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Abstract: Complex networks have been a prominent topic of research for several
years, spanning a wide range of fields from mathematics to computer science and
also to social and biological sciences. The eigenvalues of the Seidel matrix, Seidel
Signless Laplacian matrix, Seidel energy, Seidel Signless Laplacian energy, Max-
imum and Minimum energy, Degree Sum energy and Distance Degree energy of
the Unitary Cayley graphs [UCG] have been calculated. Low-power devices must
be able to transfer data across long distances with low delay and reliability. To
overcome this drawback a small-world network depending on the unitary Cayley
graph is proposed to decrease the delay and increase the reliability and is also
used to create and analyze network communication. Small-world networks based
on the Cayley graph have a basic construction and are highly adaptable. The
simulation result shows that the small-world network based on unitary Cayley
graphs has a shorter delay and is more reliable. Furthermore, the maximum delay
is lowered by 40%.

Keywords: Seidel energy; Seidel Signless Laplacian eigenvalues; Distance degree
energy; Unitary Cayley graphs

1 Introduction

Complex networks have recently gained popularity in a variety of disciplines and research areas. The
Internet has altered the way we deal with everything in our daily lives. Computer experts were fascinated
by the idea of mastering the wheel of controlling the Internet’s complexity and massive expansion. The
data magnitude of social networks is unpredictable and unmanageable by social scientists. The biological
interactions that characterize a cell metabolism are believed to establish its pathways and supply
biologists with information [1]. To be able to manage networks before networks manipulate our needs,
new science is required [2].

The small-world phenomenon has recently become a hot area of theoretical and practical research,
attracting the attention of multidisciplinary academics. “Short chains of acquaintances” or “six degrees of
separation” are synonymous with the term “small world.” [3,4] refers to the graph of a human social
network, in which nodes replace people and edges between nodes simulate if the two matching people
know each other by first name [5]. Because any two random pairs of nodes are separated by a small
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number of nodes, usually less than 6, the graph is known as a “small world.” Although the first-name basis
criterion for edge definition is just a little naive, the resulting graph acts as a real-world network.

Because of the adoption of the constraints of either of the end extreme network types, random networks
and regular lattices, small-world networks are extremely important. Small-world networks have shown that
they can be utilized as frameworks for studying complex system interaction networks [6]. The most
significant goal of the small-world study is to confirm the notion that all networks have a qualitatively
similar structure across different areas. Although nodes in the network exhibit a high degree of clustering,
a common aspect of vast networks is the existence of short pathways between most node pairs. Nodes
can be reached and navigated without requiring a comprehensive of the entire network. Such qualities
aided in the description of large-scale social network behaviour, as well as providing vital insights into
the internal architecture of decentralized peer-to-peer systems.

The main contribution of this research, works a new small world network-based unitary Cayley graphs is
proposed to design and analyse the communication of the network and also it reduces the delay and gives better
reliability. The remainder of the research is organized as follows: Section 2 shows the connected research efforts
as well as the research work basis. The explained various energy generation theorems in Section 3. Section
4 clearly illustrates the proposed small world network-based unitary Cayley graph. Section 5 shows the
result and discussion of the small-world network. Section 6 depicts the conclusion.

2 Literature Survey

This section explains various surveys related to small-world networks studied throughout the years. The
present state of the small-world network is discussed and an overview is provided in this study.

Baysal et al. [7] presented the autapse effects on the chaotic resonance (CR) phenomena in single
neurons and small world neural networks. When the autaptic delay time matches the half period signal,
the multiple CR develops when the autaptic time delay for ideal chaotic current. The autapse
considerably improves the chaotic resonance of the suitable autaptic values, according to the results.
Dhaya et al. [8] presented the topology of the deep learning (DL) design is changed in such a way that
optimal cross-layer connection is achieved. This modification takes advantage of our crucial insight that a
Small-World Network’s topology crosses the border convergence is fastest for a given level of accuracy.
The results show that the proposed strategy is both accurate and quick to respond to for training.

Qiu et al. [9] presented a data propagation strategy with the small world characteristics used for data
transfer in IoV. As the hop distance decreases, the time required to disseminate a message decrease. The
suggested methodology has a low average data packet delay, according to simulation results.
Furthermore, because of the increased robustness, the packet delivery ratio is higher. Pandey et al. [10]
presented the small-world network for data transfer with minimal latency and energy balance based on a
wireless sensor network. The average path length of a small world wireless sensor network (SW-WSN) is
short, and the average clustering coefficient is large. The suggested small world network accomplishes
power exchanging, boosts the network, increases power economy as well as minimises data, according to
experimental outcomes.

