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Abstract: Cloud infrastructural resource optimization is the process of precisely
selecting the allocating the correct resources either to a workload or application.
When workload execution, accuracy, and cost are accurately stabilized in opposi-
tion to the best possible framework in real-time, efficiency is attained. In addition,
every workload or application required for the framework is characteristic and
these essentials change over time. But, the existing method was failed to ensure
the high Quality of Service (QoS). In order to address this issue, a Tricube
Weighted Linear Regression-based Inter Quartile (TWLR-IQ) for Cloud Infra-
structural Resource Optimization is introduced. A Tricube Weighted Linear
Regression is presented in the proposed method to estimate the resources (i.e.,
CPU, RAM, and network bandwidth utilization) based on the usage history in
each cloud server. Then, Inter Quartile Range is applied to efficiently predict
the overload hosts for ensuring a smooth migration. Experimental results show
that our proposed method is better than the approach in Cloudsim under various
performance metrics. The results clearly showed that the proposed method can
reduce the energy consumption and provide a high level of commitment with
ensuring the minimum number of Virtual Machine (VM) Migrations as compared
to the state-of-the-art methods.

Keywords: Cloud infrastructure; tricube; weighted linear regression; inter quartile;
CPU; RAM; network bandwidth utilization

1 Introduction

In cloud computing, resource allocation takes part in a pivotal part in deciding the performance,
utilization of resources, and data center power consumption. The pertinent VM allocation in cloud data
centers is also one of the main optimization issues as far as cloud computing is concerned. A load-
balancing algorithm called, Priority Aware Longest Job First (PA-KJF) was proposed in [1] to enhance
the VM utilization and fulfill users’ requirements in cloud infrastructure. Here, the priority of tasks was
first identified. VIP tasks were first executed followed by which the normal tasks were executed. Next,
the heuristic-based dynamic load-balancing algorithm was employed that monitored VMs in a continuous
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manner resulting in significant resource utilization. With this various QoS parameters like processing time,
throughput, and task acceptance ratio were found to be improved.

Despite improvement observed in three different QoS parameters, less focus was made on VM migration,
energy consumption. To address this issue, an Inter Quartile Range is introduced in the TWLR-IQ method that
efficiently predicts overloading hosts, therefore, minimizing the number of migrations. Cloud workflow
scheduling strategy employing intelligent algorithm called D-JStorm, a dynamic resource scheduling was
proposed in [2]. In addition, a strategy for aligning the fusion of recognized cloud service resources to
attain scheduling of cloud workflow tasks in a two-tier manner was designed. With the implementations of
a fusion i.e., cloud workflow scheduling based on an intelligent algorithm, the response time was shortened
in addition to optimal memory utilization. Despite improvement observed in optimal memory utilization,
the energy consumed in cloud workflow scheduling was less focused. To address this issue, a Tricube
Weighted Linear Regression model is designed that estimates the history of usage in each cloud server (i.e.,
energy consumption). To solve the above problems, this work proposes a cloud infrastructural resource
optimization algorithm for ensuring high QoS.

The main contributions of this paper are as follows.

� We propose a novel priority of resource allocation based on the history of usage or resource demands
(i.e., CPU utilization, memory, and network bandwidth utilization) for each requested task in a cloud
environment, which guarantees the estimated resource demand to be allocated resources in a
computationally efficient and accurate manner.

� We propose a model of virtual allocation, which selects more suitable physical servers to provide
resources with better performance for VM requests based on resource performance matching
between VMs and physical servers employing Tricube Locality Quarter Weight.

� We propose a model of VM migration, using Markov Inter Quartile-based VM Migration which
performs between VM migrations to ensure balanced utilization between different types of
resources of physical servers.

� Conduct extensive simulation and performance analysis of the proposed method. In addition, we
investigate how the three cloud resource optimization methods have an impact on the performance
in terms of resource optimization time, resource optimization accuracy, energy usage, and a
number of migrations.

