Computer Systems Science & Engineering L < Tech Science Press

DOI: 10.32604/csse.2023.030358
Article @ check for updates

Usability-Driven Mobile Application Development

Fadwa Yahya'>", Lassaad Ben Ammar'> and Gasmi Karim®

"Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
2Um'versi‘ry of Sfax, Sfax, Tunisia
Department of Computer Sciences, Faculty of Sciences and Arts in TABARJAL, Jouf University, Kingdom of Saudi Arabia
*Corresponding Author: Fadwa Yahya. Email: f.yahya@psau.edu.sa
Received: 24 March 2022; Accepted: 26 April 2022

Abstract: Recently, a specific interest is being taken in the development of mobile
application (app) via Model-Based User Interface Development (MBUID)
approach. MBUID allows the generation of mobile apps in the target platform(s)
from conceptual models. As such it simplified the development process of mobile
app. However, the interest is only focused on the functional aspects of the mobile
app while neglecting the non-functional aspects, such as usability. The latter is
largely considered as the main factor leading to the success or failure of any
software system. This paper aims at addressing non-functional aspects of mobile
apps generated using MBUID approach. As such, we propose a usability-driven
approach for the development of mobile apps. The main stages of the proposed
approach are defined in a generic way so that they can be integrated with any
MBUID method. A case study is presented, in the paper, with the aim of
illustrating the feasibility of this approach.

Keywords: Mobile application; user interface; model-based user interface
development; mobile usability

1 Introduction

In the last decade, mobile apps development has become one of the most concerned and rapidly
developing areas [1]. In this context, the rapid increase in number and diversity of mobile platform
constitutes a challenging issue for application developers since they need to develop the same
applications across each target platform separately [2]. A promising solution that is widely accepted is
Model-Based User Interface Development (MBUID) [3,4]. Using an MBUID approach, an application is
usually developed through the definition of high-level models and their transformation into a less abstract
level to the code in the target platform. MBUID has shown to be successful in simplifying the app
development process, reduce complexity, increase abstraction level and maximize cost-effectiveness and
productivity [2].

The aforementioned potentialities of the MBUID approach have led to an increasing number of research
initiatives adopting MBUID-compliant method for the development of mobile apps. In 2016, the survey
presented in [3] discusses 17 research works. In 2018, the number reached 30 in a Systematic Literature

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

mailto:f.yahya@psau.edu.sa
http://dx.doi.org/10.32604/csse.2023.030358
http://dx.doi.org/10.32604/csse.2023.030358
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.030358

3166 CSSE, 2023, vol.45, no.3

Review (SLR) conducted in [5]. The most recent SLR conducted in this context in 2020 [4] identify
55 MBUID based development process for mobile apps development. The ultimate objective of the
majority of these research works is to investigate the adoption of MBUID paradigm for the development
of mobile apps. Existing research initiatives in this field are very interesting in demonstrating the
applicability and effectiveness of MBUID in the mobile development context. However, these initiatives
still suffer from several limitations that could undermine their adoption. For instance, existing approaches
focus only on the functional aspects of the mobile apps while neglecting the non-functional ones, such as
usability. The latter is largely considered the main factor that could lead to the success or failure of any
software system.

Starting from this report, the present paper aims at investigating how to ensure the development of a
usable mobile app, in particular user interfaces, using an MBUID-compliant process. The main idea
behind our proposal is the following: how to exploit the traceability mechanism established between
conceptual models and the final user interface to improve the usability of the obtained user interface. To
this end, the proposed approach relies on 3 stages: the first stage abstractly represent the usability
requirements/properties in the intermediate artifacts of the development process. The second stage resorts
to the parameterized transformation [6] to blend the usability properties with the conceptual primitives in
the development process. Finally, the third stage executes the model transformation process to generate a
user interface that meets the required usability properties. Furthermore, we demonstrated the integration
of our approach with an existing MBUID method for the development of mobile apps to improve the
quality of the generated apps. It is worth mentioning that our proposal is defined in a generic way
allowing its integration with any MBUID method. The feasibility of the proposed approach is illustrated
through a case study.

The rest of the paper is structured as follows. Section 2 presents an overview of the Model-based
approach for the development of Graphical User Interface (GUI) and discusses some related works.
Section 3 introduces the fundamentals of our usability-driven mobile apps development approach.
Section 4 shows how this approach is integrated with an MBUID method. Section 5 suggests a case
study illustrating the feasibility and effectiveness of our proposal. Finally, concluding remarks and some
directions for future works are drawn in Section 6.

2 Background

This section presents the fundamental concepts of model-based approach for the development of user
interfaces. Then, it introduces the notion of parameterized transformation that is widely accepted as
promising technique to combine functional and non-functional requirements. These two concepts
constitute the building blocks of our proposal to incorporate usability requirements during the
development of mobile applications. The last part of this section discusses related works in the field of
model-based Ul development and usability evaluation.

2.1 Model-Based User Interface Development

The development of today’s user interfaces is challenging due to the heterogeneity of end-users,
computing platforms and programming languages [7]. Model-Based User Interface Development
(MBUID) is an approach for dealing with the aforementioned issues and reducing the required effort to
develop Uls while ensuring their quality [8]. The purpose of MBUID is to build and conceptual models
that describe the UI at different level of abstraction, and the design proceeds in a structured manner from
abstract models to more concrete ones.

Different frameworks and guidelines were developed over the last years to best capture the important
parts of a MBUID process. Consequently, a clear understanding of the abstraction layers and type of

CSSE, 2023, vol.45, no.3 3167

models to be considered within a MBUID process is established. In 2003, the EU-funded CAMELEON
project introduced a framework that serves as a reference for the development of multiple targets or
multiple context of use Uls on the basis of the model-based approach [9]. The Cameleon Reference
Framework (CRF) covers both the design-time and run-time phases. It describes different abstraction
layers and the relationships among them.

