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Abstract: Introducing IoT devices to healthcare fields has made it possible
to remotely monitor patients’ information and provide a proper diagnosis
as needed, resulting in the Internet of Medical Things (IoMT). However,
obtaining good security features that ensure the integrity and confiden-
tiality of patient’s information is a significant challenge. However, due to
the computational resources being limited, an edge device may struggle to
handle heavy detection tasks such as complex machine learning algorithms.
Therefore, designing and developing a lightweight detection mechanism is
crucial. To address the aforementioned challenges, a new lightweight IDS
approach is developed to effectively combat a diverse range of cyberattacks
in IoMT networks. The proposed anomaly-based IDS is divided into three
steps: pre-processing, feature selection, and decision. In the pre-processing
phase, data cleaning and normalization are performed. In the feature selection
step, the proposed approach uses two data-driven kernel techniques: kernel
principal component analysis and kernel partial least square techniques to
reduce the dimension of extracted features and to ameliorate the detection
results. Therefore, in decision step, in order to classify whether the traffic
flow is normal or malicious the kernel extreme learning machine is used.
To check the efficiency of the developed detection scheme, a modern IoMT
dataset named WUSTL-EHMS-2020 is considered to evaluate and discuss
the achieved results. The proposed method achieved 99.9% accuracy, 99.8%
specificity, 100% Sensitivity, 99.9 F-score.
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1 Introduction

The Internet of Things (IoT) technology has transformed the digital world and is considered
one of the most significant revolutions in the communication and information technology area. The
IoT has been rapidly developed and deployed in a variety of important domains like transportation,
agriculture, energy, and healthcare owing to the significant benefits that such technology offers [1–4].
Precisely, IoT technology has tremendously impacted the healthcare sector, resulting in the Internet
of Medical Things (IoMT) [5]. The IoMT has revolutionized the healthcare and public health domain
as it provides cost-effective, efficient, and smart healthcare environments. The IoMT is a collection of
smart connected devices, hardware infrastructure, and medical applications connected to healthcare
systems using different wireless technologies (e.g., Bluetooth, Sigfox, LoRa, and 5G/LTE) [6,7]. The
global market of IoT is expected to reach $254.2 billion in 2026 [8].

The IoMT applications require superior computing capabilities to provide sustainable, resilient,
and secure healthcare systems; however, cloud computing cannot efficiently fulfill these requirements
due to several limitations such as latency, Internet connectivity, and lack of mobility support [9].
To address these issues, edge computing is proposed to overcome several limitations in the cloud by
offloading the computational tasks to the edge [10]. However, edge computing does not replace cloud
technology; rather, it serves as an extension of the cloud. Edge computing can significantly improve
the quality of medical services in IoMT applications which requires low latency, mobility support, and
location awareness [11,12]. Because the IoMT includes heterogeneous and interconnected devices, a
massive amount of data is generated, transmitted, and stored in the edge instead of a centralized cloud
as it improves medical services with low latency time, flexible access, and real-time processing [13].

Although IoMT significantly improves the medical services to patients, cyberattacks stay to
pose a significant risk to healthcare providers and cause enormous damage [14]. An Attack such as
Distributed Denial of Service (DDoS) performs a major threat to the healthcare system as it disrupts
connected devices and makes medical services unavailable to legitimate clients [15,16]. Another type
of cyberattack is man-in-the-middle, in which an adversary intercepts communication between IoMT
devices to manipulate and steal sensitive data. Such an attack has a significant impact on the integrity
and confidentiality of patient data. Another type of cyberattack that endangers the healthcare system
is ransomware. In this case, an adversary encrypts IoMT systems, making it difficult for healthcare
providers and stakeholders to access medical records and provide healthcare services for patients [17].

To ensure the security and privacy-preserving of information sharing in the IoMT environments,
the intrusion detection system (IDS) represent a perfect security tool to overcome a variety of cyber-
attacks. The IDS can quickly detect anomalies and alert the system to prevent further damage. The
critical part of IDS is the detection algorithm and its ability to detect different types of cyberattacks
with good accuracy and minimum false alarm rates. The IDS could be integrated with edge computing
to provide effective and efficient attack detection close to the data source. Additionally, the IDS can
benefit from computational resources at the edge, allowing it to use complex detection algorithms and
more storage capacity to store and analyze log data [18]. More importantly, edge computing provides
adequate network bandwidth and low latency, both of which are critical for real-time detection.

