Computer Systems Science & Engineering L < Tech Science Press

DOI: 10.32604/csse.2023.025941
Article @ check for updates

A Universal BIST Approach for Virtex-Ultrascale Architecture

N. Sathiabama'” and S. Anila®

Icst College of Engineering, Ketti, 643215, Tamilnadu, India
2Sri Ramakrishna Institute of Technology, Coimbatore, 641010, Tamilnadu, India
*Corresponding Author: N. Sathiabama. Email: sathyagans@gmail.com
Received: 10 December 2021; Accepted: 14 June 2022

Abstract: Interconnected cells, Configurable Logic Blocks (CLBs), and input/out-
put (I/O) pads are all present in every Field Programmable Gate Array (FPGA)
structure. The interconnects are formed by the physical paths for connecting
the blocks . The combinational and sequential circuits are used in the logic blocks
to execute logical functions. The FPGA includes two different tests called inter-
connect testing and logical testing. Instead of using an additional circuitry, the
Built-in-Self-Test (BIST) logic is coded into an FPGA, which is then reconfigured
to perform its specific operation after the testing is completed. As a result, addi-
tional test circuits for the FPGA board are no longer required. The FPGA BIST
has no area overhead or performance reduction issues like conventional BIST.
A resource-efficient testing scheme is essential to assure the appropriate operation
of FPGA look-up tables for effectively testing the functional operation. In this
work, the Configurable Logic Blocks (CLBs) of virtex-ultrascale FPGAs are
tested using a BIST with a simple architecture. To evaluate the CLBs’ capabilities
including distributed modes of operation of Random Access Memory (RAM),
several types of configurations are created. These setups have the ability to iden-
tify 100% stuck-at failures in every CLB. This method is suitable for all phases of
FPGA testing and has no overhead or performance cost.

Keywords: Built-in-self-test; TPG; LUT; ORA; CLB; FPGA testing

1 Introduction

The significance of FPGA is extremely remarkable in various applications because it possesses variety
of beneficial measures like robust structure, high flexibility, easy upgradability, innovative functuning and
maximum efficiency. As the durability of FPGA is high, it is preferred by the manufacturers in various
applications. Unlike the Application Specific Integrated Circuits (ASICs), which are customized by the
manufacturer, the FPGA is configured in the field by the user. The CLBs and RAMs are used to
implement combinational and sequential logic functions in FPGAs [1,2]. Furthermore, certain FPGAs are
partially reprogrammed in the runtime to perform the implementation of reconfigurable hardware circuits.
Because of having the feature of high versatility, the FPGAs are highly demanded in the fields like
defense and space exploration. In spite of having these advantageous elements, the operation of FPGA
gets distorted when it is subjected to the extreme environmental conditions like shorter wavelengths,

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

mailto:sathyagans@gmail.com
https://www.techscience.com/journal/CSSE
http://dx.doi.org/10.32604/csse.2023.025941
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.025941

2706 CSSE, 2023, vol.45, no.3

which is regarded as one of the major limitations of FPGA [3,4]. Thus, it is highly mandatory to test the
FPGA before the programming process as it is broadly employed in mission-critical applications.

As the FPGA testing includes testing of logic functions and interconnections, it becomes a difficult task
[5,6]. Hence, new testing methods are developed to reduce the cost of overhead circuitry and testing time
along with the boosting of fault coverage. Generally, the testing is done by applying a test vector to the
circuit and comparing the results to the predicted results [7,8]. However, large test vectors are required to
test a circuit when the feature sizes are decreased and device complexity is increased. In addition, an
external circuit is required for storing all the test setups, which is actually a major downside of this
testing approach [9]. By testing the on board circuit components of FPGA, the limitations of employing
large test vectors and external circuits are overcome by the modular tesing of embedded cores, which is
highly advantageous in terms of the testing time [10]. In spite of having an beneficial element, it has
certain limitations, which are rectified by BIST scheme.

With the increasing complication of Very Large Scale Integration (VLSI) devices, the necessity of cost-
effective testing approach such as the BIST grows [11,12]. The BIST is good enough in dealing with the
faults like transition fault, address decoder fault, stuck-at fault, neighborhood pattern sensitive fault and
coupling fault. The BIST architecture is significantly portrayed in Fig. 1.