Fig. 1 depicts the different abstraction layers and their relationships as introduced in the CRF. The first
abstraction layer of the CRF describes the hierarchies of tasks to be carried out in a specific temporal order to
achieve the users’ goals. The second layer expresses the Ul in terms of abstract interaction objects that are
independent of any platform or modality (graphical, vocal, and haptic). The third layer expresses the Ul in
terms concrete interaction objects that are modality-dependent but implementation technology independent,
thus platform specific. The last layer expresses the Ul in terms of technology language dependent source
code. It can be represented in any Ul programming language (e.g., Java) or mark-up language (e.g., HTML).

a Contextofuse A\ /7~ Contextofuse B ™\

O Task & Concepts [€ © Task & Concepts
I =
@ Abstract Ul (AUI) (€ O Abstract Ul (AUI)
| |
© Concrete Ul (CUI) |€ @Concrete Ul (CUI)
" =
© Final Ul (FUl) [€ > @ Final UI (FUI)
\ A /
A
l Reification i Abstraction €~ Translation

Figure 1: The Cameleon Reference Framework [9]

On top of these abstraction levels, 3 main relationships are defined: (1) Reification covers the inference
process from one level of abstract to a lower level; (2) Abstraction maps a user interface representation from a
level of abstraction to a higher one; (3) Translation transforms a description intended for a particular target
into a description at the same abstraction level but aimed at a different target.

2.2 Parameterized Transformation

In model driven development, model transformation is a crucial concept that provides a mechanism for
automating the manipulation of models. The aim of a model transformation is usually to (automatically)
generate a model (target) from another (source), according to a transformation definition [10]. The latter
is defined as a set of transformation rules that together describe how a model can be transformed into
another [11]. Each transformation rule describes how one or more constructs in the source model is
transformed into one or more constructs in the target model.

An interesting variant of the ordinary model transformation called parameterized transformation was
initiated in [6] to adapt Uls to their context of use. In such a transformation, a third model is required to
play the role of a parameter that could be used to improve new functionalities (values, properties,
operations) or to change the application behavior (activities). The designer must specify the parameters to
be inserted at the transformation as well as the elements from the application model that will receive
contextual details. In [6], the parameterized transformation was adopted to refine PIM models by adding,
deleting or updating contextual details and hence generating a Contextual PIM (CPIM). After that, a

3168 CSSE, 2023, vol.45, no.3

traditional transformation is susceptible to generate a Contextual PSM (CPSM) that inherits business
requirements and context from the CPIM (Fig. 2).

PIM

T1 | <<parameterized>>
=

‘—“ <<parameterized>>
T2 = v Context { —
+ i vt Traditional
Parameter Platform Transformation
Requirements : Techniques

ﬁ;‘__ <<parameterized>>
! CPIM, }<

Figure 2: The parameterized transformation concepts [6]

In this paper, we opted for the parameterized transformation to blend the usability issues with the
conceptual models as per Section 3.2.

2.3 Related Works

This section briefly describes relevant model-based approaches for the development of mobile apps with
focus on UI development. Then, it overviews dedicated approaches for the evaluation of mobile apps’
usability. Finally, it outlines the challenges that need to be addressed to cope with the gaps between both
research areas (i.e., model-based development and usability evaluation).

2.3.1 Model-Based Approaches for Mobile Applications

Our literature review reveals that Model-Based User Interface Development (MBUID) has gained a
special attention by the SE community. In recent years, research initiatives that adopt MBUID for the
development of mobile apps have increased considerably. These initiatives have provided promising
results in dealing with common challenges in the development of mobile apps. However, our literature
review reveals that more efforts are still required to take the strengths of MBUID in the context of mobile
Ul development.

In 2016, a survey of model-based approaches for the development of mobile applications discussed only
13 research papers and 4 commercial solutions [3]. Furthermore, only about 30 research works in the field
were identified in two Systematic Literature Reviews (SLR) presented in [12] and [5]. This proves the
shortage of research work in the field of mobile UI development via model-based techniques.

In the most recent SLR presented in [4], the authors identified only 55 research works that focus on the
adoption of model-based techniques for the development of mobile apps. This study argue that the adoption
of these techniques impacts both the development lifecycle and the obtained app. On the one hand, adopting
model-based techniques allows to improve the development lifecycle by guaranteeing a certain level of
flexibility, efficiency, reliability, and reuse [4]. On the other hand, the adoption of these techniques could
help improving the quality of the developed mobile apps [4].

CSSE, 2023, vol.45, no.3 3169

With regard to the modeling techniques, our literature review reveals that existing model-based
approaches commonly use UML and DSL to design models of various level of abstraction (e.g., [13—
15]). Then a set of model-to-model and model-to-text transformations are defined to generate the
application code from the high level model.

In terms of achieved results, existing studies highlight the potentialities of this development paradigm in
increasing abstraction, productivity, flexibility, efficiency, and automation for the app development as well as
supporting cross-platform, multi-platform or multi-version app development [4].

Based on the analysis of the state of the art, we can conclude that the development of mobile apps, in
particular Uls, using model-based techniques still an immature research area and many more efforts are
required. There is a lack of an agreed-upon language for specifying the app’s functional and non-
functional requirements. Thus, future works must focus on the unification of the concepts, terminologies
and tools to be used by researchers. Furthermore, the usability of the obtained mobile app is usually
evaluated once the app is developed. Hence, a lot of re-engineering efforts are required to improve its quality.

2.3.2 Evaluation of Mobile Uls

Evaluating and improving the usability of software systems is an important factor to ensure their success
and acceptance by end users [16]. Regarding its importance, a wide range of research works have
investigated the evaluation and improvement of the usability for various types of software systems. Their
main objective is to find potential problems that could lead to the failure of the developed systems. They
may focus also on the user-satisfaction level against the overall system by considering both objective and
subjective measures.

In the context of mobile development, usability evaluation still focuses on the same objectives as for
other kind of software systems. Thus, classic usability evaluation techniques are adopted with a slight
tolerance to overcome mobile device limitations such as small screen size, limited connectivity, high
power consumption rates, and limited input modalities. Usability evaluation techniques for mobile apps
can be mainly classified into 2 main categories: laboratory experiments and field studies.

