensors are classified by Mozaffari et al. [2]
into three categories: motion sensors, physiological sensors, and ambient (or environmental) sensors. The
most used motion sensors are the accelerometers (which measure rate of change in velocity with respect
to time), the gyroscopes (which detect angular velocity in 3-D), and the magnetometers (which sense
orientation). The physiological sensors track vital body indicators such as blood pressure, blood oxygen
level and body temperature. The ambient sensors scan the environment surrounding the elderly patient.
Vision and sound sensors (like surveillance cameras and microphones) are the most common examples of
the ambient sensors category.

Fall detection systems employ various methods to interpret the data collected from the sensors and look
for certain patterns that characterize fall events. Wang et al. [3] classify fall detection methods into two main
categories: threshold-based and data-driven. Threshold-based methods are usually used when the data
produced by the sensor has a simple form like the case of accelerometers and gyroscopes [4,5]. In this
case, a fall is detected whenever the sensor readings exceed an empirical threshold value. Threshold-
based methods are lightweight and require low computational resources. However, the outcome of these
methods is prone to variability when applied to different groups of patients.

Data-driven methods for fall detection harness the power of machine learning (ML) and deep learning
(DL) to analyze the collected data and recognize fall events. Unlike threshold-based methods, data-driven
methods can deal with complex forms of data (such as sound and video signals) and handle multiple
hybrid sensors (i.e., sensor fusion). The most common algorithms used in data-driven methods for fall
detection are: Hidden Markov Model (HMM) [6], Support Vector Machine (SVM) [7], Decision Trees [8]
and Convolutional Neural Networks (CNN) [9,10]. Data-driven methods are potentially more accurate
than threshold-based methods yet require more computational resources.

The computational resources needed for fall detection can be provided (by cloud computing) using
internet-of-things (IOT) technologies. Many IOT-based fall detection systems for the elderly have been
proposed in recent years [11–14]. These IOT-based systems are potentially more scalable than regular
architectures and hence can be quite helpful if the healthcare staff is not enough to provide the required
assistance compared to the number of patients. Moreover, the architecture of IOT-based systems can be
flexible such that some computations can be pushed from the cloud to the edge to reduce data
transmission overhead time and provide faster response.

In this article, we propose a new intelligent IoT-based fall detection system to support indoor healthcare
of old patients. The contributions of this study are summarized as follows.

� Building a simple and advanced fall detection framework for senior people based on wearable
smartwatches and smart internet of medical things (IoMT).

� Developing a new deep forest classifier to identify fall accidents of elderly patients instead of using
complex deep neural network models with high computational resources.

� Validating the outperformance of our developed deep forest classifier vs. other machine learning and
deep learning classifiers in previous studies by conducting a comparative study.

The remainder of this paper is organized as follows. Section 2 presents an overview of relevant research
works of fall detection systems including types of sensors, machine and deep learning methods and current
fall detection systems. Section 3 gives a full description of our proposed IoT-based framework for fall
detection of elderly patients using our developed deep forest classifier. Overall results and evaluations of
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our extensive experiments and discussions are demonstrated in Sections 4 and 5, respectively. Concluding
remarks and main prospects of this study are finally given in Section 6.

2 Related Work

Over the last few years, there has been a significant advance of new technology designed by researchers
to detect and prevent falls in Elderly Patients. A scalable design for the Whoops system is presented in [11].
The suggested architecture can monitor thousands of elderly people’s cases, detect falls, and alert caregivers.
In addition, numerous ML algorithms for evaluating the detection system’s applicability have been validated.
Boosted decision trees had the highest classification performance of all the models examined. In [13],
Yacchirema et al. proposed a new IoT-based system for identifying senior people’s falls in indoor
situations. Wireless sensor networks, smart devices, and cloud computing platform are all integrated into
this solution. Each time whenever a fall is discovered, the system uses data from previous falls to develop
a new ML model. The suggested method has a high-level ratio in the recognition of falling, as evidenced
by its identification accuracy of 92%.