System ‘
Input ‘ e
solatio! X
n CUT System

Circuitry | Output

B PG . ORA Pass/Fail

BIST Start 'Te“ Conler ‘ BIST End

Figure 1: BIST architecture

The Test Pattern Generator (TPG), Circuit Under Test (CUT) and Output Response Analyzer (ORA) are
the components of a basic BIST method. The goal of BIST is to create a circuit for checking whether it is
under fault or fault-less condition and to continue the function even if the testing is taken place [13].

The TPG acts as a stimulus for the CUT and it generates a pattern series, which causes the CUT to
produce the desired output. The ORA examines the CUT’s outcome and generate a ride indicator by
depending on the the expected or incorrect output. The Circuits like isolation circuit and a test controller
are required for the system level implementation. The isolation circuitry is a 2:1 multiplexer, which
alternates between the typical and BIST operations. To avoid any untested data from accessing ORA, the
test controller ensures that all modules in the BIST circuit are activated. The BIST method includes an
output bit that communicates the system’s state (pass/fail) to an output source. To indicate the start and
finish operation of a test sequence, the commence and end flags are utilized in the BIST. The number of
faults discovered is analogised with the total possible defects count of the system (fault coverage) and the
effectiveness of a BIST test is defined by test time [14—16].

The key benefits of BIST are clearly presented in the subsequent sectionas,

e The vertical testability validates a device at any level of production.
e [t seems to be a less expensive technique than the external testing [17].

CSSE, 2023, vol.45, no.3 2707

For at-speed testing, the BIST employs the system’s internal clock, which allows it to discover
components that cause excessive delay in a functional circuit.

As the testing is done at a high speed, it helps to cut down on test time.
With BIST, the user can test the circuit in the field [18-20].
e Detecting un-modeled flaws in a circuit is easier with pseudorandom patterns.

The CLBs, Programmable Interconnects (PIs), Input/ Output Buffers (IOBs) and RAM cores are the
components of FPGA. For improving the system performance, the FPGAs are employed with extra
integrated cores like Digital Signal Processor (DSP), embedded processors and high-speed I/O devices.
The Look up Tables (LUTs) make up CLBs whereas the flipflops make up the logic portion of an FPGA.
The wires and switches connect or disconnect the wire segments to create a programmable interconnect
network [21-23]. These programmable interconnect networks surround the CLBs and allows the CLB
blocks to be interlinked. The CLBs are encircled by IOBs, which interconnect the chip with the rest of
the world.

For Xilinx FPGAs, the CLBs supply the basic logic elements. These CLBs offer combinational and
synchronous logic along with the distributed memory and SRL16 shift register functionality [24]. The
CLBs are the primary sources to implement logical circuits. Each CLB is hooked to a switched matrix to
access the route matrix. Four slices make up a CLB element. These slices are arranged in a column and
grouped in pairs. The SLICEM consists of a slices pair in the left column whereas the SLICEL consists
of a slices pair in the right column. In the column, each pair has its own carry chain [25]. Only the slices
in SLICEM share a general shift chain. For Xilinx FPGAs, the CLBs supply the basic logic elements.
The CLBs have distributed memory, SRL16 shift register functionality, combinatorial and synchronous
logic. The Ultra-Scale architecture’s CLB is efficiently illustrated in Fig. 2.

SLICE M SLICE L
(Logic of Distributed (Logic Only)
RAM or Shift Register)
i t CouT
CLB R
< : 2] Slice LX1Y1 <
L
< : 2] Slice LX1Y1 <
SWITCH pcour | 3 '““‘;:i;:;f)‘;f’ to
MATRIX i CIN
< 7 ‘ Slice M X1Y1 < { 7
!
< ; } Slice M X1Y1 <]
]
T CIN i
1

Figure 2: CLB of ultra-scale architecture

2 Overview of Virtex-Ultrascale Architecture

The CLBs with six-input LUTs, configurable latches/flip-flops, multipliers (27 % 18), RAM blocks
(36 Kb) with inbuilt First In First Out (FIFO), error correction code memory and 4K x 72 block Ultra-
RAM are linked through a less interlude high performance interconnect.

To evaluate the extremely capable and programmable RAM blocks, the CLBs include multiplexer, shift
register, and carry logic features with additional option to set the LUT as proportioned memory [26]. With 96-
bit length XOR capabilities, 27-bit adder, and 30-bit input, the DSP slice independently executes a variety of
operations such as accumulated multiplication, multiple add and pattern detect. The signals pass among the

2708 CSSE, 2023, vol.45, no.3

Super-Logic Regions (SLRs) via specialized, low-interlude interface in devices implemented with SSI
technology. This combination of routing resources makes it simple to handle next-generation bus data
widths. Up to 16 GB of high bandwidth memory is available in these devices.