The rest of this paper is organized as follows. Section 2 discusses related works. Section 3 introduces the
system model presented in this study, followed by which the proposed Tricube Weighted Linear Regression-
based Inter Quartile (TWLR-IQ) method is elaborated. Section 4 presents an experimental evaluation of the
proposed method. Section 5 discusses the comparative analysis with two state-of-the-art methods. We
conclude the paper in Section 6.

2 Related Work

An end-to-end Price-Aware Congestion Control Protocol (PACCP) was designed in [3] for cloud service
provisioning. However, predicting demand for resource estimation is a vital task as it permits optimized
resource estimation. A novel method employing anomaly detection and machine learning was proposed
in [4] to achieve cost-optimized and QoS-constrained cloud infrastructural resource estimation. Yet
another hybrid cloud environment consistency management employing Graph Partitioning Algorithm was
presented in [5].

Brokering model for Service Selection (BSS) was proposed in [6] utilizing integrated weighting
selection of cloud services. In this work, both subjective and objective weights of QoS features were
integrated into the measured integrated total weight. However, congestion causes an interruption in the
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allocation of tasks with the respective resource. To address this issue, a pre-allocation algorithm was designed
in [7] employing access point resource utilization, therefore enhancing the overall task execution with a
minimum time overhead. However, estimating the best-performing resource is a difficult task. This is
owing to the reason that the optimality depends on both the topology and workload collocation.

To address this aspect, a framework called, DRMaestro has proposed in [8] that with the assistance of a
novel flow-network model determined optimal placement in several phases and prevented workload
performance interference. However, with the huge executions involved in scientific workflows, the overall
process is said to be time-consuming. In order to address workflow issues, a Cost Optimized Heuristic
Algorithm (COHA) was proposed in [9] employing novel workflow scheduling called, Multi-Objective
Workflow Optimization Strategy (MOWOS). Yet another resource allocation algorithm ensuring
timeliness and optimization employing an improved evolutionary algorithm was proposed in [10].

With the increased load in data centers, energy consumption is also said to be high. To address this
aspect, a hybrid approach combining Genetic Algorithm and Random Forest was proposed in [11] that in
turn not only reduced power consumption but also maintained better load balance. To ensure the QoS and
time consumed in the execution of the user requested task, an improved particle swarm optimization
algorithm was designed in [12]. However, customarily designed as single objective issues and solutions
are proposed. For handling multi-objective issues, a method called, multi constraint multi-objective
resource scheduling optimization method was proposed in [13] for ensuring cloud infrastructure services
to the user requested tasks. However, this multi-objective optimization model was not found to be
suitable for high-performance computing platforms. To concentrate on this issue, artificial neural
networks were employed in [14] therefore ensuring optimization time and cost.

A holistic approach concentrating on scheduling methods for cloud computing was investigated in [15].
In [16], an improved particle swarm optimization (IPSO) algorithm was designed with the purpose of
enhancing resource scheduling efficiency. Yet another QoS constrained cloud resource configuration
model employing machine learning was proposed in [17], therefore causing an improvement in prediction
efficiency. To address this aspect, a Hierarchical Multi-Agent Optimization (HMAO) algorithm was
proposed in [18] to not only ensure maximal resource utilization but also reduce bandwidth cost for cloud
computing. In [19], a multi-objective optimization algorithm to ensure performance and cost-efficiency
for Big Data applications running on Cloud was proposed. An Enhanced Heterogeneous Earliest Finish
Time based on Rule (EHEFT-R) for efficient task scheduling was designed in [20] to ensure task
efficiency, improve QoS and minimize energy consumption.