Moreover, a variety of intelligent solutions of ML and DL algorithms, IoT devices, and imaging
techniques have been proposed in previous studies to deal with the problem of elderly people falling
[15,16]. Intelligent fall detection methods can employ vision, sound, or a wearable device to detect falls.
The accelerometer, gyroscopes, or a combination of sensing devices are widely used in wearable fall
detection sensors. Furthermore, multiple wearable sensors have been formed in the medical IoT context to
detect and avoid falls in elderly patients at home. These devices are mostly monitoring and alarm systems
that are meant to prevent, detect, and warn caregivers in the event of a fall. People over the age of
65 accounts for more than 50 percent of all injury-related hospitalizations. As a result, countries are
funding more in fall detection device development to reduce the amount of money spent on medical care
and treatment for post-fall injuries.

An integrated Histogram of Oriented Gradients (HOG) with SVM have been used for fall detection
using IoT scheme [17]. For digital images of older adults, a smart wearable sensor is used instead of an
Red-Green-Blue (RGB) camera to provide privacy and strong light intensity modifications. The attributes
of an individual are recovered using the HOG algorithm after the acquisition of denoised binary images.
Then, they are classified to identify the fall circumstances using linear SVM.

The authors in [18] used an edge-computing architecture to identify daily patient activities including fall
events based on a long short-term memory (LSTM) model in real-time. The edge computing platform can
detect falls with a 95.8% accuracy using real-time flowing data processing. A centralized IoT-based fall
detection was proposed for real-time surveillance of a large population [19]. Many types of customized
embedded devices can be utilized to monitor a massive population, such as Raspberry Pi and Arduino
boards. Finally, the proposed detection method achieved accuracy score of 99.7%. The authors of [20]
presented two temporal inference models, classification model I and classification model II, to detect fall
incidents by utilizing wearable IoT altimeter sensors. The results were promising based on such inference
models for indoor fall monitoring of senior people, with the highest prediction accuracy score of 98% for
the proposed classification model II.

The authors in [21] described an approach for preventing falls in the elderly by designing and deploying
a fall monitoring system that uses machine learning to make decisions and the IoT to store data and broadcast
alerts. Extreme Gradient Boosting (XGBoost), a machine learning technique noted for its accuracy and
speed, was employed and it has a 96% accuracy rate. An IoT-enabled elderly fall detection algorithm is
presented in [22] for smart homecare that uses an optimum deep convolutional neural network (IMEFD-
ODCNN). The IMEFD-ODCNN model’s purpose is to make it possible for smartphones and
sophisticated deep learning (DL) algorithms to recognize falls in the smart home. The results showed that
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the IMEFD-ODCNN model outperformed other current techniques, with an accuracy of 99.76% maximum
and 99.57% on the multiple cameras fall down and University of Rzeszow (UR) fall detection datasets,
respectively. In [23], the authors presented a noise tolerant Fall Detection System (FDS) that performs
well in the event of missing values in data. To construct FDS based on wearable sensors, the study used
Recurrent Neural Networks (RNNs) with an underlying Bidirectional Long Short-Term Memory
(BiLSTM) structure. The results indicate that BiLSTM’s capacity to preserve long-term interconnections
makes it a suitable model for dealing with missing values in wearable fall detection systems. An IoT-
based solution for human falls in people’s homes is proposed in [24]. Edge, fog, and cloud make up the
solution’s three-layered cognitive architecture. Human falls are classified using a mathematical model
based on the Morlet wavelet and artificial neural networks (ANNs) model. The results showed that
combining both models is efficient and practical to the developed system, with 92.5% accuracy. To
identify fall/non-fall events, the research in [25] provided an Improving Archimedes Optimization
Approach with Deep Learning Empowered Fall Detection (IAOA-DLFD) model. The IAOA leverages
excellent Capsule Network (CapsNet) hyperparameter selection to dramatically improve overall fall
detection performance. The test images’ suitable class labels are also determined using a radial basis
function (RBF) network. The improved IAOA-DLFD technique had a 99.7% accuracy rate, according to
the obtained results. Tab. 1 shows a comparison of recent fall detection methods based on the utilized
techniques.