Although edge computing provides excellent computing capabilities, it lacks the required resources
to complete intensive tasks such as heavy-weight machine learning models [18]. Additionally, the IoMT
includes wearable devices and sensors that are wirelessly connected and generate heterogeneous and
homogeneous data [19], the massive amount of generated data must be processed and analyzed in
real time without significantly consuming the computational power and storage capacity of such
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a detection mechanism [20]. Therefore, developing a lightweight IDS is crucial to effectively and
efficiently overcome different types of cyberattacks in IoMT networks.

To meet the abovementioned challenges, this paper suggested a novel and lightweight IDS
approach to efficiently overcome cyberattacks in IoMT networks. The contribution of the paper are:

• As the capacity of any classifier mainly count on the features provided as input, two data-driven
kernel techniques entitled Kernel Principal Component Analysis (KPCA) and Kernel Partial
Least Square (KPLS) are applied to choose important features from the feature vector

• To improve the classifier performance in detecting cyberattacks. Because edge devices have
limited computational resources, fast training speed [21,22], and an efficient learning model
are required. Therefore, the kernel extreme learning machine (KELM) is suggested as classifier
to divine whether the traffic flow is benign or malicious.

• As the dataset plays a vital role to test the robustness and effectiveness of the detection model,
our developed approach uses a modern IoMT dataset named WUSTL-EHMS-2020. The
developed approach outperforms the other suggested methods in terms of accuracy, specificity,
and sensitivity rate, as well as training speed and prediction time. The results show that our
suggested IDS model has a high potential for use in the context of edge computing in IoMT
networks.

This article is structured as follows. The related works and discusses the limitations are presented
in Section 2. The proposed methodology is presented and illustrated in Section 3. Section 4 discusses
and evaluates the proposed work using different performance metrics. Finally, Section 5 concludes the
article and proposes future work.

2 Related Works

Several studies on intrusion detection have been conducted to overcome cyberattacks in IoMT
networks. An et al. [21] suggested a lightweight intrusion detection technique in fog computing
and mobile edge computing. The developed model used sample selected extreme learning machine
for attack detection and classification. The proposed framework deployed the detection classifier
on the fog node while the training dataset was stored in the cloud server to minimize the training
time and improve the detection performance. According to the achievement results which prove the
efficiency of the proposed model against cyberattacks. Alatawi et al. [22] developed an anomaly
detection approach in fog-to-things communications to overcome cyberattacks in smart environments.
To ameliorate anomaly detection performance, the proposed work used two feature selection methods:
minimum redundancy maximum relevance (MRMR), and principal component analysis (PCA). The
proposed model used ensemble learning techniques for attack classification. The performance results
demonstrated that the proposed model was effective at detecting cyberattacks.

Grammatikis et al. [23] developed an anomaly detection model to identify cyberattacks in IoMT
networks. The suggested algorithm used an active learning to select the main features and a Random
Forest in classification phase. The performance results demonstrated that the proposed approach was
effective at detecting cyberattack.

Bacha et al. [24] suggest a novel intrusion detection model in IoT networks. The suggested
work employed a kernel extreme learning machines for binary and multiclass classification. Two
datasets were used in learning and testing steps to validate the efficiency of the proposed anomaly
detection model. When compared to other existing approaches, the proposed model achieved a higher
accuracy rate. Saheed et al. [25] suggested an intrusion detection model overcome cyberattacks in IoT
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networks. The proposed model used a deep recurrent neural network and supervised machine learning
approaches such as random forest, K-nearest neighbors, decision trees, and ridge classifiers. The
Authors utilized particle swarm optimization in the feature selection phase to improve the detection
results of the developed model. The evaluation of obtained results proves the effectiveness of the
developed IDS against IoT/IoMT cyberattacks.

Ketu et al. [26] proposed a new classification algorithm for air quality detection. The proposed
approach used the scalable kernel-based SVM (Support Vector Machine) classification algorithm
which is capable of dealing with the multi-class data imbalance issue. The performance evaluation
shows the sufficiency of the suggested technique.