Laboratory experiment is the most adopted technique for evaluating the usability of software systems, in
particular mobile apps. This technique involves potential users of the application that are asked to accomplish
a set of predefined tasks in a very specific and controlled environment [17,18].

The behavior of the users, while interacting with the application, is recorded and then analyzed to
identify potential usability problems. Thanks to the controlled environment and predefined tasks, this kind
of technique may ensure an evaluation of overall usability aspects. However, isolating users from the
environmental factors prevalent in the real world may cause differences in user experience [19].
Furthermore, carrying out experiments in a controlled environment require a large amount of resources
increasing considerably their cost [20].

As for the field study, data about users’ needs and product requirements are collected using observations
and interviews [19]. The technique requires a trial use of the application by real users and collecting data
about their opinions regarding the application. Data collection can be made either by taking notes when
users are involved in some activities or asking them to fulfill a questionnaire reflecting their experience
with the application. The quality of the questionnaire is considered as the main drawback of the field
studies techniques [21].

In summary of our literature review for mobile usability evaluation, we should underline that the
usability evaluation for mobile apps still requires a lot of efforts to overcome the following shortcomings:

Usability evaluation was typically conducted as a post-implementation step in the development process
leading to a lot of re-engineering work to overcome the identified problems.

3170 CSSE, 2023, vol.45, no.3

The usability measures used are independent of the development process without any way to handle
them throughout this process. Consequently, there is no way for designers and developers to identify the
required changes which are susceptible to improve these measures.

2.3.3 Discussion of the State of the Art

Our literature review reveals that the adoption of MBUID to support the development of cross platform
mobile applications has increased over the last few years. This is due to its ability to generate various versions
of the same application from a platform independent conceptual model. However, this research area still
needs more effort to address current challenges. Among these challenges, we cite essentially the usability
of the generated user interfaces that is of great importance to the acceptance of the developed application.
In the state of the art, the usability is usually evaluated once the application is developed. Hence, the
latter is improved thanks to re-engineering approaches that usually engender additional costs in terms of
time and resources.

A promising solution that was adopted in the context of interactive systems consists of dealing with non-
functional requirements throughout the MBUID development process. In this context, the generation of the
application from the conceptual model is ensured thanks to a set of model transformations that deal with
usability requirements [22]. Usability requirements are injected to the development process via the
technique of parameterized transformation. Although this technique was proved appealing for the
development of usable Uls of interactive systems, there are no proposals, to the best of our knowledge,
for adopting it in the context of mobile apps development.

In conclusion, we highlight that the adoption of MBUID for mobile apps development is at an early
stage and there is acute lack for an effective solution. Effective solution should provide for:

e The unification of the concepts, terminologies and tools to be used by researchers.

e The adoption of an MBUID approach that considers usability throughout the development process of
mobile apps.

e The adoption of a generic approach that can be applied to any MBUID method.

This research work is a first step in this direction and aims to propose an approach that combines
functional and non-functional requirements during the development of mobile UI.

3 Usability-Driven Mobile App Development (UMAD) Approach
This section details our approach for blending conceptual primitives with usability properties (Fig. 3).

The approach goes through 3 stages: Conceptual Primitives (CP) Identification, Usability Injection, and
Execution. The CP identification stage identifies the most suitable conceptual primitive'for supporting each
usability properties presented in the agreed-upon usability model as discussed in Section 3.1. The usability
injection stage blends the conceptual primitives with corresponding usability properties thanks to the
parameterized transformation technique. This stage is detailed in Section 3.2 Finally, the execution stage
applies the transformations defined in the injection stage on the conceptual models to generate the final
UI as detailed in Section 3.3.

3.1 CP Identification

The aim of this stage is to identify the most suitable conceptual primitive(s) that may abstractly represent
a usability property. To this end, 2 identification processes are carried out. The former aims to create a
repository of usability properties. While the latter focuses on the identification of the conceptual
primitives that could support each usability property.

'A conceptual primitive is an element of the modeling language that abstractly represents a feature of the system. Classes, attributes
and services are examples of conceptual primitives in a class diagram.

CSSE, 2023, vol.45, no.3 3171

Conceptual

Primitives

- ~ Designers

input initiate

Usability CP-ldentification medule <
model I

¥

input inject Model

Usab-Injection module Compiler
__/

Figure 3: Approach for blending conceptual primitives with usability properties

To create a repository of usability properties, we established a depth analysis of the most known usability
guidelines and surveys presented in the usability literature, in particular mobile usability. Note that, since
these usability properties are intended to be tackled in the intermediate artifacts, we only consider those
that can be abstractly represented in a precise notation by means of conceptual primitives. For example,
effectiveness and efficiency can’t be quantified until the system is implemented. Thus, they are discarded
from our analysis.

Moreover, since the identification of the conceptual primitives depends on the considered MBUID-
method, the first step is to select the desired method. In this paper, we opted for the one initiated in [23].
After that, we identified the conceptual primitives that can abstractly represent each usability property,
from the repository. For instance, most guidelines for mobile user interfaces recommend a well-defined
size for the tappable area of touch target widget (44 x 44 dp for iOS system). A possible conceptual
primitive that may support this recommendation can be any attribute that holds the size of a widget.
Should this primitive be absent in the MBUID method, UMAD recommends to update/enrich the
conceptual models of the method by the missing primitive(s). Those UMAD’s recommendations highlight
one of the potentialities of our approach: discovering the weaknesses and limitations of an MBUID
method with regard to its conceptual primitive’s expressiveness.