These devices have strong clock management circuits such as clock synthesis, buffers, and routing
modules, which work together to create a highly capable framework for satisfying the design requirements.

Similar to the 7-series slices capacity, the UltraScale CLB has single and coarser slice. The LUTs and
operations have preserved the functionality. The LUT-op-pairs of the UltraScale CLB is shown in Fig. 3.

61 =161 06 o0
LUT \| = v
os)
N\ FF
D o
cerl Isr
N FF2
b Qo
= / '_+> CE2
« },:l ISR

Figure 3: Logic elements of ultra-scale architecture

This UltraScale CLB provides immediate permission to all CLB operations without using the LUTs as it
has the same number of bypass inputs. In addition, each slice has its own set of parallel and separate output
pin that is linked to the switched matrix. The usage of more pins is normally costly as the switch matrix has to
be resized to fit the new pins. However, this expense is spread out among the remaining pins in UltraScale.
The interconnection connects each CLB with 64 inputs and 32 outputs.

Memory and shift register operating modes are also supported by some slices. Each slice’s LUT RAM
has its own read inputs but with divided write memory terminals. The separate read inputs make it easier to
build dual-port RAM inside the slices. The LUT is set-up as either a 64 x 1-bit or 32 x 2-bit RAM. The four
LUTs produce a 256 x 1-bit RAM using dynamic multiplexers in each slice. To build a 328 x 8-bit RAM, the
4-LUTs divide 5-read address inputs and use 8-separate data inputs. Each LUT is alternatively used to create
a 32 x 1 bit shift register or 16 x 2 bit shift register. The eight LUTs are connected in series to create a 256 x 1-
bit shift register or connected in parallel to create a 32 x 16-bit shift register.

2.1 CLB in Virtex-Ultrascale Architecture

In this architecture, each CLB has 8 LUTs and 16 flip-flops. The LUTs set up as a single 6-input LUT
with 1-output or two 5-input LUTs with distinct output and shared input. If necessary, the LUTs are kept in a
flip-flop. In addition, the CLB comprises of arithmetic carry logic and multiplexers with LUTs and flip-flops
to construct larger logic functions.

A slice is present in each CLB. The SLICEL and SLICEM are the two sorts of slices. The SLICEM’s
LUTs is set up as 64-bit RAM or 32-bit shift registers. When compared to past-generation CLB devices, the
CLBs of this architecture offer more routing and interconnectivity. In addition, it provides more control

CSSE, 2023, vol.45, no.3 2709

signals and allows better register packing with higher device usage. Fig. 3 significantly portrays the logic
elements of this architecture.

The Ultra-scale CLB is modified to allow for dense packaging. Because of the shorter wire lengths and
the ability to use active gating pulse, the power consumption is highly reduced. It enhances the performance
while lowering interconnection demand.

Tab. 1. lists out the logic resources available in the CLB. These components are used by SLICEM and
SLICEL to provide logical, arithmetic, and ROM functions. SLICEM has two additional features such as
distributed RAM and 16-bit data shift register.

Table 1: Components in configurable logic block

Slices LUTs Flip-Flop Mult And Arithmetic and carry chains Distributed RAM Shift register
4 8 8 8 2 64bits 64bits

2.2 BIST Architecture

The BIST method makes use of FPGAs’ general architecture for comparing the outputs of many
identical BUTs by using ORAs based comparison. Until all the BUTs are analogised, the ORAs have no
fails and the defects affecting any combination of BUTs are detected. As malfunctioning of TPG allows a
faulty BUT to be undetected, the alternating BUTs are driven by several identical TPGs. Because of
several identical TPGs, a defective TPG allows some BUTSs’ outputs to conflict, which results in failures
of ORAs.

Depending on the mode of slice, the CLB BIST layouts are split into two types. The first configuration
set executes every CLB of the FPGA through its paces in SliceLL (logic) mode. The next set executes each
SliceM mode. During the second set of settings, only certain slices that match SliceM (memory) mode are
investigated.