Table 1: A comparison of different fall detection methods in the literature

Method Types of
sensors

Dataset Advantages Disadvantages

Boosted decision tree [11] Accelerometer
& gyroscope

SisFall Size of stored and
transmitted data IS
small

Unnecessary emergency
actions

Big data machine learning
(BigML) [13]

Accelerometer SisFall High success rate
in fall detection

Error rate is 33%

Histogram of oriented
gradients with support
vector machine [17]

Deep sensor Mixed
dataset

Accuracy improves
to 98.1%

Detection errors still
occur

Long short-term memory
(LSTM) [18]

MetaMotionR
wearable
sensor

MobiAct Real-time
streaming with an
accuracy of 95.8%.

Data reduction

Linear classifier [19] Accelerometer tFall The response time
is quickly

Requires consistent
network connectivity

Temporal inference [20] Wearable
altimeter
sensor

Synthetic
YouTube
videos

Early warning of a
fall incident

Methodological
limitation

Extreme gradient boosting
(XGBoost) [21]

Accelerometer
& gyroscope

SisFall Increase the
accuracy and
reduce false alarms

Data acquired from falls
including young
individuals

Squeeze-and-excitation
network based classifier
[22]

Cameras Fall dataset
of multiple
cameras

Maximum
accuracy of
99.76%

Requires scalable and
solid versions of the
proposed design

(Continued)
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3 Dataset and Methods

3.1 Fall Dataset

A public fall dataset from Texas State University [26,27] has been used in this study. This dataset was
acquired from 14 healthy individuals by using a wearable smartwatch. They are between 21 to 60 years old,
and their heights and weights range from 1.52 to 1.98 m and 45 to 104 Kg, respectively. The volunteered
individuals simulated fall situations to give two dataset classes of fall and non-fall cases only. The
original dataset has measurements of the embedded accelerometer in 3 directions of x, y, z. The outcomes
are represented in a binary form, such that ones and zeros present fall and non-fall instances, respectively.
Tab. 2 illustrates a total of 183806 samples of the whole fall dataset, which are divided into two main
files for training and testing phases. Total training samples are 92781 (8175 samples for fall cases and
84606 samples for non-fall cases), while total testing samples are 91025, including 5025 fall instances
and 86000 non-fall instances.

3.2 Traditional Random Forest

Random forests are firstly introduced by Breiman in 2001 [28]. Basically, the random forest (RF) is a
combination of multiple decision trees to form an ensemble learning algorithm, as depicted in Fig. 1. For
one decision tree, a bootstrap technique is applied to extract randomized samples from original dataset. A
subspace of random features is utilized to choose a sorting point at all nodes of the decision tree. Then,
the final prediction result of this group of decision trees is obtained based on a majority voting.
Therefore, the RF is considered as one of the most powerful ML algorithms, including the following
main steps [29]:

� Using bagging or bootstrap aggregating method, a random sampling of the training dataset with
replacement is done to form an ensemble model of the decision trees.

Table 1 (continued)

Method Types of
sensors

Dataset Advantages Disadvantages

Recurrent neural network
with bidirectional LSTM
[23]

Accelerometer
& gyroscope

SisFall &
UP-Fall
detection

Handle missing
values in data

Decrease in correct
predictions

Morlet wavelet & artificial
intelligence [24]

Accelerometer
doppler sensor

Raw data
created

Accuracy of 92.5%
without false
negatives

Require higher
computational effort

Capsule network
(CapsNet) & radial basis
function [25]

Accelerometer Fall dataset
of multiple
cameras

Maximum
accuracy of 99.7%

Unimodal fusion model

Table 2: Samples distribution of the fall dataset in this study

Data Fall Non-fall Total

Training samples 8175 84606 92781

Testing samples 5025 86000 91025

Total 13200 170606 183806
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� For each new sub-dataset created by sampling, the RF decision tree is built. Tree nodes are divided by
randomly picking m features from the basic D features, such that m < D. A reduction in the
information gain ratio is the selection criteria. The preceding procedure is continued until all of the
tree nodes have been built and the halting requirements have been satisfied. There are fewer than a
number of samples that has been predetermined in the leaf nodes, or all of the data in the sub-
datasets can be distinguished.