3172 CSSE, 2023, vol.45, no.3

3.2 Usability Injection

This stage aims to blend the conceptual primitives with the usability properties identified in the previous
stage. Such a blend takes place in the model compiler, which include the transformation rules responsible for
generating the Ul of the mobile app from the conceptual model. These transformation rules are subject to
2 possible configurations:

e Static Configuration: This configuration is applied when there is only one alternative to blend the
usability property and the conceptual primitive. For instance, most mobile usability guidelines
agree that the use of an appropriate text body font size will increase the legibility of the mobile
app. Thus, each conceptual primitive representing this property need to be configured with the
recommended value according to the usability guideline. It is important to note that the
recommended value may differ according to the platform (iOS, Android).

e Dynamic Configuration: This configuration is applied when a usability property may be fulfilled with
more than one alternative. For example, if end-users are asked to put the data within an input widget,
the following alternatives can be considered:

o Use a text field with an associated label displaying supplementary information about the required
data/format.

o Use a drop-down list containing all accepted values.

o Use a list of radio button where each item represents a value/range of values.

Even if the aforementioned alternatives achieve the same functional requirement, it is clear that each one
of them favors at least one usability property (e.g., prompting for the former, error prevention for the two
latter). Hence, the selection of the appropriate alternative may depend on the usability property to be fulfilled.

To perform both configurations, we opted for the following strategies: (1)

e Static Configuration, the transformation rules associated with a conceptual primitive, who is subject
of a blending operation to support a usability attribute, is slightly modified by putting the
recommended value. For example, the transformation rule that create a Text Field will be adapted
to set the appropriate text body size.

e Dynamic Configuration, we resort to the parameterized transformation to inject the usability
properties requiring such configuration. As such, the model transformation engine will select the
appropriate alternative that meet the desired usability attribute.

As per Section 2.2, a parameterized transformation requires a third model that plays the role of a
parameter. In our case this new model includes the desired usability properties that the mobile UI is
expected to fulfill.

3.3 Execution

The last stage in our approach is about the generation of the mobile Ul from the conceptual model with
respect to the desired usability properties. To this end, the conceptual model of the mobile app must be
designed according to the selected MBUID method. Furthermore, our approach implies the definition of a
usability model that specifies the usability properties that the mobile app is expected to fulfill. As any
transformation process implies that each model is defined with respect to a high level meta-model,
UMAD proposes the meta-model depicted in Fig. 4 to define the usability model. This latter plays the
role of a parameter to the model compiler. Based on the specified properties, the model compiler selects
the adequate configuration of the transformation rules.

CSSE, 2023, vol.45, no.3 3173

£ IndicatorType “ SubChar
- = Learnability
- M = Understandability
- B = Operability [1..*] MesuredBy
= Attractiveness
] MesurableAttribut] |] Subcharacteristic
“ Attributes ¥ MetricName
= name : Attributes = Prompting = name : SubChar = Learnability

= Prompting = PR
= Predictability = 'STE
= Feedback =S
= Information Density = Bl 3
= Brevilty — [[1..*] QuantifiedBy
= Legibility - DM
- Navigability . - BR El Metric [1..*] Composed
~ Message Qua.llty =g = name : MetricName = PR
= Error Prevention = TeS
= Undo Support = TxS
= Explicit User Action - MQ
= Consistency - Us
- Balance ="ES
- Font Style Uniformity | | = EUA [1..*] Associated { El UsabilityModel]
= Color Uniformity = ERP
= Cancel Support = FSU

- CU £ Indicator |

-GS =1 name : IndicatorType = G

— BL = Borninf: EDouble = 0.0

- bV = BornSup : EDouble = 0.0

Figure 4: Usability meta-model

4 Proof of Concept

This section demonstrates the feasibility of our approach through its application to an MBUID method.
To this end, it introduces the adopted method then it details the application of UMAD to generate a usable
mobile UL

4.1 MBUID Method for Mobile UI Development: Overview

The MBUID method proposed in [23] automatically generates the source code of a mobile application’s
Uls thanks to a model transformation process. The transformation process takes as input the conceptual
models of the application that represent the application thanks to 3 abstraction levels. The first two levels
are independent from the platform while the last is platform-dependent.

e Abstract User Interface (AUI) Model: specify the user interface in terms of Abstract Interaction
Object (AIO) and Abstract Relationship. AlO represents an abstraction of widgets that can be
found in popular GUI toolkit such as buttons and panels. They have been classified into two main
categories: Abstract containers (AC) and Abstract Individual Components (Al). AC represents an
entity that may gather other abstract containers or components. AIC represents an abstraction of an
interaction object such as text field, button, drop down menu, etc. Abstract relationships specify
relationships that can be established between abstract interaction objects of all kinds.

e Concrete User Interface (CUI) Model: specify the user interface in terms of Concrete Interaction

Object (CIO) known as widgets. CIO can be either Concrete Containers (CC) such as window and
panel, or Concrete Interaction Components (CIC) like text field, button and drop down list.

3174 CSSE, 2023, vol.45, no.3

e Final User Interface (FUI) Model: specify the terminologies to render the CUI model in a specific
technological platform such as Android or iOS. As the Android OS takes over the majority of the
worldwide market, the interest in [23] is focused on that OS.

On top of these abstraction levels, the method proposes a transformation process that entails 2 kinds of
transformation. The former automatically transforms an AUI model to a CUI model that is in turn
transformed to a FUI model thanks to a model-to-model transformation. The latter performs a model-to-
text transformation that generates the source code of the user interface from the obtained FUI model. In
this paper, we consider this method to prove the feasibility of our UMAD approach as per the following
Section.

4.2 UMAD’s Application

In this section, we explain how UMAD upgrades the adopted MBUID method to support some usability
properties. As an example of usability properties, we selected Tapped Element Size, Error Prevention, Text
Size, Prompting and Cancel Support from the usability model proposed in [24]. We have selected these
usability properties because of their widespread recommendation in most usability guidelines and surveys
for mobile apps.

4.2.1 Tapped Element Size
The Material Design Guidelines for the Android system” recommends maintaining a minimum tappable
area of 48 x 48 dp for all controls.