The BUTs and ORAs are arranged in alternating columns of CLBs in the SliceL BIST design. The BIST
configurations are repeated twice again, this time with the CLBs’ responsibilities reverted back, such that
each CLB acts as both BUT and ORA. ORA compare the output of two similarly configured BUTs with
the outputs of two neighboring BUTs of the similar row, as illustrated in Fig. 4. The ORA flip-flop
latches logic 0 for a mismatch between two identical BUT outputs set. The logic 1 is kept in the ORA
and perceived as a flip-flop outcome at the ending of the testing process.

O [EE B
e S N
’”D

Figure 4: Architecture of circular comparison

Normally, the BIST results are collected through a partially configured read back memory, which involves
retrieving the contents of each ORA from the memory. But, a novel ORA architecture is deployed that makes

2710 CSSE, 2023, vol.45, no.3

advantage of the CLB’s specific carry logic to build an iterative-OR of the ORA outputs.The Carry-in input,
which is the result of the preceding ORA, is selected as a passing result of logic 1 in each ORA .

The first ORA’s carry-in input in the iterative-OR chain is linked to Test-Data-In (TDI), while the last
ORA’s output is connected to Test-Data-Out (TDO). When any ORA in the chain fails, logic 0 on the
ORA’s output selects the carry chain multiplexer’s logic 1 input, which converts to logic 1 on TDO.

Or, TDO toggles TDI’s state, allowing the integration of the iterative-OR chain to be checked at the
ending of the BIST test by toggling TDI and monitoring TDO. The contents of the ORAs are recovered
using partially configured read-back memory to discover the location(s) of the failed BUT if the OR
chain’s output shows a failure. This provides a single-bit on/off indicator to perform test at quicker time
without reducing resolution of fault-tolerant applications.

Fig. 5 depicts the proposed architecture’s interconnection design, which demonstrates the connectivity
between CLBs of the BIST component. The TPG creates both LUTs’ addresses and delivers them for testing
using CUT. The behavior of CUT is then examined using ORA. To avoid fault masking, each ORA contrasts
the output of the present memory that is under test with the same row memories and with the following row.

SWITCH
MATRIX
et} Ak
> lo - E
= N L 2
ﬁ i Il — E
z 64 el
L
fu @bl INPUT ¢ s ' B
; ¢ . MUX - » 'T' E
7
C — g3 —
& nL
: - L E
& - » 0, —

" ———s 32 E
= LOGIC | ‘8
g +— ours [* 0, 8
, ° ™Y L
TR — ° °) EI
N K3 o — E

L
) + 03, 1Bl

Figure 5: Interconnection of proposed architecture

3 Results and Discussion

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is used to model
the working prototype of a Virtex-UltraScale FPGA. The test is performed using a series of six CLBs so as to
improve accuracy and avoid fault masking. The integrated SRAM memory of the proposed FPGA
architecture is tested and the results and performance analysis are discussed below.

Initially, simulation is carried out without fault. Then, the memory is infiltrated with the several types of
faults. The outputs are compared using their unlatched outputs of RAM modules. As a result, the final output
is obtained immediately, with no delay.

The simulation result in the absence of fault Fig. 6 depicts. The write signal should be kept high
throughout write operations. The sampled input data, the value ‘0’ is stored in memory locations. As

CSSE, 2023, vol.45, no.3 2711

illustrated in Fig. 6, the memory output is in high impedance (blue lines) in the write cycle event, while the
incorrect outputs are in an indeterminate state (red lines).

Figure 6: Fault-free operation

The data is retrieved from each location and a ‘1’ will be appended to each location throughout the read
process. The write enable signal is now held at ‘0’, signifying that a read operation is taking place. The
retrieved data is sent to the ORA which matches the output to the fault-less output and instantly activates
the PASS/FAIL indication. The ORA outputs indicate “0000,” to signify a fault-free operation. The
procedure is repeated in ascending order.

A HOLD instruction is given to the memory cells once the read-and-write operations are completed.
Now, the cells will stay in saturated level, and the cell value will be constant. Many faults are tested
using this operation. Fig. 7 depicts the result of HOLD operation.

3.1 Stuck-at 1 Fault

At address “0101,” a stuck-at 1 fault is established in CLB#3’s LUT. The fault signals indicate an output
of “00000100” indicates the fault at CLB#3 when the output of CUT #3 is compared with the identically
configured neighboring CUTs output. The ORA output is evidently listed out in Tab. 2.