� Each classifier of decision trees is used to generate its own prediction in order to establish the
classification of new data classes, and the outcomes of each tree are then used to output the final
distinct findings by majority vote. Fig. 1 depicts the basic decision flowchart of a simple RF model.

The classical RF algorithm as an ensemble method of decision trees showed good performance in real-
world applications, e.g., efficient authentication for smartphone users [30] and detection of human voice
pathology [31]. However, it is still depending only on the original feature representation during the
training phase, without generating new features into the model itself [32]. That limited the traditional RF
algorithm to achieve good generalization performance compared to recent deep neural networks.

3.3 Deep Forest Model

Deep forest is a decision-tree ensemble technique similar to deep networks but with smaller number of
hyper-parameters [32]. It is developed in a cascade structure such that each level of the cascade receives
feature information processed by the previous level, as depicted in Fig. 2. The deep forest levels are
estimated based on the processed input data automatically. One level of the deep forest presents an
ensemble of random forests. For instance, two random forests and two completely random forests [28]
are included to enhance diversity, as shown in Fig. 2; where each completely random forest is composed
of 500 complete decision trees [33], created by defining a random feature for dividing at every tree node.
Then, a growing tree is stopped when each leaf node has only one class of all instances, i.e., Gini value
(measures the impurity at the leaf node) = 0. In the same way, each random forest consists of
500 decision trees, where the number of trees is a hyperparameter for each forest. The number of input
features d is randomly chosen as √d feature candidates and selected the one which achieved the best Gini
value for splitting [32].

Figure 1: Schematic diagram of a simplified random decision forest
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Each RF can calculate class distribution for a given instance by estimating the percentage of different
classes of training samples at the leaf node where the instance is located, and then averaging over all
decision trees in the same RF. Each class vector is formed based on the estimated class distribution.
Then, it is concatenated with the original feature vector to be the input for the next level of the deep
forest. For instance, each one of four RFs will generate a 3D class vector for three classes. Hence, the
input of the next level receives augmented features of 12 ( = 3 × 4), as presented in Fig. 2.

To avoid overfitting of overall deep forest model, k-fold cross validation [34,35] has been applied to
generate the resulted class vector for each random forest. That means each instance will be utilized as k −
1 times of the training dataset, yielding k − 1 class vectors, which will be averaged to generate the final
class vector as augmented features for the next stage of the cascade forest levels. The overall performance
of the deep forest model may be assessed on the validation set after extending a new level, and the
training operation will stop if no significant performance is detected. Therefore, the number of deep forest
levels can be estimated automatically. In case of the computational cost of training phase and/or limited
computing resources are available, the training error rather than cross-validation error can be employed to
restrict the growth of forest levels. That allows adaptive model complexity of the deep forest to be
constructed at different scales of training data [32].

3.4 Proposed Fall Detection System

Fig. 3 shows our proposed smart fall detection system for senior people with smartwatches based on a
medical IoT framework. In this study, accelerometer sensing device is assumed to be one of the built-in
sensors in smartwatches to give time-series readings of patient conditions, i.e., fall or non-fall, in 3-
dimensional cartesian coordinates. The workflow of our smart IoT-based fall detection system can be
described in three main steps as follows.

First, the old patient wears a smartwatch integrated with a built-in three-axis accelerometer to detect any
unexpected change in the body motions along the day, as presented in previous fall detection systems [36].
These measurements of the user’s movements are recorded and sent to medical cloud services for further
analysis via a wireless home network, e.g., Wi-Fi or Bluetooth networks, connected to the Internet.

Second, medical cloud services facilitate recording and analyzing different types of patient data like
signals and images, without in-situ high computing resources at medical centers and hospitals [37].
There, the acquired readings of the patient movements are classified using fine-tuned deep forest model,
as introduced above in Fig. 2.