Alrashdi et al. [27] developed an anomaly detection model to identify cyberattacks in IoT
networks. The developed detection model used machine learning algorithms such as random forest
and extra tree classifiers to be deployed in the fog layer. When anomalies are detected, the suggested
framework will alert the cloud server for further security analysis. The obtained results proved the
efficiency of the proposed detection model. Hady et al. [28] developed an intrusion detection system
to protect healthcare networks from cyberattacks. The authors created a healthcare testbed to collect
and analyze combined network traffic and biometrics data. The proposed security system used
different machine learning models to detect cyberattacks in such environments. The results showed
that combining flow metrics and biometrics information improved accuracy by 25%. Kumar et al. [29]
proposed a detection approach for protecting IoMT systems from various types of cyberattacks in the
context of fog-cloud architecture. The detection model employed ensemble learning techniques like
decision trees, naive Bayes, and random forest as the first stage, with XGBoost serving for classification
in the second stage. The obtained results showed that the developed technique is capable to detect
cyberattacks.

Rahman et al. [30] developed an anomaly detection system to detect cyberattacks in IoT networks.
The proposed approach used a Federated Learning based scheme for ioT intrusion detection that
retains data privacy by performing local training and inference of detection models. The obtained
performance shows the efficiency of the suggested IDS against IoT cyberattacks.

The literature has revealed several limitations. For example, the use of an inappropriate dataset
for healthcare systems, or the use of an out-of-date dataset that is incompatible with designing and
implementing IDS for cyberattack detection in IoMT networks. Although some approaches yielded
promising performance results, the used detection algorithms suffer from computational complexity,
making the deployment at edge devices critical.

To solve these challenges, a lightweight and cost-effective IDS is designed to protect IoMT systems
from cyberattacks. The proposed work selects important features from the reduced feature vector
using data-driven techniques such as KPCA and KPLS. Such techniques have demonstrated their
effectiveness in sensor fault detection [31–33], and have a high potential for use and integration
as an integral part of the detection operations within the IDS. In the classification phase, the
KELM technique is used to effectively identify malicious activities from benign traffic. The proposed
approach achieved a higher accuracy, sensitivity, specificity, and f1-score compared to other proposed
techniques. Additionally, the learning and testing time of the proposed method was low, making it
more suitable for use in an online detection system deployed in the context of edge computing

3 Proposed Methodology

In this section, the suggested intelligent IDS is detailed in Fig. 1.
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Figure 1: Flowchart of intelligent intrusion detection system for internet of medical things

To begin, the symbols and notations used in the paper are summarized in Table 1. Then the two
data-driven kernel techniques, KPCA and KPLS, are detailed which are used in the feature extraction
phase to reduce the dimensionality of data features. Also the KELM classifier model that is used in
our intelligent detection system for cyberattack classification is discussed.

Table 1: Symbols and notations

Symbols and notations Name

N Number of instances
A Data input matrix
Cψ Covariance matrix
F Feature space
μj Eigenvector
λj Eigenvalue
αi,j Parameters
K Kernel matrix
Kt Kernel matrix of the test samples.
ŶTrain Prediction output of the learning set.
ŶTest Prediction outputs of the validation set.
� Diagonal matrix
σ Parameter of RBF kernel
P Degree of the polynomial kernel
T Score vectors
Z Training observations

(Continued)
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Table 1 (continued)

Symbols and notations Name

m Output nodes number
wj Weight vector
L Number of hidden neurons in the hidden layer

3.1 Features Extraction Phase
3.1.1 Kernel Principal Component Analysis

In the literature, there are different dimension reduction techniques such as the locality preserving
projections (LPP) [34] and principal component analysis (PCA) [35]. The PCA is a widely used
technique for analyzing large datasets with a high number of features. It is a statistical method for
reducing the dimensionality of the input information vector, to increase the interpretability while
preserving the maximum information. Despite the proven advantages of the PCA technique, its
foundation lies in the linearity of the process. To overcome this problem, the Kernel PCA approach is
used in the literature [32]. KPCA technique is illustrated in two phases: the first one is to transform
the input observations onto the feature space with large dimensional, then the PCA is carried out in
the considered feature space.