When “0101” is read by the Memory cell, for a predicted ‘0’ value, it reads a ‘1°, as seen in Fig. 8. ORA
gets the output after the value is received and compares it with the neighboring LUT signal. The ORA pass/
fail signal gets high when the values are out of sync. The yellow circle depicts this. The sequence
“00000100” implies a fault with LUT’s CLB #3.

2712 CSSE, 2023, vol.45, no.3

1% pata

1100

1100 1010

1100 1010

Figure 7: Hold operation

Table 2: Output of ORA

Faults in CLB ORA outputs

fl/gl 2/g2 3/g3 f4/g4
Under fault-free 0 0 0 0
CLB 1 is under fault
CLB 2 is under fault

CLB 3 is under fault
CLB 4 is under fault

- o O O
S = O O
S O = O
S O O =

3.2 Stuck-at 0 Fault

At address “0101” in CLB#3, the “stuck-at 0” issue is established. The memory cell is first viewed as 0,
resulting the viewed output. A ‘1” is typed into the cell at the end, but the cell is read as ‘1°, it returns a ‘0’. This
validates the occurrence of a stuck-at 0 fault, with ORA signals displaying “00001000” for a fault at “0101”
address. Fig. 9 depicts the identification of a Stuck-at fault at “0101”” address (marked by a yellow circle). The
TPG Address is used to point the exact position of the issue, and fault detection requires 33 clock cycles. It takes
33 ps to identify and locate the problem if a clock period is 10 ns (100 MHZ).

3.3 Address Decoder Fault

This fault is inserted at “0100” address in the CLB #2. Stuck-at 1 fault is introduced to detect the faults
when the input lines are stuck-at 1. Fig. 10 shows the detection of address decoder fault at “0100”. When the
input of the AND gate is stuck-at ‘1’ and address is “0100”, cell 4 and cell 5 are accessed. During
M3 operation, write ‘1’ is performed on cell 5. As more than one cell is accessed with same address, a
‘1’ is also written on cell 4. Thus, when a read operation on cell 4 is performed, it fails and reads a ‘1’
instead. . It takes 59 clock cycles to detect the fault and assuming a clock period of 10 ns, the address
decoder fault is detected in 59 ps.

CSSE, 2023, vol.45, no.3 2713

ot of F LUT
Jubpsz of GLUT

Sudkat L Flag

0101
TRUE

Figure 9: Stuck-at 0 fault at CLB-3

2714 CSSE, 2023, vol.45, no.3

1 | E—
Data 1
TPG1 Address 0100 oo

g Output of F LUT
FGLUT

0100
put of F LUT

Output of G LUT

~ ot 77 — W || omo

/DU X — o0

Wg's_ Faul
1

: ecoder Taut | 0100 oo |
; sq__|raur

Figure 10: Address decoder fault

A second type of address decoder fault can occur when the cell “0100” is never accessed due to an open
gate line. As the cell is never accessed, it shows an ‘X’ (undefined value). Fig. 11 shows the simulation result.
It takes 22 clock cycles to detect the fault, and assuming a clock period of 10 ns, the address decoder fault is
detected in 22 ps.

Observing the simulation results, the existence of a fault can be identified when the ORA output goes
high. The detection of fault is, however, dependent on the type of fault and each fault can be differentiated by
the methods explained above and can be uniquely identified. The algorithm requires 12n operations to
completely identify the faults. For the 4-input LUT, it requires 128 operations to completely detect the
fault and read and write operations are performed in a single clock cycle using both rising and falling
edges. Tab. 3 summarizes the time taken to detect a particular fault based on the cell addresses.

3.4 Test Coverage

To verify the functionality of the CLBs, 25 BIST configurations are constructed (10 for LUT and data-
path testing, 2 for shift-register testing). Configured memory bit fault injection method was used to simulate
FPGA faults. To represent a fault, the transitional files are purposely damaged to generate the bit-stream
configuration. For instance, to represent stuck-at-0 fault in the LUT, the output of a specific LUT is
driven to logic-0. Likewise, by changing the associated bit configurations with each resource, the faults
are induced in all of the CLB’s logic and memories. 1l the faults are detected by the 30 BIST setups.
Based on the CLB functionality, the 30 BIST configurations are divided into four categories such as LUT
configuration, data-path configuration, shift-register configuration and RAM configuration.