Qi et al. [11] presented the small-world network is linked to decreased alert attention after total sleep
deprivation. The findings show that topological features of networks are disturbed, and that abnormal
temporal and salience network topology may operate as neural markers underpinning vigilant attention
problems following total sleep deprivation (TSD). Gu et al. [12] presented the small-world network
model to explain how a small-world network with a select group of people. The addition of theories
boosted the network model prediction capacity greatly, it helped to reveal factors which influence an
establishment of a small-world industrial network focused on exclusive groups.
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3 Various Energy Generation

The various energies generations are Seidel matrix, Seidel Signless Laplacian matrix, Seidel energy,
Seidel Signless Laplacian energy, Maximum and Minimum energy, Degree Sum energy and Distance
Degree energy of the Unitary Cayley graph have been calculated.

3.1 Seidel Energy of Unitary Cayley Graph Xn

Here, [13] we obtain Seidel eigenvalues and Seidel energy of Xn.

The Seidel matrix SM Xnð Þ ¼ sij
� �

of a Unitary Cayley graph Xn on n vertices and
nf nð Þ
2

edges is a real
symmetric matrix as

sij ¼
�1 if vi and vj are adjacent vertices
1 if vi and vj are not adjacent vertices
0 elsewhere

8<
: (1)

Let s1, s2,…, sn be the eigenvalues of SM Xnð Þ.The Seidel energy of Xn is defined as

SE Xnð Þ ¼ Pn
i¼1

sij j.

Theorem 1: The Seidel eigenvalues of the Unitary Cayley graph Xn are n� 1� 2f nð Þ and

�1� 2f nð Þ l tið Þ
f tið Þ ; 1 � i � n� 1 where ti ¼ n

gcd i; nð Þ.

Also, the Seidel energy SE Xnð Þ is n� 1� 2f nð Þj j þ Pn�1

i¼1
1þ 2f nð Þ l tið Þ

f tið Þ
����

����.
Proof: The Seidel matrix SM Xnð Þ ¼ AðXnÞ � A Xnð Þ, where A Xn

� �
is the adjacency matrix of the

complement of UCG Xn:

The eigenvalues of Xn are f nð Þ l tið Þ
f tið Þ ; 0 � i � n� 1, where ti ¼ n

gcd i; nð Þ.

Let g0 � g1 �; . . . ;� gn�1 be the eigenvalues of Xn.

Let g0 = f nð Þ.
The eigenvalues of the complement of the UCG Xn are n� 1� g0, �1� g1, �1� g2…, �1� gn�1.

Hence the eigenvalues of SM Xnð Þ are n� 1� 2f nð Þ and �1� 2f nð Þ l tið Þ
f tið Þ ; 1 � i � n� 1

The Seidel energy of Xn is SE Xnð Þ ¼
Xn�1

i¼0
gij j (2)

¼ g0j j þ
Xn�1

i¼1
gij j (3)

¼ n� 1ð Þ � 2f nð Þj j þ
Xn�1

i¼1

�1� 2f nð Þ l tið Þ
f tið Þ

����
���� (4)

¼ n� 1� 2f nð Þj j þ
Xn�1

i¼1

1þ 2f nð Þ l tið Þ
f tið Þ

����
���� (5)
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3.2 Seidel Signless Laplacian Energy of UCG Xn

The Seidel matrix of Unitary Cayley graph Xn on n vertices and
nf nð Þ
2

edges are S Xnð Þ.

Let DS Xnð Þ ¼ diag n� 1� 2f nð Þ; n� 1� 2f nð Þ; . . . ; n� 1� 2f nð Þð Þ be the diagonal matrix.

The Seidel Signless Laplacian matrix SSLM Xnð Þ ¼ DS Xnð Þ þ S Xnð Þ of a Unitary Cayley Graph Xn on

n vertices and
nf nð Þ
2

edge is a real symmetric matrix defined as [14]:

aij ¼
�1 if i 6¼ j and vi; vj are adjacent
1 if i 6¼ j and vi; vj are not adjacent

n� 1� 2f nð Þ if i ¼ j

8<
: (6)

Let r0, r1, …, rn�1 be the eigenvalues of SSLM Xnð Þ. The spectrum of the SSLM Xnð Þ is the set of
its eigenvalues together with their multiplicities.