In the suggested article, the Kernel PCA method is used to reduce the dimensionality of features
and is given by:

A = [z1, z2, . . . , zn]
T is the data input matrix. The transformation into high dimensional feature

space is given by: as:

ψ : E ⊂ R
d → F ⊂ R

r; z → ψ (z) (1)

Cψ = 1
N

∑N

i=1
ψψi

T = 1
n − 1

ATA (2)

where z ∈ E ⊂ R
d is a observation vector and Cψ is the covariance matrix in F with:

ψi = ψ (ai) ∈ R
N and A = [ψ1, ψ2, . . . , ψN]T ∈ R

N∗h (3)

The KPCA reference model is determined by solving the following equation.

λjμj = Cψμj with j = 1, . . . , h (4)

where μj is the jth eigenvector of Cψ corresponding to eigenvalue λj.

For λj �= 0, there exist parameters αi,j i = 1, . . . , N such all eigenvectors μj can be designed a
linear combination of [ψ(z1) , ψ(z2), . . . , ψ(zN)] and can be expressed by:

μj =
∑N

i=1
αi,j ψ (zi) (5)

Eq. (4) can be rewritten as:{
μj〈ψ(zi), μj〉 = 〈ψ(zi), Cψμj〉
j = 1, . . . , h (6)
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Combining Eqs. (2) and (4) in Eq. (5) to obtain:

λj

∑N

k=1
α

j
k〈ψ (zi) , ψ (zk)〉 = 〈ψ (zi) ,

1
N

∑N

l=1
ψ (zl)ψ (zl)

T
∑N

k=1
α

j
kψ (zk)〉 (7)

λj

∑N

k=1
α

j
k〈ψ (zi) , ψ (zk)〉 = ψ〈(zi) ,

1
N

∑N

l=1

∑N

k=1
α

j
kψ (zl) 〈ψ (zl) ψ (zk)〉〉 (8)

λj

∑N

k=1
α

j
k〈ψ (zi) , ψ (zk)〉 = 1

N

∑N

l=1

∑N

k=1
α

j
k〈ψ (zl)ψ (zl) 〈ψ (zl)ψ (zl)〉〉 (9)

Using the kernel trick. The inner product given in Eq. (2) may be computed using a kernel function
k(.,.) and is written:

〈ψ (zi) , ψ
(
zj

)〉H = k
(
zi, zj

)
(10)

Considering a Gram matrix K ∈ R
N×N associated with a kernel function k:

K =
⎡⎢⎣k (z1, z1) · · · k (z1, z)

...
. . .

...
k (zN, z1) · · · k (zN, zN)

⎤⎥⎦ ∈ R
N×N (11)

Using the kernel matrix may reduce the problem of the eigenvalue decomposition of Cψ. Hence,
the eigen decomposition of the transformed kernel matrix K is identical to applying PCA in a feature
space RH , so that:

N�ϒ = Kϒ (12)

where:

� = diag
(
λ1, . . . , λj, . . . λN

)
represents the diagonal matrix with eigenvalues λj sorted in in

downward order and

ϒ = [
α1, . . . , αj, . . . αN

]
represents the matrix of their corresponding eigenvectors.

Since the principal components vectors are orthonormal, it is necessary to guarantee the normality
of μj in Eq. (5):

〈μj , μj〉H = 1 (13)

〈μj , μj〉H = ∑N

i,kαi,j , αk,j 〈ψ (zi) , ψ
(
zk

T
)〉H

: = ∑N

i,kαi,j , αk,j Ki,k = 〈αj , Kαj〉H

= 〈αj , Kαj〉H = λj〈αj , αj〉H

(14)

where N represents the number of the first eigenvalues with values different of zero. With

Ki,k = k (a1, aN). The corresponding eigenvectors αj is written as:

〈αj , αj〉H = ||αj||2 = 1
λj

(15)

Many kernel functions have been used in literature, see Table 2 below.
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Table 2: Kernels function

Name Formula and parameters

RBF-kernel Kσ (x, y) = exp
(

−1
2

||x − y||2

σ 2

)
σ : RBF kernel parameter

Linear-kernel Kw (x, y) = <x, y>

Polynomial-kernel kP (x, y) = (1 + <x, y>)
P

P: Polynomial kernel degree

The radial basis function (RBF) is given by:

k (x, y) = exp
(

−||x − y||2

2σ 2

)
(16)

where σ ∈ R
+, the centered gram matrix K is computed as:

K = FKF With F = (In − E) (17)

where 1n = 1
n

[1, . . . , 1]T ∈ R
n and E is an n × n matrix with elements

1
n

.