Cost-Effective Optimal Task Scheduling Model (CEOTS) was introduced in [21] for minimizing the
cost and make span. However, the energy usage was not considered. Genetic simulated annealing fusion
algorithm named GSA-EDGE was developed in [22] for minimizing the time delay of task processing.
But, the resource optimization accuracy was not focused. An efficient virtual machine placement strategy
(VMP-SI) was developed in [23] to guarantee the QoS. But, the execution time was not reduced.
Resource-aware dynamic task scheduling approach was introduced in [24] to improve resource utilization
and minimum execution time. But, the computational complexity was not minimized. Cloud computing
multi-objective task scheduling optimization method was developed in [25] for selecting the global
optimal solution. An enhanced sunflower optimization (ESFO) algorithm was introduced in [26] for
determining the optimal scheduling. However, the accuracy was not improved. Motivated by the above
state-of-the-art methods, in this work, a cloud infrastructural resource optimization method called, Tricube
Weighted Linear Regression-based Inter Quartile (TWLR-IQ) is proposed. The elaborate description of
the TWLR-IQ is presented in the following sections.
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3 Methodology

Cloud computing is a type of distributed computing that introduces utility models to produce
quantifiable and scalable resources in a remote fashion. Significant computing potentiality and extensive
storage capacity permit the users to access cloud services anytime and anywhere. On the other hand,
Cloud Infrastructural Resource Optimization refers to the process of resource planning, with the objective
of minimizing overall costs, while attaining the highest performance in terms of resource allocations
under a set of given constraints.

In this section, a method called, the Tricube Weighted Linear Regression-based Inter Quartile (TWLR-
IQ) for Cloud Infrastructural Resource Optimization is designed with the objective of ensuring high QoS
(i.e., minimizing energy and power consumption). Fig. 1 shows the block diagram of Tricube Weighted
Linear Regression-based Inter Quartile (TWLR-IQ) method.

First, a system model for resource optimization in cloud computing environment is presented. Second,
Tricube Weighted Linear Regression-based Resource Estimation model is designed to allocate the tasks
based on the estimation of resources. Finally, with the incoming user request tasks resource estimation
made, Inter Quartile Range-based Cloud Infrastructural Resource Optimization is ensured with maximum
accuracy and minimum number of migrations, energy usage, resource optimization time. To start with a
system model is presented, followed by which the proposed methodology is explained in detail.

3.1 Cloud Computing System Model

This section provides the cloud computing system model of the proposed method in the cloud
computing environment.

Fig. 2 given below shows the system model of cloud infrastructural resource optimization in cloud
computing environment. As shown in the figure let us consider set of tasks represented as
‘T ¼ T1; T2; . . . :; Tnf g’, where ‘i 2 1; n½ �’ and ‘n’ represents the total number of tasks. Each task ‘Ti’ is
expressed as ‘Ti CPUi; Mi; Bið Þ’, here ‘CPUi’, ‘Mi’ and ‘Bi’ represents the CPU utilization, memory
consumed and network bandwidth utilization respectively. The objective here remains in optimizing the

Figure 1: Block diagram of tricube weighted linear regression-based inter quartile
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resources with minimal energy, migrations and maximal accuracy. The elaborate description of the proposed
method is given in the following sections.

3.2 Tricube Weighted Linear Regression-based Resource Estimation Model

Weighted Linear Regression-based Resource Estimation involves a statistical representation for
quantitative resource analysis that is used to predict the future values of resources. In our work, multiple
linear regressions are employed involving more than one input (i.e., a task in hand and the history or
usage in terms of CPU utilization, RAM, and network bandwidth utilization). Multiple Linear Regression
in our work models an approximation of a regression function by evaluating the relationship between
input variable ‘T ¼ T1; T2; . . . ;Tnf g’, ‘UtilHistory ¼ CPUi; Mi; Bif g’ (i.e., tasks and utility history),
and output variable ‘R’ (i.e., resource estimation) via linear regression line. The proposed Tricube
Weighted Linear Regression-based Resource Estimation uses a simple weighted linear regression to
predict future host utilization. This proposed model estimates the resources (CPU, RAM, and network
bandwidth utilization) on the basis of the history of usage or utilization (i.e., utilization history) in each
cloud server. Fig. 3 shows the structure of the Tricube Weighted Linear Regression-based Resource
Estimation model.

Figure 2: Proposed system model

Figure 3: Structure of tricube weighted linear regression-based resource estimation model
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As shown in the above figure, initially to start with the process of resource estimation in cloud
computing environment, multiple regressions line for resource estimation is mathematically stated as
given below.