The Seidel Signless Laplacian energy of Xn is defined as SSLE Xnð Þ ¼ Pn�1
i¼0 ri þ 2f nð Þ � nþ 1j j:

Theorem 2: Seidel Signless Laplacian eigenvalues of the Unitary Cayley Graph Xn are 2(�1� 2f nð ÞÞ
and n� 2� 2f nð Þ 1þ l tið Þ

f tið Þ
� �

; 1 � i � n� 1 where ti ¼ n

gcd i; nð Þ. Also, the Seidel Signless

Laplacian energy SSLE Xnð Þ is n� 1� 2f nð Þj j þPn�1
i¼1 1þ 2f nð Þ l tið Þ

f tið Þ
����

����.

Proof: The Seidel Signless Laplacian matrix SSLM Xnð Þ ¼ DS Xnð Þ þ S Xnð Þ where S Xnð Þ is the Seidel
matrix of UCG Xn. DS Xnð Þ ¼ diag n� 1� 2f nð Þ; n� 1� 2f nð Þ; . . . ; n� 1� 2f nð Þð Þ is a
diagonal matrix.

The eigenvalues of Xn are f nð Þ l tið Þ
f tið Þ ; 0 � i � n� 1, where ti ¼ n

gcd i; nð Þ.

The eigenvalues of DS Xnð Þ are n� 1� 2f nð Þ (n times).

The Seidel Signless Laplacian energy of Xn is

SSLE Xnð Þ ¼
Xn�1

i¼0
ri þ 2f nð Þ � n� 1ð Þj j (7)

¼ n� 1� 2f nð Þj j þ
Xn�1

i¼1
1þ 2f nð Þ l tið Þ

f tið Þ
����

����: (8)

3.3 Maximum Degree Energy of UCG Xn

The Maximum Degree of energy of UCG Xn is the sum of the absolute eigenvalues of the Maximum

Degree matrix, [15] where Maximum Degree matrixMDM Xnð Þ ¼ mij

� �
of a Unitary Cayley Graph Xn

on n vertices and
nf nð Þ

2
edge is a real symmetric matrix as

mij ¼ maxðdi; djÞ if vi; vj are adjacent
0 elsewhere:

�

where di; dj are the degree of vertices vi and vj.

Theorem 3: The Maximum degree energy of Unitary Cayley Graph Xn is 2f nð Þ n� 1ð Þ:
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Proof: The Maximum degree matrix of Xn is

MDM Xnð Þ ¼
0 f nð Þ f nð Þ . . . f nð Þ

f nð Þ 0 f nð Þ . . . f nð Þ
..
. ..

. ..
. ..

. ..
.

f nð Þ f nð Þ f nð Þ . . . 0

0
BBB@

1
CCCA

n�n

(9)

¼ f nð Þ
0 1 1 . . . 1
1 0 1 . . . 1
..
. ..

. ..
. ..

. ..
.

1 1 1 . . . 0

0
BB@

1
CCA (10)

¼ f nð Þ
1 1 1 . . . 1
1 1 1 . . . 1
..
. ..

. ..
. ..

. ..
.

1 1 1 . . . 1

0
BB@

1
CCA�

1 0 0 . . . 0
0 1 0 . . . 0
..
. ..

. ..
. ..

. ..
.

0 0 0 . . . 1

0
BB@

1
CCA

2
664

3
775 (11)

¼ f nð Þ Jn � Inð Þ (12)

The spectrum of Jn is
0 n

n� 1 1

� �
. The spectrum of In is

1
n

� �
.

Hence the spectrum of ðXn) is f nð Þ �1 n� 1
n� 1 1

� �
.

The Maximum Degree of energy of UCG Xn is 2f nð Þ n� 1ð Þ:

3.4 Minimum Degree Energy of UCG

The Minimum Degree of energy of UCG Xn is the sum of the absolute eigenvalues of the Minimum
Degree matrix [16], where the Minimum Degree matrix Min Xnð Þ ¼ mij

� �
of a Unitary Cayley Graph Xn

on n vertices and
nf nð Þ
2

edges is a real symmetric matrix as

mij ¼ minðdi; djÞ if vi; vj are adjacent
0 elsewhere:

�
where di; dj are the degree of vertices vi and vj.

Theorem 4: Minimum Degree energy of the Unitary Cayley Graph Xn is 2f nð Þ n� 1ð Þ:
Proof: The Unitary Cayley graph Xn is a f nð Þ regular graph.