CSSE, 2023, vol.45, no.3 2715

{ I I}
0035 0001} d0p0 ¥ oo Y 0101 0100 Y

Y002 3 ooor ¥ X y oo o101 0100 ¥

J
& Outpus of GLUT L | L L
Ji 93223 i _ooo1 i ce) y o101 oo i
<ur
1§ Outot of F LUT

‘lig Outpsz of GLUT

Figure 11: Address Decoder fault (due to an open gate line)

Table 3: Time taken for fault detection

Fault type Address Time for

inserted detection(ps)
Stuck-at 0 fault 0000 17

0001 18

0010 19

0011 20

0100 21

0101 22

0110 23

0111 24

1000 25

1001 26

1010 27

1011 28

1100 29

1101 30

1110 31

1111 32

(Continued)

2716 CSSE, 2023, vol.45, no.3

Table 3 (continued)

Fault type Address Time for
inserted detection(us)
Stuck-at 1 fault, Address 0000 33
decoder fault-open gate 0001 34
0010 35
0011 36
0100 37
0101 38
0110 39
0111 40
1000 41
1001 42
1010 43
1011 44
1100 45
1101 46
1110 47
1111 48
Address decoder 0000 50
fault-Stuck-at input line 0001 52
0010 54
0011 56
0100 58
0101 60
0110 62
0111 64
1000 66
1001 68
1010 70
1011 72
1100 74
1101 76
1110 78

1111 80

CSSE, 2023, vol.45, no.3 2717

Fig. 12 depicts the group of various configurations’ fault coverage of a CLB. The graph’s left side of
Y-axis indicates the total number of faults addressed by each group of configuration, while the right side
of Y-axis represents the ratio of faults covered.

mmmm [ndividual Fault Coverage «=@==Cumulative Fault Coverage

120
8000

7000 100
6000

80
5000

4000 60
3000 20

2000

Number of Faults Detected

1000
0 B . 0
LUT Configs Data Path RAM ShiftRegister
Configuration Group

Percentage of Faults Detected

Figure 12: Fault coverage

3.5 Testing Overhead

The testing time and the storage needed to hold all BIST configuration is the key overhead involved with
FPGA-BIST. The time it takes to upload the BIST configuration to the FPGA is relative to the speed and the
overall size of the BIST configurations dominates the test time. The FPGAs’ reconfiguration feature is
utilized to minimize overall size of the BIST configuration. The routing information is contained in most
of the bits in the bit-stream configuration. As a result, the general routing information is saved in only
one bit stream if constant routing is maintained over several bit-streams. For instance, if the first
5 configurations contain similar connection across the consecutive BUTs, indicating that there will be
constant routing across all of them. As only the 1st configuration is saved as a full bit stream, a complete
bit stream size is 2.6 MB, while the other four are stored as partial bit streams. The required overall
memory might be 13 MB if all 5 variants were saved as complete bit streams.

The overall memory required for the five versions is lowered to 4.25 MB by allowing partial bit stream
processing. Only 7 of the 30 BIST variants have individual routing, thus only those configurations must be
preserved as entire bit streams. As a result of this, the typical bit stream size is lowered by 52%. The FPGA
must be partitioned, If all the BUTs couldn’t be addressed in a single arrangement, and each portion must be
tested separately. Hence, the number of BIST combinations and the testing duration increase as the partitions
increases. The interconnections between the BUTs in the BIST are confined to a short length, hence, all the
BUTs might be routed independently. The effective number of BIST configuration is limited, and hence the
overheads involved with the BIST are eliminated, since the FPGA is tested without establishing partitions.
The test time breakup is clearly shown in Fig. 13.

The FPGA Comparison outcome is evidently highlighted in Fig. 14 in an efficient manner.

Tab. 4 validates that the proposed Virtex Ultrascale FPGA is comparatively better than the other FPGA
tools because the parameter values on Virtex Ultrascale is greater than the others.

2718 CSSE, 2023, vol.45, no.3

m Bitstream Download Time m Execution Time ofthe Test m Time to Read Back Result

650
600
550
500
450
’g 400
<= 350
g 300
= 250
200
150
100
50
0
Full Bitstream Partial Bitstream
Partial Bitstream
Figure 13: Test time breakup
Device Static Power Dynamic Power
3 o
- 0
o
a axs
15 a:
. 0
a1
0s
ass
. [1 .
Virtes SFPGA Vimex TFRGA Virtes Ultnwaak FPGA Vines SFPGA Tiex TFP6A Virtes Uitk FRGA
On-Chip Power 10
i a4
3 LR
a3 o3
. as
15 n;
: : . l
oS as
’
L] - - Viees SFPGA Vs TFPGA Vitec Ulsanale FRGA
Virtea SFPGA Virtea 7ERGA Vitex Ultraseale FPGA
Thermal Margin
00
18
16
19
12
100
»
@
»
0
0
Virtes SFPGA Virtes TFPGA Virtex Uktraicale FPGA