S ¼ a0 þ a1T UtilHistory½ � (1)

From the above Eq. (1), ‘S’ represent the dependent variable, whereas ‘T ’ and ‘UtilHistory’ denotes the
independent variables with the regression coefficients being ‘a0’ and ‘a1’ respectively. The regression
coefficients are then obtained via multiple regressions least square technique. This is mathematically
expressed as given below

a00 ¼ S � a1 T UtilHistory½ � (2)

a01 ¼
Pn

i¼1 Ti UtilHistory½ � � T 0ð Þ Si � S0ð ÞPn
i¼1 Ti UtilHistory½ � � Tð Þ2 (3)

From the above Eqs. (2) and (3), ‘T 0’, ‘S0’ denotes the averages of ‘T ’ and ‘S’ observations, and ‘a00’,
‘a01’ are resource estimations of ‘a0’ and ‘a1’ respectively. For each observation (i.e., Cloud Infrastructural
Resourceestimation), ‘Si; Ti’, a locality quarter weight is allocated with the aid of Tricube weight
function as given below.

Tri CSð Þ ¼ 1� vj j3
� �3

; if vj j, 1

0; if vj j. 1

(
(4)

Based on the above Tricube weight function ‘Tri’ for each task in the cloud server ‘CS’, the locality
quarter weight is mathematically represented as given below.

Wi Tð Þ ¼ Tri
Tn � Ti
Tn � T1

� �
¼ 1� Tn � Ti

Tn � T1

� �3
" #3

(5)

From the above Eq. (5), ‘Ti’ and ‘Tn’, represents the ‘i� th’ and ‘n� th’, observations respectively. Let
further the demand requirement of resource represented as ‘ Tic; Tim; Tibð Þ’ and the available resource
denoted as ‘ CSic; CSim; CSibð Þ’. Then, the final cloud infrastructural optimized resource is
mathematically represented as given below.

FTic ¼ Tic
CSic

(6)

FTim ¼ Tim
CSim

(7)

FTib ¼ Tib
CSib

(8)

From the above Eqs. (6)–(8), final cloud infrastructural resources, i.e., CPU utilization, ‘FTic’, memory
consumption ‘FTim’ and bandwidth network utilization ‘FTib’ is measured based on the demand requirement
of resource ‘Tic;Tim; Tib’ and the available resource ‘CSic;CSim;CSib’ respectively. The pseudo code
representation of Tricube Locality Quarter Weight-based Cloud Infrastructural Resource estimation is
given below.
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//Algorithm 1: Tricube Locality Quarter Weight-based Cloud Infrastructural Resource estimation

Input: Cloud Server ‘CS’, Task ‘T1; T2; . . . :; Tn’, Virtual Machine ‘VM ¼ VM1; VM2; . . . :;VMn’

Output: Accurate and timely VM allocation

Step 1: Initialize regression coefficients ‘a0’, ‘a1’

Step 2: Begin

Step 3: For each incoming tasks ‘T1; T2; . . . :; Tn’

Step 4: Estimate multiple regressions line for resource estimation as in Eq. (1)

Step 5: Evaluate regression coefficients as in Eqs. (2) and (3)

Step 6: For each observation (i.e., Cloud Infrastructural Resource estimation)

Step 7: Evaluate Tricube weight function via locality quarter weight as in Eq. (4)

Step 8: Obtain locality quarter weight as in Eq. (5)

Step 9: Estimate final cloud infrastructural optimized resource as in Eqs. (6)–(8)

Step 10: Return resource-optimized VM

Step 11: End for

Step 12: End for

Step 13: End

The smaller requirement between requested tasks and the cloud server in the history, the higher the
possibility of resources being optimized in the cloud computing environment between VMs.As given in
the above Tricube Locality Quarter Weight-based Cloud Infrastructural Resource estimation algorithm,
the objective remains in assigning the VM with the respective task in a queue by minimizing resource
optimization time and maximizing resource optimization accuracy. With this objective, first, a multiple
regressions line for resource estimation is obtained via multiple regressions least based on the utilization
history. As a result, the resource estimation for each task is made in a computationally efficient manner,
therefore reducing resource optimization time. Next, with the utilization of the Tricube weight function
by estimating a locality quarter weight Cloud Infrastructural Resource estimation is made accurately,
therefore improving the resource optimization accuracy.