To allow the MBUID method presented in [23] to support such a usability property, UMAD proceeds as
follow:

o CP Identification: two attributes (layout-height and layout-width) located in the Widget meta-class of
the Final UI meta-model can be configured to support the usability recommendation with regard to
tapped element size. These attributes are currently initialized in [23] with a default value “wrap-
content” in any transformation rule allowing to create an object from the meta-class Widget
(Fig. 5a). Such a value makes the widget size auto-adjustable to its content.

e Usability Injection: to be in compliance with the usability guidelines for the Android widgets, UMAD
proposes to set the default value of layout-height and layout-width to 48 dp for any touch target widget
(Fig. 5b). As such, we illustrate the Static Configuration to blend Conceptual Primitives (CP) with
Usability Properties (UP). It is important to note that this configuration is only applicable for touch
target widgets which are concerned by the recommendation.

4.2.2 Error Prevention

A common way that is usually recommended to improve the error prevention is to allow the user to
select data from potential enumerated values instead of typing them. In what follow, we demonstrate how
UMAD proceed to fulfill such recommendation.

e CP Identification: in [23], a class called Input is used in the Abstract Ul meta-model to abstractly
represent an input element. An object from this class inherits from its super-class called Abstract
Interaction Object (AIC) an attribute that represents the action required for performing the task:
UserAction. To indicate that the required action for an input element is to type/enter data by the
user, the UserAction must be initialized with the “Create” value.

e Usability Injection: should the Error Prevention need to be favored/fulfilled, UMAD proposes that the
model compiler generate an input element from the list class instead of a text field. Note that this

2 https://material.io/design/usability/accessibility.html\#layout-and-typography

https://material.io/design/usability/accessibility.html\#layout-and-typography

CSSE, 2023, vol.45, no.3 3175

action requires that the system analyst puts, when it is possible, the list of all accepted values for an
input element. To consider the Error Prevention, UMAD suggest some modification in both AUI
meta-model and the model compiler presented in [23]. With regard to the former, an attribute
called “Value” was added to the AIC super-class to keep the list of possible values. As for the
model compiler, changes are made to allow a Dynamic Configuration of the transformation rules
associated with an input element having the “Create” as a required action. Such configuration
strongly depends on the existence of the Error Prevention in the usability model. Should this
property exist (need to be favored), the model compiler will select the appropriate transformation
rule allowing to generate a list-type widget in the CUI model for each input element from the AUI
model. Otherwise, a text field will be generated. Recall that, we resort to the parameterized
transformation to inject the usability properties to be fulfilled/favored in the model compiler.

= rule Panel{ = rule Panel{
from from
cic:MM!Panel cic:MM!Panel
to to
lyt:MM1!Layout(lyt:MM1!Layout(
id <- cic.id, ddicsedecld, - - g

____________________ {layout_height <- 'wrap_content’,;
i layout_width <- 'wrap_content’, |

{layout_height <- ‘wrap_content’,}
ilayout_width <- 'wrap_content’, i

))

i
= rule EditText{ = rule EditText{
from from

inter:MM!TextComponent
to
txt:MM1!EditText(
id <- inter.id,
text <- inter.Text,
i layout_height <- 'wrap_content’,!
layout_width <- ‘wrap_content') |

inter:MM!TextComponent
to
txt:MM1!EditText(
id <- inter.id,
text <- inter.Text,
| layout_height <- '48dp’,
| layout_width <- '48dp')

} }
= rule ImageBtn{ = rule ImageBtn{
from from
xyz:MM!Button(xyz.isImageBtn) xXyz:MM!Button(xyz.isImageBtn)
to to
btn:MM1!ImageButton(btn:MM1!ImageButton(
id <- xyz.id, id <- xyz.id,

text <- xyz.Text,

text <- xyz.Text, ____________
i layout_height <- '48dp’,
i layout_width <- 'wrap_content')

} }
a) Model compiler without CP/UP blend b) Model compiler with CP/UP blend

i ! Non-touch target widget

____i Touch target widget

Figure 5: Example of static configuration for blending conceptual primitives with usability properties

4.2.3 Text Size

Apple in its Human Interface Guidelines recommends setting the minimum size for Body text to be
17 pt.

Google in Material Design guidelines recommends setting the minimum size for Body text to be 16 sp
(equal to 16 pt in iOs). Such recommendations are intended to improve the readability in a mobile user
interface and consequently enhance its usability. Similarly to the size of tappable area, we propose to fix
the text size in various types of widgets of the FUI model to be conform to the recommendations.

e CP Identification: as the current version of the FUI’s meta-model in [23] does not contain any attribute
to fix the text size, UMAD proposes to enrich such meta-model with a new attribute called “Size” in
the Widget class.

3176 CSSE, 2023, vol.45, no.3

e Usability Injection: we modified the model compiler to support the new Static Configuration of the
widget size (Fig. 6).

82 &) UsabMM.ecore ¢

#] AUIMM.ecore #) FUIMM.ecore 32 € “aui2cui | &) AUIMM.ecore € ~avizcuiatl
v # FinalUlIMetaModel ! 1 - .
B FUIModel ' o 2 s
B Activity |
v H \'Vlc_lget . module aui2cui;
£ iid:ESing | 6 create OUT : MM1 from IN : MM, IN2 : MM2;/<

= text: EString s R S i " Inject usability
= layout_height : CompopnentLayout ! —__ model as a

o= layout_width : CompopnentlLayout | ig‘AUIrviM.ecore €) cuidfuiatl 2 &) FUIMM.ecore € | parameter
o TextSize: Elnt « . = i

e s e e s e e

a) change in the meta-model OB pale EditTexy)

P71 from
Add new r72 inter:MM!TextComponent
conceptual | 3 5
primitive L 74 txt:MM1!EditText(
1 5 id <- inter.id,
7 text <- inter.Text, g
layout_height <- 'wrap_content’, Initialize the
7 layout width <- 'wrap_content’, text size to the
9 extSize <- "16sp’ M
g0 } recommended

b) change in the model compiler
Figure 6: Implementation of the 7ext Size property

It is worth mentioning that adding the attribute Text Size to the Widget class highlights the ability of our
approach to discover any lack of expressiveness in the used meta-models.