Figure 14: Comparison of FPGA

CSSE, 2023, vol.45, no.3 2719

Table 4: Comparison of FPGA

Parameters Virtex 5 FPGA Virtex 7 FPGA Virtex ultrascale FPGA
Device static power 0.243W 0.345W 2.628W
Dynamic Power 0.221w 0.158W 0.369W
On-Chip power 0.327w 0.491w 3.028W
10 0.127w 0.149w 0.366W
Thermal Margin 80.3W 82.7W 176.4W

4 Conclusion

This work presents a comprehensive BIST architecture for detecting and isolating stuck-at-faults or
decoder fault in the system. The Virtex Ultrascale FPGA is preferred in this study as it delivers optimal
performance with maximum efficiency. For systems that need large data flow and packet processing, it
provides a step-function in increased bandwidth and reduced latency. As the test utilizes the configuration
interfaces with no external I/O pin, it is used in all system without requiring any Printed Circuit Board
(PCB) modifications.The proposed BIST configuration in this study is designed with the use of precise
gate-level fault model and tested with configured memory bit fault injection. This BIST design overcomes
the problem of congestion in routing of complex devices and allows all the CLBs to be tested in a single
test. Thus, the testing time and the amount of external memory to hold all the BIST setups get drastically
reduced. For each BIST sequence, the proposed ORA design delivers a single bit pass/fail result
irrespective of the configuration interface.The suggested BIST technique is used to test Xilinx Ultrascale-
Series FPGAs during the manufacturing and in-system testing for asesing the fault-tolerant capability.
When the pass/fail output reveals failures, the partially configured memory read-back feature enables
excellent diagnostic solution for the fault-tolerant operations. The proposed methodology assists in
detecting the un-modelled faults and delivers remote diagnosis with maximum fault coverage, which are
not accomplished by the conventional approaches. In addition, the modelling of this approach is
extremely suitable for the mission-critical applications, which is regarded as one of the significant
novelties of this study.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1] L. Bozzoli and L. Sterpone, “An optimized frame-driven routing algorithm for reconfigurable SRAM-based
FPGAs,” IEEE Access, vol. 8, pp. 116226-116238, 2020.

[2] R. Zhang, L. Xiao, J. Li, X. Cao and C. Qi, “A fault injection platform supporting both SEU and multiple SEUs for
SRAM-based FPGA,” IEEE Transactions on Device and Materials Reliability, vol. 18, no. 4, pp. 599-605, 2018.

[3] L. A. Aranda, P. Reviriego and J. A. Maestro, “A comparison of dual modular redundancy and concurrent error
detection in finite impulse response filters implemented in SRAM-based FPGAs through fault injection,” IEEE
Transactions on Circuits and Systems Il: Express Briefs, vol. 65, no. 3, pp. 376-380, 2018.

[4] M. Kumar, “An efficient fault detection of FPGA and memory using built-in self test [BIST],” American Journal
of Electrical and Computer Engineering, vol. 3, no. 1, pp. 38-45, 2019.

[5] X. Cui, M. Zhang, Q. Lin, X. Cui and A. Pang, “Design and test of the in-array build-in self-test scheme for the
embedded RRAM array,” IEEE Journal of the Electron Devices Society, vol. 7, pp. 1007-1012, 2019.

2720 CSSE, 2023, vol.45, no.3

[6] A. Palchaudhuri and A. S. Dhar, “Design and automation of VLSI architectures for bidirectional scan based fault
localization approach in FPGA fabric aware cellular automata topologies,” Journal of Parallel and Distributed
Computing, vol. 130, pp. 110-125, 2019.

[7] X. Cao, H. Jiao and E. J. Marinissen, “A bypassable scan flip-flop for low power testing with data retention
capability,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 2, pp. 554-558, 2021.

[8] W. T. Hale and G. M. Bollas, “Design of built-in tests for active fault detection and isolation of discrete faults,”
IEEE Access, vol. 6, pp. 50959-50973, 2018.