3.3 Markov Inter Quartile-Based Virtual Machine Migration

At cloud Data Centers (DCs), the suitable optimization in power consumption via VM consolidation is
perceived as prospective procedure for minimizing energy consumption. The prospective procedure
synchronizes in an arbitrary fashion that in turn complements the active machines to the resource
requirements while keeping others in sleep mode to conserve energy. The significant ascertainment of
overloaded and under-loaded hosts is the paramount step in VM consolidation. On the basis of this, the
significant options like VM migration to other hosts can be done, therefore reducing the energy and
ensuring minimum number of migrations.

The objective of this work is to propose the Load Detection model Dynamic VMConsolidation based on
Markov Inter Quartile-based VM Migration and provide the optimization for better performance and
environment. The concentration of this work is on designing efficient VM consolidation employing
flexible thresholds of load at hosts. The measurement of flexible threshold is obtained on the basis of the
Markov Inter Quartile-based VM Migration. Fig. 4 shows the structure of Markov Inter Quartile-based
VM Migration.
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As illustrated in the above figure, to start with, in the Markov chain, the observed task ‘T ’, discretized, so
the observation task sequence ‘T1; T2; . . . :;Tn’, where each of the variables ‘Tn’may take one of ‘n’ distinct
states ‘ S1; S2; . . . ; Snf g’. In our work, three distinct states for a given host are feasible, Under-loaded ‘UL’,
Normal-loaded ‘NL’ and Over-loaded ‘OL’ respectively. With this based on the results of the distinct states,
either migration takes place or not by means of Inter Quartile Deviation function. Initially, the historical
observations are obtained as given below.

Prob TnjTn�1; Tn�2; . . . ;T1ð Þ � Prob TnjTn�1ð Þ (9)

With the above historical observation of distinct task sequences ‘Tn�1; Tn�2; . . . ; T1’, the joint
probability of ‘n’ observations are mathematically stated as given below.

Prob T1; T2; . . . ;Tnð Þ ¼
Yn
i¼1

Prob TijTi�1ð Þ (10)

Next, the state transition probability for each distinct task sequences is mathematically stated as given
below.

Prob Tn ¼ Sij Tn�1 ¼ Sj
� �

(11)

With the above result, the state transition probability matrix is represented as given below.

STPM ¼
ProbULUL ProbULNL ProbULOL
ProbNLUL ProbNLNL ProbNLOL
ProbOLUL ProbOLNL ProbOLOL

2
4

3
5 (12)

Figure 4: Structure of Markov Inter Quartile-based VM Migration
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The Inter Quartile Deviation function is defined as the difference between the ‘75� th’ and ‘25� th’
percentiles of data (i.e., host’s task). To calculate the ‘IQD’ function, the resource-optimized VMs task is
split into quartiles. These quartiles are represented by ‘Q1’ (i.e., lower quartile denoting the ‘25� th’
percentiles of data), ‘Q2’ (i.e., median) and ‘Q3’ (i.e., upper quartile denoting the ‘75� th’ percentiles of
data). The overall function is mathematically stated as given below.

IQ3 ¼ Q3 Hi Ti½ �ð Þ½ � � Q1 Hj Tj
� 	� �� 	
 �

(13)

Finally, with the results of the state transition probability matrix ‘STPM ’ as given above (12), a threshold
employing Inter Quartile Deviation ‘IQD’ function is utilized to see to that whether the host is over-loaded
‘OL’, under-loaded ‘UL’ or normally-loaded ‘NL’. Accordingly, migrations or either performed or not,
therefore ensuring minimum energy and minimum number of migrations. The pseudo code representation
of Markov Inter Quartile-based VM Migration is given below.