4.2.4 Prompting

A successful interaction design must provide means to advise, orient, inform and guide the users
throughout their interaction with the system. Prompting is one of the most commonly recommended
criteria that a software system needs to support to improve its usability. It refers to the means available to
guide users through certain actions whether it is data entry or other tasks. It may be implemented via
different forms starting from including additional information about the required data until the provision
of online help. In this paper, UMAD opted for the implementation of prompting by providing cues on the
data format, measurement unit and acceptable length of entries. Should any data entry require additional
information about the accepted values or data format, UMAD proposes including such information in the
field label.

e CP Identification: similarly to the Text Size, UMAD suggests to enrich the current version of the AUI’s
meta-model by adding a new attribute called “/nfo” in the Input class. Such attribute will hold the
supplementary information that is likely to better guide users to enter the correct data.

e Usability Injection: with regard to the model compiler that derives the CUI model from the AUI’s one,
the transformation rule that deal with the Input class undergoes the required change to include in a
field label additional cueing of data format or accepted values.

4.2.5 Undo/Cancel Support

Supporting user control and freedom is one of the most basic characteristics of successful interface
design. Users frequently do activities by accident/mistakes, necessitating the presence of a clearly marked
“emergency exit” that allows them to quit the unwanted activity without having to go through a lengthy
process. To fulfill such control, UMAD recommends to automatically add a Cance! button that closes any
window and discards any changes the user may have made within that window.

CSSE, 2023, vol.45, no.3 3177

o CP Identification: the conceptual primitive that is concerned with this recommendation is the Window
class in the CUI meta-model.

e Usability Injection: to implement such recommendation, a Static Configuration of the model compiler
that derives the CUI model from the AUI is made. The transformation rule allowing to create a
window in the CUI model is enriched to create a button called Cancel in the generated window.

5 Case Study

To illustrate the feasibility of our UMAD approach, this section presents a case study. The main
objective here is to prove the value added of UMAD in generating mobile Uls that fulfill usability
requirements, at least to some extent. In addition, this section will allow us to better identify the
potentialities and the limitations of our approach.

5.1 Subject

We will consider, in this section, the same case study presented in [23] in order to illustrate the impact of
UMAD with regard to the usability of the generated UL The case study is about AlMubasher mobile app that
is among the most used mobile applications in Saudi Arabia (Fig. 7).

AlMubasher facilitate customers avail various banking services (transfer, payment, accounts
management, insurance, etc.) without visiting branch. Since the application is too large; we restrict our
focus on the login task to illustrate our approach.

The current login screen of the app is populated by 2 widgets showing the logo of the bank and available
languages as well as a container. This latter regroups 9 widgets: 2 labels showing welcome messages, 2 text
fields allowing the user to input his/her name and pass word, and 5 buttons allowing the user to login to the
system, ask the system to remember him/her, ask for help, register, and open an account. The current login
screen is kept in mind while defining the Abstract Ul model.

innll o g
Al Rajhi Bank G20°

Welcome

New Banking Experience

‘ Enter username]

\ Enter password (o2

Remember Me Forgot password?

Register | Open Account

Figure 7: Sketch of the graphical Ul AlMubasher

3178 CSSE, 2023, vol.45, no.3

<?xml version="1.0" encoding="UTF-8"?>
- <AbstractUIMetaModel:AUIModel name= AIMubasher
xsi:schemaLocation="http://Ab o dels/ ecore
xmins:AbstractUIMetaModel="http: //AbslractUlMe!aModel" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
| xmins: xmi="http://www.omg.org/XMI" xmi:version="2.0"> |
- <containsAc Name="Main Window" Id="Main Window">
- <contains Name="Inner Panel" Id="Inner Panel">
<aic Name="Welcome" Id="Welcome" xsi:type="AbstractUIMetaModel:Output"/>
<aic Name="New banking Experience” Id="New banking Experience” xsi:type="

Taskitem="Element" UserAction="Convey"/>
3 .»ss:qmlimt.w/muomt" Taskitem="Element"

<aic Name="Enter username" Id serName” xsi:typ:

UserAction="Create" inputType="PlainText" Valu Ph
<aic Name="Enter Password" Id="Passwd" xsi: lype-'Aﬁﬂradﬂl“efaﬂodeflnpu\"‘ Taskitem="Element” |
UserAction="Create"/>

)utput”
P

<aic Name=" ber Me" 1d=""| berMe xsytype—"Abs(r del:Input” Task ="Element”
UserAction="Select"/>

<aic Name="Forgot password?" Id="Forgot” xsi‘type-'“ ion" Task ="Element”/>

<aic Name="Login" Id="Login" xsi:type= Ab;t'ractUlMetaModel Control' Taskitem= "Element />

<aic Name="Register" Id="Register" xsi:type="AbstractUIn ¢ ="Element"/>
<aic Name="Open Account” Id= Accouui xsi:type="AbstractUIMetaModel: Navlgatlon"/>
! </contains>

4

| </containsAc> 4
H <containsAIC Name="Logo" Id="Logo" xsT: (ype—'AbstractUlMelaModel Output” Taskitem="Element" UserAction="Convey"/>
<c insAIC Name=" lish™ 1d= "Epg’ilsh' xsi:type="AbstractUIMetaModel:Navigation” Taskitem="Element"/>

i_ </AbstractUIMetaModel:AUIModel>

Prompting f
Cancel Support‘

<?xml version="1.0" encodjng="1S0- 8859\1">
- <ConcreteUIMetaModel:CUIModel name="AlMubasher" xmins:ConcreteUIMetaModel="http://ConcreteUIMetaModel" |
xmins:xsi="http:/ /www.w3. org/lOOl/xﬂLSchema instance" xmins:xmi="http: /lwww.omg org/XMI" xmi:version="2.0"> |

e= Cona'eteumetauodel Btmon Type= lmagesunon'/>
<components id="Logo" xsi:type= "Concrgteumetanodel MediaField" MediaType="Image"/>
- <ccid="Panel" Text="Inner Panel" xsi:tyhe="ConcreteUIMetaModel:Panel">
<components id="" Welcome xsu type= l;oncreteuluetauodel MediaField" MediaType="Image"/>
t 1M ield” MediaType="Image"/>
“si:type="ConcreteUIMetaModel: TextComponent”

id="1

i <components id= UserNomq"T
Type="PlainText"/>

<components id="Passwd" Text="Password" xsi:type="ConcreteUIMetaModel:TextComponent'/>