[9] T. Tewary, S. Dey and S. Roy, “Realization of built-in self test (BIST) enabled memory (RAM) using VHDL and
implementation in spartan6 FPGA board,” in 2020 IEEE VLSI Device Circuit and System (VLSI DCS), Kolkata,
India, pp. 322-326, 2020.

[10] G. Chandrasekaran, P. R. Karthikeyan, N. S. Kumar and V. Kumarasamy, “Test scheduling of system-on-chip
using dragonfly and ant lion optimization algorithms,” Journal of Intelligent & Fuzzy Systems, vol. 40, no. 3,
pp- 49054917, 2021.

[11] S. Jayanthy and M. C. Bhuvaneswari, Delay fault testing of VLSI circuits, in test generation of crosstalk delay
faults in VLSI circuits. Singapore: Springer, pp. 15-35, 2019.

[12] A. Kumar Panda, K. Chandra Ray, “A coupled variable input LCG method and its VLSI architecture for
pseudorandom bit generation,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 4, pp.
1011-1019, 2020.

[13] T. Garbolino, “A new, fast pseudo-random pattern generator for advanced logic built-in self-test structures,”
Applied Sciences, vol. 11, no. 20, pp. 9476, 2021.

[14] G. Sowmiya and S. Malarvizhi, “Memory-efficient LFSR encoding and weightage driven bit transition for
improved fault coverage,” IETE Journal of Research, vol. 1, no. 3, pp. 1-6, 2021.

[15] A.Menbari and H. Jahanirad, “A concurrent BIST architecture for combinational logic circuits,” in 2020 10th Int.
Conf. on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, pp. 262-267, 2020.

[16] K. J. Lee, B. R. Chen and M. A. Kochte, “On-chip self-test methodology with all deterministic compressed test
patterns recorded in scan chains,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 2, pp. 309-321, 2018.

[17] M. Kampmann, A. Kochte, C. Liu, E. Schneider, S. Hellebrand et al., “Built-in test for hidden delay faults,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 10, pp. 1956-1968, 2018.

[18] T. Chen, C. Park, H. Meng, D. Zhou, J. Silva-Martinez et al., “A low-cost on-chip built-in self-test solution for ADC
linearity test,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6, pp. 3516-3526, 2019.

[19] X. Cui, M. Zhang, Q. Lin, X. Cui and A. Pang, “Design and test of the in-array build-in self-test scheme for the
embedded RRAM array,” IEEE Journal of the Electron Devices Society, vol. 7, pp. 1007-1012, 2019.

[20] P.S.N. Bhaskar, B. Sarada and S. Kandregula, “Built-in self-repair techniques of embedded memories with BIST
for improving reliability,” IOSR Journal of Computer Engineering (IOSR-JCE), vol. 21, no. 1, pp. 8-15, 2019.

[21] V. Shivakumar, C. Senthilpari and Z. Yusoff, “A low-power and area-efficient design of a weighted pseudorandom
test-pattern generator for a test-per-scan built-in self-test architecture,” IEEE Access, vol. 9, pp. 2936629379, 2021.

[22] D. Xiang, X. Wen and L. T. Wang, “Low-power scan-based built-in self-test based on weighted pseudorandom
test pattern generation and reseeding,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 3, pp. 942-953, 2016.

[23] S. Shah and J. Hasler, “Tuning of multiple parameters with a BIST system,” /EEE Transactions on Circuits and
Systems I: Regular Papers, vol. 64, no. 7, pp. 1772-1780, 2017.

[24] M. M. R. M. Reddy, M. C. A. Sarma and M. L. N. Reddy, “Virtex-5 FPGAs input/output program for built-in
testing,” IAETSD Journal For Advanced Research in Applied Sciences, vol. 1, no. 1, pp. 107-112, 2019.

[25] K. Akhila, N. Karuna and Y. J. M. Shirur, “Design and implementation of power efficient logic BIST with high
fault coverage using verilog,” in 2018 Int. Conf. on Networking, Embedded and Wireless Systems (ICNEWS),
Bangalore, India, pp. 1-6, 2018.

[26] S. Chandrakar, D. Gaitonde and T. Bauer, “Enhancements in ultraScale CLB architecture,” in Proc. of the 2015 ACM/
SIGDA Int. Symp. on Field-Programmable Gate Arrays, California, Monterey, USA, pp. 108—-116, 2015.

	A Universal BIST Approach for Virtex-Ultrascale Architecture
	Introduction
	Overview of Virtex-Ultrascale Architecture
	Results and Discussion
	Conclusion
	References