3.1.2 Kernel Partial Least Square Method (KPLS)

The are many approaches, such as principal component analysis (PCA) [36] and partial least
squares (PLS) [37] have been used to analyze gene expression data. However, these traditional
techniques still have some drawbacks. The researchers proposed many versions of the methods to
overcome these disadvantages. One of these methods is the Kernel partial least squares regression
(KPLS) which is an approach widely used to generate a predictive models. The calculation time, chosen
for the KPLS method, may be higher than that chosen for the PLS method during the learning phase
since the number of selected latent variables for KPLS may be higher than that of the linear PLS. In
the proposed work, a new classification method is proposed. This proposed method is an extension of
the basic PLS.

Using the input data = {x1, . . . , xN} ∈ RN×M, the PLS technique extracts the latent variables LVs
where it contains N observations and their corresponding output observations Y = {y1, . . . , yN} ∈ RN

where yi are the categories, classes or labels of the corresponding xi to construct a linear equation.

In the next step, the input and output observations will be transformed into space that is generated
by some latent variables [30] and decomposed as follows:{

X = TLT + G
Y = URT + H

(18)

where T = [t1, . . . , tl] and L = [l1, . . . , ll] are the score vectors and U = [u1, . . . , ul], R = [r1, . . . , rl] are
the charging for X and Y , jointly.

The PLS residues of X and Y are defined by the two matrices G and H respectively. PLS is a linear
approach. If a linear model is not adequate, a transformation function [38] can be applied to map data
into a higher-dimensional space (called feature space), where linear model is applied.
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Mathematically, the transformation of observation in the feature space is given:

ψ : E ⊂ R
N → F ⊂ R

H ; x → ψ (x) (19)

The kernel function is computed as:

〈ψ (xi) , ψ
(
xj

)〉H = k
(
xi, xj

) ∀ xi, xj ∈ R
N (20)

The Gram matrix K ∈ R
N×N corresponding to a kernel function k is given by:

K =
⎡⎢⎣k (x1, x1) · · · k (x1, xN)

...
. . .

...
k (xN, x1) · · · k (xN, xN)

⎤⎥⎦ ∈ R
N×N (21)

where σ ∈ R
+.

Algorithm 1: Kernel partial least square method
Input: X: input data matrix of size N×M

Y: output data matrix of size N × 1
Output: input score matrix T

output score matrix V
1. Compute and center the Gram matrix
2. i = 1, K1 = K , Y1 = Y
3. Initialize ui to any column vector of Yi randomly
4. ti = KT

i uiti = ti/||ti||
5. ci = Y T

i ti

6. vi = Yici, ci = ci/||ci||
7. If ti converges, go to Eq. (7); else go to Eq. (3)
8. Exhausted K and Y
9. Extract more latent variables by repeating steps three through six
10. Collect the T and U matrices.

The rank-one reduction of K and Y [39] gave us the deflation step where the K and Y matrices
are deflated based on a new T-score vector as follows:

K = K − ttT − KttT + ttTKttT (22)

Y = Y − ttTY (23)

Then, the model generated by the KPLS technique is defined as:{
ŶTrain = KU

(
TT KU

)−1
T TY

ŶTest = KtU
(
TTKU

)−1
TT Y

(24)

• Kt presents the kernel matrix of the test samples.
• ŶTrain denotes the prediction output of the learning set.
• ŶTest denotes the prediction outputs of the validation set.
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3.2 Classification Phase
3.2.1 Extreme Learning Machine

An extreme learning machine (ELM) scheme represents a feedforward neural network with a
single layer (SLFN). The neural structure is crucial to the transformed representation of data and the
final performance and zero-shot learning [40]. ELM was first developed for learning SLFNs and was
subsequently extended for learning the generalized SLFNs. In ELM, the structure contains an input
layer, a hidden layer, and an output layer. Each neuron is attached by a weight (w) and is given in
Fig. 2.