Therefore, the maximum degree of Xn is equal to the minimum degree. Hence the Minimum Degree

of energy of Xn is 2f nð Þ n� 1ð Þ:

3.5 Degree Sum Energy of UCG Xn

The sum of the absolute eigenvalues of the [17] Degree Sum matrix is the Degree Sum energy of UCG

Xn, where the Degree Sum matrix DSM Xnð Þ ¼ mij

� �
of a Unitary Cayley Graph Xn on n vertices and

nf nð Þ
2

edge is a real symmetric matrix as
2f nð Þ if i 6¼ j
0 elsewhere

�
.

Theorem 5: The Degree Sum energy of Unitary Cayley Graph Xn is 4f nð Þ n� 1ð Þ:
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Proof: The Degree sum matrix of Xn is

DSM Xnð Þ ¼
0 2f nð Þ 2f nð Þ . . . 2f nð Þ

2f nð Þ 0 2f nð Þ . . . 2f nð Þ
..
. ..

. ..
. ..

. ..
.

2f nð Þ 2f nð Þ 2f nð Þ . . . 0

0
BBB@

1
CCCA

n�n

(13)

¼ 2f nð Þ
0 1 1 . . . 1
1 0 1 . . . 1
..
. ..

. ..
. ..

. ..
.

1 1 1 . . . 0

0
BB@

1
CCA (14)

¼ 2 f nð Þ
1 1 1 . . . 1
1 1 1 . . . 1
..
. ..

. ..
. ..

. ..
.

1 1 1 . . . 1

0
BB@

1
CCA�

1 0 0 . . . 0
0 1 0 . . . 0
..
. ..

. ..
. ..

. ..
.

0 0 0 . . . 1

0
BB@

1
CCA

2
664

3
775 (15)

¼ 2f nð Þ Jn � Inð Þ (16)

The spectrum of Jn is
0 n

n� 1 1

� �
. The spectrum of In is

1
n

� �
.

Hence the spectrum of ðXn) is 2f nð Þ �1 n� 1
n� 1 1

� �
.

The Degree Sum energy of UCG Xn is 4f nð Þ n� 1ð Þ:

3.6 Degree Distance Energy of Unitary Cayley Graphs Xn

Computed distance energy of Unitary Cayley graphs. Motivated by these papers we determine the
degree of distance energy of Unitary Cayley Graphs (UCG) [18].

The degree distance matrix of Xn, denoted by DDM Xnð Þ can be defined as

DDM Xnð Þ ¼ di þ dj
� �

d vi; vj
� �

; if vi 6¼ vj
0 if vi ¼ vj

�
where di = degree of vi and d vi; vj

� �
is the

shortest distance between the vertices vi and vj. Let k1 ;k2 ; . . . ; kn be the degree distance eigenvalues of
DDM (Xn). The degree of distance energy of Xn, DDE Xnð Þ ¼ Pn

i¼1 kij j.
Theorem 6: Let Xn be the UCG, where n is a prime number. The spectrum of a degree distance

matrix Xn is
�2 n� 1ð Þ 2 n� 1ð Þ2

n� 1 1

� �
. The degree of distance energy is 4 n� 1ð Þ2.

Proof: For UCG Xn, n being prime, Xn is a complete graph.

Therefore, di ¼ degree við Þ ¼ n� 1; 8i.
d vi; vj
� � ¼ 1; 8 vi; vj, di þ dj ¼ degree við Þ þ degree vj

� �
= 2 (n−1)

The degree distance matrix
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DDM Xnð Þ ¼
0 2 n� 1ð Þ 2 n� 1ð Þ . . . 2 n� 1ð Þ

2 n� 1ð Þ 0 2 n� 1ð Þ . . . 2 n� 1ð Þ
..
. ..

. ..
. ..

. ..
.

2 n� 1ð Þ 2 n� 1ð Þ 2 n� 1ð Þ . . . 0

0
BBB@

1
CCCA

n�n

(17)

¼ 2 n� 1ð Þ Jn � Inð Þ (18)

The spectrum of Jn is
0 n

n� 1 1

� �
. The spectrum of In is

1
n

� �
.