//Algorithm 2: Markov Inter Quartile-based VM Migration

Input: Cloud Server ‘CS’, Task ‘T1; T2; . . . :; Tn’, Virtual Machine ‘VM ¼ VM1; VM2; . . . :;VMn’

Output: Resource optimized and energy efficient VM allocation

Step 1: Initialize resource-optimized virtual machine

Step 2: Begin

Step 3: For each incoming tasks ‘T1; T2; . . . :; Tn’

Step 4: Obtain historical observations as in Eq. (9)

Step 5: Obtain joint probability of ‘n’ observations as in Eq. (10)

Step 6: Obtain state transition probability as in Eq. (11)

Step 7: If ‘Res STPMð Þ > IQL’

Step 8: Then host machine is over-loaded ‘OL’

Step 9: VM task distributed to other host

Step 10: End if

Step 11: If ‘Res STPMð Þ ¼ IQL’

Step 12: Then host machine is normally-loaded ‘NL’

Step 13: VM performs task

Step 14: End if

Step 15: If ‘ Res STPMð Þ < IQL’

Step 16: Then host machine is under-loaded ‘UL’

Step 17: VM performs task

Step 18: End if

Step 19: End for

Step 20: End

As given in the above algorithm, in addition to the Cloud Infrastructural Resource estimation using
Tricube Locality Quarter Weight-based Cloud Infrastructural Resource estimation algorithm ensuring
optimized resource-oriented VM allocation for each task, migration process for predicting overloading
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hosts using Inter Quartile Range is also designed. Upon detection of a host being overloaded, one of several
VMs is distributed to other hosts to minimize host utilization followed by which the host is reversed to
minimize power consumption by employing Inter Quartile Range function.

4 Experimental Settings

The efficiency of the proposed method is validated by conducting simulation with Cloud Simulator
using Native Java Codes. Experimental evaluation is carried out using factors such as number of
migrations, energy usage, resource optimization time and resource optimization accuracy with respect to
number of user requests and iterations. To perform fair comparison simulation number of user requests
and iterations are performed with the proposed TWLR-IQ method and two existing methods, Fuzzy-
based Multidimensional Resource Scheduling and Queuing Network (F-MRSQN) [1] and D-JStorm [2].

The Cloud Infrastructural Resource Optimization is performed with the aid of Personal Cloud Datasets
acquired from http://cloudspaces.eu/results/datasets. The dataset comprises of 17 attributes with an overall of
66245 instances. Among 17 attributes, two attributes namely time zone and capped are not utilized in our
work, whereas the remaining attributes are employed for Infrastructural Resource Optimization with
multiple user tasks. An overall of 10 simulation runs are performed for four distinct performance metrics
number of migrations, energy usage, resource optimization time and resource optimization accuracy
respectively.

5 Performance Metrics

In order to compare the efficiency of the TWLR-IQ method we use several metrics to evaluate their
performance. The following metrics are used:

� Resource optimization time

� Resource optimization accuracy

� Energy usage

� Number of migrations

� Resource Optimization Time

Resource optimization time refers to the time consumed in optimally allocating the resources to the user
requested tasks. This is mathematically formulated as given below.

ROT ¼
Xn
i¼1

Ti � Time FTic þ FTim þ FTibð Þ (14)

From the above Eq. (14), the resource optimization time ‘ROT ’ is measured on the basis of the number
of user requested tasks in queue in cloud environment ‘Ti’ and the time consumed in analyzing final cloud
infrastructural optimized resource based on ‘Time FTicð Þ’, ‘Time FTimð Þ’ and ‘Time FTibð Þ’ respectively.

� Resource Optimization Accuracy

Resource optimization accuracy refers to the number of user requested tasks allocated with the accurate
resources as requested. The resource optimization accuracy is mathematically stated as given below.

ROA ¼
Xn
i¼1

RAA

Ti
(15)
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From the above Eq. (15), the resource optimization accuracy ‘ROA’, is measured based on the number of
user requested tasks in queue in cloud environment ‘Ti’ to be allocated with the requested resources and the
resources that has been actually allocated ‘RAA’. It is measured in terms of percentage (%).