Figure 2: Main structure of deep forest [32]. Assuming three predicted classes and each level is composed
of two random forests (black) and two completely random forests (blue). Each random forest generates a
concatenated 3D class vector for feeding the input of the next cascade levels
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Third, two output modes of the deep forest classifier are defined as non-fall (safe mode) and fall
(emergency mode). In non-fall mode, the physical activity of patients is normal, and no further actions
are needed. But the emergency mode is immediately activated if a fall accident is detected. Then,
emergency response agents, i.e., emergency center, caregivers, medical professionals and family members
are notified with automatic phone calls or messages for helping patients and giving them urgent medical
care, as shown in Fig. 3.

3.5 Fall Classification Evaluation Metrics

The following evaluation metrics for fall detection have been used to assess our proposed deep forest
classifier. A confusion matrix of 2 × 2 was created using cross-validation estimation [38]. True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN) are the four predicted outcomes
of non-fall and fall classes. Additionaally, four well-known classification metrics, namely accuracy,
precision, recall (sensitivity), and F1-measure have been calculated, as given in Eqs. (1)–(4).

accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
100% (1)

precision ¼ TP

TP þ FP
(2)

recallðsensitivityÞ ¼ TP

TP þ FN
(3)

F1� measure ¼ 2ðprecision� recallÞ
precisionþ recall

(4)

4 Experimental Results and Evaluation

The Tensorflow 2 and Keras packages were used to implement the suggested deep forest classifier and
additional machine learning models [39]. The classification tests were run on a laptop with 16 GB of RAM
and an Intel(R) Core (TM) i7-2.2 GHz processor. A graphical processing unit (GPU) NVIDIA of 4 GB is also
exploited for executing all experiments. Two files of the public SmartFall dataset [26,27] including total
samples of 92781 and 91025 are used for training and testing phases, respectively. For the testing file, the
number of non-fall cases (86000 samples) is approximately 17 times higher than the fall cases

Figure 3: Proposed deep forest classifier for identifying fall accidents of old patients with a built-in three-
axis accelerometer of smartwatches in a medical IoT framework
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(5025 samples), as illustrated in Tab. 2. The original values of accelerometer coordinates (x, y, z) in the used
dataset have been directly applied as inputs for all tested classifiers without any scaling or modification.

Besides our proposed deep forest classifier, three machine learning models, namely, K nearest neighbors
(KNN), decision tree and traditional RF, and two deep learning models, namely, deep dense network and 1-D
convolutional network (CNN) have been implemented and tested to identify fall cases. That allows to verify
the advantageous performance of applied deep forest model. The number of trees in traditional RF and deep
forest is carefully set to 10. To avoid the overfitting conditions, early stopping of the model training is
activated based on automatic estimation of the validation accuracy for each generated layer, as illustrated
in Tab. 3. The final optimal number of layers of our deep forest classifier is 3.

Results of performance evaluation for all tested machine and deep learning classifiers are illustrated in
Tab. 4, based on four classification metrics, namely accuracy, precision, sensitivity or recall, and F1-score, as
presented above in Eqs. (1)–(4). The best classification metrics has been achieved by our proposed deep
forest model, resulting the highest accuracy score of 98.0%. 1D CNN model achieved the second-highest
accuracy value of 95%. Traditional RF and KNN classifiers give the middle performance of accuracy
values of 94.0% and 93.0%, respectively, while the decision tree algorithm failed to correctly identify fall
cases with the lowest accuracy of 88.0%. The performance of dense neural network is lower than the 1D
CNN, achieving 91.0% accuracy.

Table 3: Automatic layer estimation of our cascade forest model

Layer number Validation accuracy Early stopping (max = 2)

0 94.30 -

1 94.40 -

2 94.41 -

3 94.39 Detected 1 of 2

4 94.37 Detected 2 of 2

Table 4: Evaluated performance metrics of all tested fall detection models in this study

Fall detection model Class Precision Recall (Sensitivity) F1-score Accuracy (%)