<comp id="R berMe" Text=" ber Me" xsi:type="ConcreteUIMetaModel:Button" Type="CheckBox"/>

<components id="Forgot" Text="Forgot password" xsi:type="ConcreteU del " Type="Imag />

<components id="Login" Text="Login" xsi:! type- “ConcreteUIMetaModel:Button” Type="ImageButton"/> |

</containers>
</ConcreteUIMetaModel:CUIModel>

! <C id="Register" Text="Register" xsi:type="ConcreteUIMetaModel:Button" Type="ImageButton"/>

| <components id="Account” Text="Open Account” xsi:type="ConcreteUIMetaModel:Button" Type="ImageButton"/>
| <fee>

|

Tapped
Element Size

| <2?xml version="1.0" encoding= X50-8859-1"2>
i - <FinalUIMetaModel:FUIModel namy="AlMubasher" xmins:FinalUIMetaModel="http:/ /FinalUIMetaModel” |
xmins:xsi="http://www.! w3.org/‘%001/xMLSchema instance” xmins:xmi="http://www.omg.org/XMI" xmi:version="2.0">
- <activity label="Main Window" id="Main">
- <layout id="Panel” layout_wi “wrap_content” layout_height="wrap_content">
<Iayoulwndge(-d~ welcon)e Iayou(width="wrap_content" layout_height="wrap_content"

ype="F iew"/> |
<lay idi id=" |9 layout_width="wrap_content" layout_height="wrap_content" |
xsi:type= iew"/> H

<layoutwidget id="UserName" I\yout_: width=" ‘wrap_content” layout_height="wrap_content” |
xsi:type= FlnalUlNetoModel‘.gdl(Text text="Enter username”/>

<Iayoutwndgel id=" d" layoutswidth="wrap_ " layout_height="wrap_content”
xsi:type="FinalUIMetaModel:EjtText" text="Password"/>
<lay: idget id=" berMe" laYgut_width="wrap_content" layout_height="wrap_content"

xsi: type-‘Flnalmueunoﬂgl‘quQ;_/p__.
<Iayoutwudget id="Forgot” I3yout_width="48dp" |
text="Forgot password"/>

"' 'vi itype="FinaluIMetaModel:ImageButton”

<layoutwidget id="Login" ISyou(width="48dp" layout_height="48dp" xsbtype-'Flnnlll del ¥ !
text="Login"/> H
<layoutwidget ld-"Reglsleu layout_width="48dp" layout_height= 48dp.xsu:type= F del g .

| text="Register”/> .
<layoutwidget nd-“Accoun" layout_width="48dp" layout_height=
text="Open Account™/> ===

“48dp~xsi:type= <

</layout>
<widget id="Language" layout_width="48dp" layout_height="48dp" xsi:type="Fil g 3 |
text="English"/>
<widget id="Logo" layout_width="48dp" layout_height="48dp" xsi:type="Fi del iew"/>
<widget id="Cancel” layout_width="48dp" layout_height="48dp" xsi:type="Final del g text="Cancel"/>
| </activity>

_ </FinalUIMetaModel:FUIModel>

Figure 8: Examples of usability properties and their impact on the generated models

CSSE, 2023, vol.45, no.3 3179

5.2 Blending Conceptual Primitives with Usability Properties

The upper part of Fig. 8 shows the resulting xmi file of the AUI model. This latter undergo a first
transformation called aui2cui to generate the CUI model (middle part of Fig. 8). During this
transformation, two usability properties are injected: Prompting and Cancel Support. Besides, the AUI
model is enriched by additional information to guide the user to enter the required data for the username
which can be either the national ID or the phone number. Such information was inserted in the Info
attribute of the correspondent Input element. As per UMAD suggest, this information is putted in the
label (between parenthesis) of the generated input element in the concrete Ul model. Concerning the
Cancel Support, a new button called “Cancel” is added to the generated window in the CUI model as is
suggested per UMAD.

With regard to the second transformation that generate the Final Ul model from the Concrete one
(bottom part of Fig. 8), only Tapped Element Size is considered. As per Section 4.1, the consideration of
such property is illustrated through the static configuration of the two attributes layout-height and layout-
width for each touch target widget. The value of these attributes is fixed to 48 dp and can be changed
according to the target platform (iOS or other).

5.3 Learned Lesson

Considering the case study, it becomes clear that UMAD has a great impact on the generated Ul with
regard to the usability properties, at least to some extent. The injected usability properties are fulfilled in
the generated Ul and consequently the usability of such a Ul is improved. In addition, the case study
raised new issues that need to be considered in future work. The most important one is about the
evaluation of the generated Ul to investigate whether it meets the required level of usability or not.

6 Conclusion

In this paper, we proposed UMAD approach that aims to enhance MBUID method dedicated for the
generation of mobile apps to support usability properties. The proposed approach is generic and can be
easily instantiated by any MBUID method to blend usability properties with its conceptual primitives
during the development of a mobile app. UMAD goes through 3 stages: the first identifies the conceptual
primitives of the MBUID method that could be concerned by usability properties. The second stage focus
on the injection of the usability properties in model compiler. Last but not least, the execution stage
generates the code of the application according to the specified functional and non-functional
requirements. To prove the feasibility of UMAD approach, we applied it, in this paper, to the MBUID-
method presented in [23]. The obtained Ul proves the ability of UMAD to enhance the usability of the app.