� Energy Usage

Total energy usage is defined as the sum of energy consumed by physical resources (i.e., the tasks
involved in the request process in cloud environment) of a data center as a result of application
workloads (i.e., allocation of VMs). Total energy consumption is defined as the sum of energy consumed
by physical resources (i.e., the tasks involved in the request process in cloud environment) of a data
center as a result of application workloads (i.e., allocation of VMs).

EU ¼
Xn
i¼1

Ti � Energy VMallocð Þ (16)

From the above Eq. (16), the energy usage ‘EU ’ is measured based on the tasks involved in the request
process in cloud environment ‘Ti’ and the energy usage involved in allocation of VMs ‘Energy VMallocð Þ’
respectively. It is measured in terms of kilo watt hour (Kwh).

� Number of Migrations

For VM consolidation upon successful identification of the overloaded or under-loaded, the VMs are
then selected for migration process. The minimization of VM migration time being the most significant
restriction in migration and it is arrived at by the minimization of total number of migrations.

� Computational Complexity

Computational Complexity is determined as the different between the ending time and starting time
measured for resource allocation in scheduling. The computational complexity is mathematically
estimated as given below.

Computational Complexity ¼ Ending time� Starting time (17)

From the above Eq. (16), the Computational Complexity is evaluated. It is measured in terms of
milliseconds (ms).

5.1 Performance Analysis of Resource Optimization Time

Initially we start by evaluating the resource optimization time across different methods, TWLR-IQ, F-
MRSQN [1] and D-JStorm [2] utilizing random workload traces as it is the easiest type of workload to begin
our experiments without affecting operation. Fig. 5 shows the comparison of the PA-KJF [1] and D-JStorm
[2] and the proposed method, TWLR-IQ based on their resource optimization time. Let us consider ‘100’
number of user requested task for experimentation, the time consumed by TWLR-IQ based to allocate the
resources is 255 ms’, whereas ‘315 ms and ’ 485 ms of time consumed by existing techniques F-MRSQN
[1] and D-JStorm [2]. As revealed in the chart, the resource optimization time is gradually increased for
all three methods while raising the number of user-requested tasks since the counts of data get increased
for each run. But proposed TWLR-IQ method achieves better performance on average resource
optimization time when compared to existing methods. To improve the average resource optimization
time, the TWLR-IQ method uses Tricube Weighted Linear Regression-based Resource Estimation that
estimates resources according to the Tricube Weight function.

The Tricube Weight function performs efficient resource estimation. Hence TWLR-IQ method reduces
average resource optimization time by 19%when compared to existing PA-KJF [1] and 32% when compared
to existing D-JStorm [2] respectively.
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5.2 Performance Analysis of Resource Optimization Accuracy

Second, we have evaluated the resource optimization accuracy using the proposed method, TWLR-IQ, and
two state-of-the-art methods, F-MRSQN [1] and D-JStorm [2] with the assistance of randomworkload traces in
the range of 100 and 1000. Let us considers 100 number of user requested for conducting the experiments in the
first iteration. By applying the TWLR-IQ method, 95 resources are actually allocated and the resource
optimization accuracy is 95% whereas the accuracy percentage of the existing [1] and [2] are 90% and 87%
respectively. Followed by, various performance results are observed for each method. For each method, ten
different results are observed. The performance result of resource optimization accuracy as given in Fig. 6.

Figure 5: Graphical representation of resource optimization time

Figure 6: Graphical representation of resource optimization accuracy
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This is because the multiple regressions least square technique using TWLR-IQ method schedules all
user requested tasks based on the locality quarter weight. This in turn improves the resource optimization
accuracy efficiency by 3% compared to PA-KJF [1] and 7% compared to D-JStorm [2] respectively.