Hence the Spectrum of ðJn � In) is
�1 n� 1
n� 1 1

� �

The degree of distance energy DDE Xnð Þ ¼
Xn

i¼1
kij j (19)

¼ �2 n� 1ð Þj j n� 1ð Þ þ 2 n� 1ð Þ2�� ��� 1 (20)

¼ 2 n� 1ð Þ2 þ 2 n� 1ð Þ2 ¼ 4 n� 1ð Þ2: (21)

4 Small-World Network Based on the Unitary Cayley Graph

Cayley graphs are well-known for being good models for computer networks with multiple connections.
Cayley graphs are used to create a variety of well-known and practical connectivity networks. To begin,
define a few terms and symbols. V vertices and E arcs or directed edges make up a
digraph ¼ V ;Eð Þ: V � V 0s elements are a subset of u; vð ÞE: If the subset E is symmetric, u; vð Þ E
implies (v,u) E, the undirected edge can be used to identify two opposing arcs u; vð Þ and v; uð Þ. Assume
G is a finite group with S as a subset. (This study does not address infinite groups.)

For g 2 G; s 2 S; Cay G; Sð Þ is a Cayley graph of a group G and its subset S with G elements at the
vertices and ordered pairs g; gsð Þ at the arcs. Cay (G, S) is a simple (undirected) graph if 1 =2 S represents
the identity member of S ¼ S�1; Cay G; Sð Þ. It is recommended that additional concepts and
fundamental outcomes on graphs and groups, as well as connectivity networks. G is a finite group; hence
the clustering coefficient is 3. Consider the situation when 1 =2 S; S ¼ S�1;¼ Cay for some G
generating set S.

Then there is a Cayley graph with constant degree d ¼ Sj j; in which each node v has precisely d

neighbours, and these d neighbours have at most
d d � 1ð Þ

2
edges between them. As a result, the only

thing we need to think about is node 1’s clustering coefficient, which is G’s identity element.

Node 1 has S neighbours. If s1; s2 2 S; then s1 and s2 are adjacent if and only if s2 ¼ s1s. Assume
H is a subset of S and H [ 1 is a subgroup of G. Then s1 s2 2 H when s1; s2 2 H . As a result, the set S of
neighbours of node 1 has at least |H j Hj j � 1ð Þ=2 edges. As a result, if H can be set to a big value, the
clustering coefficient will be high.

5 Experimental Results

Numerical simulations are used to examine the performance of small world network-based Unitary
Cayley graphs.

Fig. 1 depicts the delay of regular node density at the various sectors. When delay increases as the
number of regular nodes increases. Furthermore, the small world network-based unitary Cayley latency is
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reduced. The latency grows as the value increases when the regular node is fixed. The maximum delay of
small world network-based Unitary Cayley graphs has been reduced by 40%, according to simulation data.

The reliability factor of a regular node with varying sectors is shown in Fig. 2. The reliability factor
drops as regular node density improves. Furthermore, the small world network-based unitary Cayley has
a greater reliability factor. When the regular node density is kept constant, the reliability factor drops.

The consensus speed and power consumption of our proposed topology control solutions were assessed.
The simulations were run on 100 host graphs, each with sensors evenly and randomly spread throughout a
100 m 100 m region.

Fig. 3 depicts the consensus protocol’s energy consumption. With power model 0 and power model 1,
BCG-1 used 2% less energy than BCG-0. With power model 1, BCG-1 used 2% less energy than BCG-0.

Figure 1: Delay function of regular node density in proposed small world network-based Unitary Cayley
graphs

Figure 2: Reliability factor as a function of a regular node with proposed small world network-based
Unitary Cayley graphs
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For N = 1081, the distance created by the suggested node ID assignment approaches is shown in Fig. 4.
The right-skewed distribution of the CR assignment (BCG-1) histogram shows a significant frequency of
short edges. All connection distances are under 80 meters, according to the Dist-swap assignment (BCG-2).

6 Conclusion

One of the key concepts of spectral graph theory, which integrates organic chemistry with mathematics,
is graph energy. Graph energies and limits have been determined using eigenvalues of graph matrices. In this
paper, small-world computer networks, for which Cayley graphs have been demonstrated to be good models.
Small-world networks based on the Cayley graphs have a straightforward topology and are very adaptable.
Furthermore, small-world computer networks based unitary Cayley graph have a 40% lower delay and higher
reliability. The Cayley-graph model can be used to design, analyse, and train communication and other real-
world networks. Cayley graphs are therefore useful method for small-world computer networks. This graph
method is easy to conceptualize, construct and compare since they have a simpler structure. Cayley-graph
employed to recreate a broad variety of real-life networks in the biological, social, and technological
domains by carefully defining the parameters.

Figure 3: Power consumption

Figure 4: Distance of probability
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