Figure 2: The structure of extreme learning machine

where: b is the bias, the activation function (h), which computes the model output (t).

The network is described based on the triplet (w, b, h) as follows:

Given learning observations Z = {Ai, Ti}i=1,...N where ai, ti = [ti1, ti2, . . . , tim]T ∈ Rm}i=1,...,N where
N is the number of instances and m is the output nodes number.

The output function of ELM is given by:

f (ai) = ti =
∑L

j=1
βj h

(
wj. ai + bj

)
i = 1, . . . , N (25)

where wj = [
wj1 , wj2 , . . . , wjn

]
is the weight vector, βj = [

βj1 , βj2 , . . . , βjm

]T
is the weight vector

relating the output neurons to the hidden neurons, L is the number of hidden neurons.

The matrix format of Eq. (25) is written as

Hβ = TW (26)

where H is given by:

H =
⎡⎢⎣h(w1.a1 + b1) · · · h(wk.a1 + bL)

...
. . .

...
h(w1.aN + b1) · · · h(wk.aN + bL)

⎤⎥⎦
N×L

(27)
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With β =

⎛⎜⎜⎜⎜⎜⎜⎝
βT

1

.

.

.

.
βT

L

⎞⎟⎟⎟⎟⎟⎟⎠
L×m

and T =

⎛⎜⎜⎜⎜⎜⎜⎝
tT

1

.

.

.

.
tT

L

⎞⎟⎟⎟⎟⎟⎟⎠
N×m

Using the least square principle, the solution of Eq. (26), can be mathematically modeled as

β = H+T

With H+ is written as [41]:

H+ = (
HT .H

)−1
.HT (29)

3.2.2 Kernel Extreme Learning Machine (KELM)

The kernel ELM is an extension of ELM using a kernel function. The architecture is given by
Fig. 3. The kernel matrix for ELM that is given by:

KELM = HHT : KELM (i, j) = h(ai).h
(
aj

) = K
(
ai, aj

)
(30)

Figure 3: The structure of kernel extreme learning machine

The output function of the ELM classifier (Eq. (18)) can be presented compactly as:

f (a) =
⎛⎜⎝

⎡⎢⎣K (a, a1)

...
K (a, aN)

2

⎤⎥⎦
T (

I
C

+ KELM

)−1

T

⎞⎟⎠ (31)

In the suggested methodology, an RBF-kernel function is used.

4 Experimental Results

This section evaluates and analyzes the performance results of the developed intelligent detection
model. Also, this section presents the used dataset to validate and evaluate the proposed techniques.
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Additionally, a comparison with the existing state-of-the-art is provided to attest the effectiveness of
the suggested techniques. The experiments were conducted using windows 10 with an Intel (R) Core
(TM) processor i7-7700 CPU @ 3.60 GHz 3.60 GHz.

4.1 Dataset Description
To validate the performance of the developed methods, a healthcare dataset named WUSTL-

EHMS-2020 is used [28]. The WUSTL-EHMS-2020 dataset contains both the network flow and
patient biometric data. This dataset consists of different types of cyberattacks such as MitM attacks,
data injection, and spoofing. Table 3 displays statistical data from the WUSTL-EHMS-2020 dataset.
This dataset contains 44 features, 35 of which are network flow data, eight biometric features from
patients’ data, and one label feature.

Table 3: Dataset statistical information

Measurement Value

Dataset size 4.4 MB
Number of normal samples 14272 (87.5%)
Number of attack data 2046 (12.5%)
Total number of data 16318

4.2 Performance Metrics
The efficiency of the developed anomaly detection method is tested according to the following

different performances. These different performances are computed using the entities TP, TN, FP,
and FN, see Table 4 below.