In terms of future work, we would like to examine the evaluation of the generated Ul to check whether it
meets the required level of usability (user satisfaction) or not.

Funding Statement: This project was supported by the Deanship of Scientific Research at Prince Sattam bin
Abdulaziz University under the research project \#2021/01/17815.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] P. Anachack and D. Dolgaya, “Evolution of mobile applications,” MATEC Web of Conferences, vol. 155, pp. 1-7,
2018.
[2] A. Arshad, K. Li, C. Feng, S. M. Asim, A. Yousif ef al., “An empirical study of investigating mobile applications
development challenges,” IEEE Access, vol. 6, pp. 17711-17728, 2018.

3180 CSSE, 2023, vol.45, no.3

[3] E. Umuhoza and M. Brambilla, “Model driven development approaches for mobile applications: A survey,”
Mobile Web and Intelligent Information Systems, vol. 9847, pp. 93—107, 2016.

[4] M. Shamsujjoha, J. Grundy, L. Li, H. Khalajzadeh and Q. Lu, “Developing mobile applications via model driven
development: A systematic literature review,” Information and Sofiware Technology, vol. 140, no. 4, pp. 106693, 2021.

[5] L Qasim, F. Azam, M. Anwar, H. Tufail, T. Qasim ef al, “Mobile user interface development techniques: A
systematic literature review,” in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile
Communication Conf. (IEMCON), Vancouver, Canada, pp. 1029-1034, 2018.

[6] S. Vale and S. Hammoudi, “Context-aware model driven development by parameterized transformation,”
Proceedings of MDISIS, pp. 121-133, 2008.

[71 G. Meixner and G. Calvary, “Introduction to model-based user interfaces,” Group Note 7 W3C, 2014.
[8] G. Meixner, F. Paterno and J. Vanderdonckt, “Past, present, and future of model-based user interface
development,” i-com, vol. 10, pp. 2—-11, 2011.
[9] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon ef al.,, “A unifying reference framework for multi-
target user interfaces,” Interacting with Computers, vol. 15, no. 3, pp. 289-308, 2003.
[10] M. Biehl, “Literature study on model transformations,” 2010. [Online]. Available: http://staffwww.dcs.shef.ac.uk/
people/A.Simons/remodel/papers/BiehIModel Transformations.pdf.

[11] A. Kleppe, J. Warmer and W. Bast, “MDA Explained: The Model Driven Architecture: Practice and Promise,”
Addison-Wesley, 2003. [Online]. Available: https://www.amazon.com/MDA-Explained-Architecture%C2%BF-
Practice-Promise/dp/032119442X.

[12] H. Tufail, F. Azam, M. W. Anwar and 1. Qasim, “Model-driven development of mobile applications: A systematic
literature review,” in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication
Conf. (IEMCON), Vancouver, Canada, pp. 11651171, 2018.

[13] F. Freitas and P. H. M. Maia, “Justmodeling: An mde approach to develop android business applications,” in
2016 VI Brazilian Symp. on Computing Systems Engineering (SBESC), Paraiba, Brazil, pp. 4855, 2016.

[14] A. Sabraoui, A. Abouzahra, K. Afdel and M. Machkour, “Mdd approach for mobile applications based on dsl,” in
2019 Int. Conf. of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco, pp. 1-6, 2019.

[15] T. Channonthawat and Y. Limpiyakorn, “Model driven de-velopment of android application prototypes from
windows navigation diagrams,” in 2016 Int. Conf. on Software Networking (ICSN), Jeju Island, Republic of
Korea, pp. 14, 2016.

[16] A. Seffah, M. Donyaee, R. Kline and H. Padda, “Usability measurement and metrics: A consolidated model,”
Software Quality Journal, vol. 14, no. 2, pp. 159-178, 2006.

[17] K. Moumane, A. Idri and A. Abran, “Usability evaluation of mobile applications using iso 9241 and iso
25062 standards,” SpringerPlus, vol. 5, no. 1, pp. 1-15, 2016.

[18] A.Barros, R. Leitdo and J. Ribeiro, “Design and evaluation of a mobile user interface for older adults: Navigation,
interaction and visual design recommendations,” Procedia Computer Science, vol. 27, pp. 369-378, 2014.

[19] F. Nayebi, J. M. Desharnais and A. Abran, “The state of the art of mobile application usability evaluation,” in 2012
25th IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, pp. 1-4, 2012.

[20] D. Zhang and B. Adipat, “Challenges, methodologies, and issues in the usability testing of mobile applications,”
International Journal of Human-Computer Interaction, vol. 18, no. 3, pp. 293-308, 2005.

[21] R. Harrison, D. Flood and D. Duce, “Usability of mobile applications: Literature review and rationale for a new
usability model,” Journal of Interaction Science, vol. 1, no. 1, pp. 1-16, 2013.

[22] L. Ben Ammar, A. Trabelsi and A. Mahfoudhi, “Incorporating usability requirements into model transformation
technologies,” Requirements Engineering, vol. 20, no. 4, pp. 465-479, 2015.

[23] L. Ben Ammar, “An automated model-based approach for developing mobile user interfaces,” IEEE Access, vol.
9, pp. 51573-51581, 2021.

[24] L. Ben Ammar, “A usability model for mobile applications generated with a model-driven approach,”
International Journal of Advanced Computer Science and Applications, vol. 10, pp. 140-146, 2019.

http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/BiehlModelTransformations.pdf
http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/BiehlModelTransformations.pdf
https://www.amazon.com/MDA-Explained-Architecture%C2%BF-Practice-Promise/dp/032119442X
https://www.amazon.com/MDA-Explained-Architecture%C2%BF-Practice-Promise/dp/032119442X

	Usability-Driven Mobile Application Development
	Introduction
	Background
	Usability-Driven Mobile App Development (UMAD) Approach
	Proof of Concept
	Case Study
	Conclusion
	References