5.3 Performance Analysis of Energy Usage

Third, the energy usage involved in the process of cloud infrastructural resource optimization is
estimated employing the proposed method, TWLR-IQ, and two state-of-the-art methods, F-MRSQN [1]
and D-JStorm [2]. With ‘100’ number of user requested task as input, the energy consumed by TWLR-IQ
based to allocate the resources is 69.63 kwh, whereas ’72:35 kwh and ’76:85 kwh of time consumed by
existing techniques F-MRSQN [1] and D-JStorm [2]. As revealed in the chart, the energy usage is
gradually increased for all three methods while raising the number of user requested task since the counts
of data get increased for each run.

Fig. 7 shows the performance of energy usage calculated using proposed TWLR-IQ method and
compared with existing methods namely F-MRSQN [1] and D-JStorm [2]. This efficient reduction on
energy usage is achieved using Markov Inter Quartile-based VM Migration algorithm. Hence energy
usage is reduced in proposed TWLR-IQ method by 9% when compared to existing F-MRSQN [1] and
13% when compared to D-JStorm [2] respectively.

5.4 Performance Analysis of Number of Migrations

Fourth, the number of migrations involved during the process of cloud infrastructural resource
optimization is provided in Fig. 8.

Finally, Fig. 8 given above illustrates the number of migrations involved during cloud infrastructural
resource optimization process. The reason behind the minimum number of migrations using TWLR-IQ
method is due to the application of Tricube Locality Quarter Weight-based Cloud Infrastructural
Resourceestimation algorithm. Therefore minimizing the overall number of migrations. This is said to be
reduced using TWLR-IQ method by 53% compared to [1] and 27% compared to [2].

Figure 7: Graphical representation of energy usage
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5.5 Performance Analysis of Computational Complexity

Finally, the computational complexity involved in the process of cloud infrastructural resource
optimization is measured by using the proposed method, TWLR-IQ, and conventional methods, F-
MRSQN [1] and D-JStorm [2].

Fig. 9 demonstrates the graphical results of computational complexity for three methods such as TWLR-
IQ method, existing PA-KJF [1] and D-JStorm [2]. The different number of user requested tasks is taken as
input to estimate evaluating the performance of computational complexity in cloud. However, proposed
TWLR-IQ method comparatively minimizes the computational complexity than the existing works. Let
us consider 100 number of user requested task. In the first iteration, computational complexity is
observed as 28 ms for proposed TWLR-IQ method whereas 28 ms and 38 ms of computational
complexity is observed in existing PA-KJF [1] and D-JStorm [2] respectively. The reason for minimizing
the computational complexity in cloud is to perform the efficient resource estimation by using Tricube
Weighted function. Also, Data utilization history is applied to measure the resource estimation depended
on the prior with aid of multiple regressions. As a result, the resource estimation for all tasks is done with
minimum resource computational complexity.

Figure 8: Graphical representation of number of migrations
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6 Conclusion

With the development of cloud computing, machine learning, and artificial intelligence, cloud
infrastructural resource demands demonstrate the characteristics of high energy utilization, time, and a
maximum number of migrations owing to the overloaded nature. Unquestionably, cloud infrastructures
frequently experience such emergent resource optimizations which require to be allocated resources
swiftly and optimally. This paper proposes a Tricube Weighted Linear Regression-based Inter Quartile
(TWLR-IQ) for Cloud Infrastructural Resource Optimization for resource estimations. The priority of
resource allocation is initially designed to respond to resource estimations, and resource performance
based on the history of utilization and resource proportion matching are entrenched to perceive resource
optimization and balanced utilization of all types of resources. Then, a Markov Inter Quartile-based VM
Migration algorithm for analyzing load is presented to guarantee the timeliness and optimization of
resource allocation. Experiments are performed to compare our proposed TWLR-IQ method with the
state-of-the-art methods. The results of this study verify the efficiency of our method to meet the
emergent demands in cloud computing with maximum accuracy by reducing the energy and time
involved during migrations. The proposed TWLR-IQ method failed to measure the throughput, makespan
metric. In the future, the proposed method is further extended to estimate the throughput, makespan for
optimized resource utilization VM.
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Figure 9: Graphical representation of computational complexity
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