Sensitivity (Se) = TP
TP + FN

(32)

Specificity (Sp) = TN
TN + FP

(33)

Accuracy (Acc) = TP + TN
TP + FP + TN + FN

(34)

FScore = 2 × TP
D

× TP
J

÷
(

TP
D

+ TP
J

)
(35)

With:
{

D = TP + FP
J = TP + FN

Table 4: Confusion matrix

Total observations Predicted labels

Attack Normal

True labels Attack TP FN
Normal FP TN
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4.3 Results and Discussion
Table 5 presents the performance results of our proposed methods. As shown, the KPLS-KELM

and KPCA-KELM models achieved higher accuracy rates with 99.95% and 99.9%, respectively. The
accuracy rate of the KPLS model was 71.8%, the lowest performance result of all models. The
specificity rates for the KPLS-KELM and KPCA-KELM models were 99.9% and 99.8%, respectively.
The KPLS, on the other hand, had the lowest specificity rate of all models (44.30%). The KPLS-
KELM and KPCA-KELM models both obtained 100% in terms of sensitivity, while the KPLS model
obtained 99.30%. The prediction times for the KPLS-KELM and KPCA-KELM models were 0.0468
and 0.0408, respectively. The KPLS took 6.40 s longer than the other models.

Table 5: Performance results for proposed detection methods

Methods Accuracy Specificity Sensitivity F-score Prediction time

KPLS 71.8 44.30 99.30 77.88 6.40
KPLS-KELM 99.95 99.9 100 99.95 0.0468
KPCA-KELM 99.9 99.8 100 99.9 0.0408

Fig. 4 shows, the KPLS-KELM and KPCA-KELM models performed better than
the KPLS model. As Fig. 5 demonstrates the performance result of KPLS, KPLS-KELM, and KPCA-
KELM models in terms of receiver operating characteristics (ROC) to analyze the false positive rate
of all models. The ROC curve has an x-axis that reflects the false positive rate and a y-axis that depicts
the true positive rate.

Fig. 6 shows the learning and testing time of the proposed approach. The KPCA-KELM model
operates better than the KPLS-KELM model in terms of learning time. For prediction time, the
KPCA-KELM model outperforms the KPLS-KELM model.
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Figure 4: Performance results of proposed detection techniques
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Figure 5: Receiver operating characteristic curve (ROC) of the proposed methods
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Figure 6: The training and testing time of the proposed techniques

5 Comparative Study

Table 6 compares the suggested methods to the existing state-of-the-art approaches. Our detection
techniques outperformed the suggested method in [21], who used sample-selected extreme learning
machine technique; the proposed KPLS-KELM and KPCA-KELM methods enhanced the accuracy
rate by 0.88% and 0.83%, respectively. In addition, the training time of the proposed KPLS-KELM
and KPCA-KELM techniques was reduced by 4.38 and 4.44. In comparison to the suggested model in
[25], which utilized particle swarm optimization with a random forest classifier, the KPLS-KELM and
KPCA-KELM methods improved the accuracy rate by 0.16% and 0.11%, respectively. In comparison
to Hady et al. [28], who used the K-nearest neighbor and support vector machine, the proposed KPLS-
KELM and KPCA-KELM methods improved the accuracy by 7.89% and 7.84% respectively, when
compared to the K-nearest neighbor model and 7.5% and 7.45% respectively, when compared to
support vector machine.



CSSE, 2023, vol.47, no.2 1607

Table 6: Comparison with the existing state-of-the-art methods

Ref Method used Accuracy (%) Training time

An et al. [21] Sample selected extreme learning machine 99.07 4.52
An et al. [21] Extreme learning machine 96.09 4.15
Saheed et al. [25] Particle swarm optimization-random forest 99.79 0.11
Hady et al. [28] K-nearest neighbor 92.06 0.21
Hady et al. [28] Support vector machine 92.45 55.23
Proposed work Kernel partial least square-kernel extreme

learning machine
99.95 0.14

Proposed work KPCA-KELM 99.9 0.08

6 Conclusions

This paper proposed intelligent intrusion detection based machine learning to overcome cyberat-
tacks in IoMT networks. The proposed approach uses data-driven techniques to select the important
data features and the KELM classifier to effectively identify cyberattacks in IoMT networks. To
validate the proposed techniques, a modern healthcare dataset named WUSTL-EHMS-2020 is
used. The proposed approaches achieved a higher performance result in contrast with the known
approaches in terms of accuracy and specially in training time due of using a kernel extreme machine
classifier characterized by one hidden layer. In the future, others data driven techniques and deep
learning approach to detect intrusion in IoMT will be investigate. Additionally, more feature selection
techniques will investigate and compare with our proposed work.
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