K-nearest neighbors Non-fall 0.96 0.97 0.96 93.0

Fall 0.29 0.23 0.26

Decision tree Non-fall 0.96 0.91 0.93 88.0

Fall 0.16 0.30 0.21

Random forest Non-fall 0.95 0.98 0.97 94.0

Fall 0.35 0.20 0.25

Deep dense network Non-fall 0.96 0.94 0.95 91.0

Fall 0.23 0.29 0.25

1D convolutional neural network Non-fall 0.95 1.00 0.97 95.0

Fall 0.81 0.12 0.22

Proposed deep forest Non-fall 0.98* 0.99 0.99 98.0

Fall 83.0 0.72 0.78

Note: *Bold values present best classifier performance.
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Furthermore, Tab. 5 illustrates a comparison between the performances of our proposed deep forest
model and other machine learning and deep learning models in previous studies using the same public
dataset. Obviously, the deep forest classifier showed a superior performance by achieving the highest
accuracy score of 98.0%, while the traditional deep learning model using CNN architecture achieved the
lowest accuracy value of 86.0%. Lightweight CNN presents the second-best accuracy value of
approximately 97% for detecting fall events and can be useful in the application of mobile embedded
systems with limited computing resources.

5 Discussion

Compared to classical machine learning and/or deep learning classifiers, the results of this study
demonstrated that our deep forest classifier is efficient and accurate to identify fall cases of individuals, as
illustrated in Tabs. 4 and 5. The proposed classifier achieved the highest accuracy of 98.0% using the
public smartwatch dataset. It is assumed to be the main module of our suggested medical IoT framework
as depicted in Fig. 3. The main reasons of the successful performance of our cascade forest classifier can
be presented as follows. First, the cascade structure of ensemble forest model allows to produce new
features from the original input features as depicted in Fig. 2. Second, automatic number estimation of
deep forest levels or layers (See Tab. 3) supports a good fitting to complex dataset such as fall
classification data. Finally, number of proposed deep forest classifier parameters is minimal compared to
the large number of parameters in deep neural networks like CNN. Therefore, the parameters of deep
forest model can be easily tuned by the user.

However, the estimation of the optimal number of the deep forest classifier layers takes a long time even
in the presence of early stopping criteria. But proposed medical IoT-based framework facilitates the
computing tasks with multi-GPUs by utilizing cloud computing services as shown in Fig. 3. In addition,
the hyperparameter tuning of the deep forest model can be automatically accomplished using bio-inspired
optimization approaches, such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs)
[42]. Nevertheless, the optimization procedure is a time-consuming task to find the best group of the
model hyperparameters.

Advanced technologies of security and privacy solutions for fall detection systems have been recently
proposed at the medical IoT edge computing level [43], which are not considered in our study nor other
classical fall detection devices. Additionally, secure IoT-based healthcare systems should include the
encryption and decryption processes, which become essential module for processing real-time tasks.
There are still open areas of research such as federated learning [44], explainable and/or generalizable
deep learning [45] and edge IoT layer [46] for developing future versions of fall detection systems.
However, our proposed medical IoT framework for accurate fall detection of old people is still accurate
and valid for real-time application deployment.

Table 5: Comparative performance of proposed deep forest with other fall detection models in the literature
using the same dataset in this study

Fall detection model Accuracy (%)

Deep learning model [26] 86.00

Long short-term memory (LSTM) [40] 93.46

Lightweight convolutional neural network [41] 96.79

Proposed deep forest 98.00*

Note: *Bold values present best classifier performance.
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6 Conclusion and Future Work

Fall detection technologies are important tools for the care of the elderly patients and are critical to their
health and well-being. As a result, it’s necessary to come up with innovative and effective ways for
preventing and reducing the detrimental effects of human falls. This work proposes an intelligent fall
detection system that is both simple and computationally efficient. The suggested medical IoT appliance
makes use of low-cost sensors that may be worn and installed in residential houses and other facilities.
The proposed system allows our deep forest algorithm and IoMT devices to detect the occurrence of
elderly patients falls in smart homes with high accuracy score of 98.0%. In our future work, the
performance of fall detection classifier can be improved by utilizing other advanced lightweight DL
models for classification process with various structures and parameters. Also, more datasets can be used
for the training and experimental improvements.
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