
On Layout Optimization of Wireless Sensor Network Using Meta-Heuristic
Approach

Abeeda Akram1, Kashif Zafar1, Adnan Noor Mian2, Abdul Rauf Baig3, Riyad Almakki3,
Lulwah AlSuwaidan3 and Shakir Khan3,4,*

1National University of Computer and Emerging Sciences, Islamabad (Lahore Campus), 44000, Pakistan
2Information Technology University, Lahore, Pakistan

3Department of Information Systems, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh, 11432, Saudi Arabia

4University Centre for Research and Development, Department of Computer Science and Engineering, Chandigarh University,
Mohali 140413, India

*Corresponding Author: Shakir Khan. Email: SGKhan@imamu.edu.sa
Received: 04 May 2022; Accepted: 04 August 2022

Abstract: One of the important research issues in wireless sensor networks
(WSNs) is the optimal layout designing for the deployment of sensor nodes. It
directly affects the quality of monitoring, cost, and detection capability of WSNs.
Layout optimization is an NP-hard combinatorial problem, which requires optimi-
zation of multiple competing objectives like cost, coverage, connectivity, lifetime,
load balancing, and energy consumption of sensor nodes. In the last decade, sev-
eral meta-heuristic optimization techniques have been proposed to solve this pro-
blem, such as genetic algorithms (GA) and particle swarm optimization (PSO).
However, these approaches either provided computationally expensive solutions
or covered a limited number of objectives, which are combinations of area cover-
age, the number of sensor nodes, energy consumption, and lifetime. In this study,
a meta-heuristic multi-objective firefly algorithm (MOFA) is presented to solve
the layout optimization problem. Here, the main goal is to cover a number of
objectives related to optimal layouts of homogeneous WSNs, which includes cov-
erage, connectivity, lifetime, energy consumption and the number of sensor nodes.
Simulation results showed that MOFA created optimal Pareto front of non-domi-
nated solutions with better hyper-volumes and spread of solutions, in comparison
to multi-objective genetic algorithms (IBEA, NSGA-II) and particle swarm opti-
mizers (OMOPSO, SMOPSO). Therefore, MOFA can be used in real-time
deployment applications of large-scale WSNs to enhance their detection capabil-
ity and quality of monitoring.
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1 Introduction

A wireless sensor network (WSN) comprises of a large number of small, autonomous and spatially
distributed sensor nodes [1]. These nodes can sense, process, and communicate relevant data with one
another. Each sensor node contains a sensing transducer, a small memory, a radio transceiver, an
embedded processor, and a battery for the power supply. The sensing transducer of a node is used for the
collection of data from different environmental conditions such as sound, temperature, pressure, and
motion. The sensing area of a node is determined by its sensing radius (RSense) [2], which is the
maximum sensitivity range of its sensing transducer. Radio transceivers are used for the establishment of
communication links among different sensor nodes. These links depend on the communication range
(RComm) of transceivers, which is a maximum distance at which two nodes can communicate with each
other. Sensor nodes cannot store the entire monitored data in their small memories. So, they send it to a
central monitoring station called data sink at regular intervals, as shown in Fig. 1.

The embedded processors of sensor nodes transform the collected data into electrical signals and radio
transceivers transmit these electrical signals to the data sink. Some sensor nodes may be unable to connect
directly with a data sink because of limitations in their communication ranges and power sources. So, they
use special intermediate nodes, the high energy communication nodes (HECN) as the gateways and send all
of the monitored data to them. HECNs are directly connected with data sinks and provide external access to
the network. The WSNs administrators collects the monitored data and send commands to the network
through the HECN. In a WSN, every sensor node must connect to the HECN but all sensor nodes cannot
establish direct communication links with HECN due to the communication range of nodes being small
in comparison to the WSN size. Therefore, all those nodes, which are unable to directly communicate
with HECN, establish multi-hop communication paths with HECN using intermediate nodes called
relays. In this way, all nodes in a WSN can send data to the HECN by, at least, one of the two ways;
directly, by using the direct communication path, or indirectly, by using the multi-hop communication
paths [3]. Wireless sensor networks have been used in many applications. Examples are military activities
of inspection and surveillance, environmental monitoring such as weather forecasting, biomedical
purposes such as health conditions monitoring, and many more [1]. The diversity among these
applications requires different deployment schemes of WSNs with varying parameters and constraints.

2 Literature Review

In the last two decades, several meta-hubristic techniques have been used to solve the WSN layout
optimization problem, such as genetic algorithms (GA), particle swarm optimization (PSO), ant colony
optimization (ACO), fish swarm optimization (FSO) and artificial bee colony algorithm (ABC). These
meta-heuristic algorithms provide fast results to problems, but do not guarantee the provision of fully
optimized and accurate solutions.

2.1 Multi Objective (MO) Optimization

Real world applications mostly depend on more than one objective functions. The solutions to such
problems need simultaneous optimizations of these objective functions. This process is called multi-

Figure 1: Illustration of a sensor node and a wireless sensor network
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objective (MO) optimization, and it involves the optimization of a vector of solutions with more than one
competing objectives. MO problems can be mapped in a vector form as a family of points known as a
Pareto optimal set, where objectives are often conflicting. The optimal solution of one objective will not
necessarily be the best solution for other objectives. Therefore, different solutions will produce trade-offs
between different objectives and a non-dominated set of solutions is produced to represent the optimal
solutions of all objectives. They provide output in the form of vectors, which contain Pareto in front of
non-dominated solutions.

2.1.1 Multi Objective Genetic Algorithms
The genetic algorithms which can find non-dominating points from the population of solutions in

parallel are categorized as multi-objective genetic algorithms (MOGA). Various MOGAs have been
designed in the past and the literature review of these meta-heuristic techniques is presented in Table 1.

Table 1: Comparative analysis of genetic algorithms for a layout problem

Author/Year Algorithm Approach Problem Cover Node type Objectives

Maximized Minimized

[4] (Oh et al.
2007)

NSGA-II Centralized 1-Cover Area Heterogeneous Coverage,
mean-
weightage of
sensor nodes

Nodes count,
proximity of target

[5] (Molina
et al. 2008)

MOEA,
NSGA-II,
IBEA,
IBEAHD

Centralized 1-Cover Area Homogeneous Coverage,
lifetime

Nodes count

[6] (Carter et al.
2008)

SGA Centralized 1-Cover Point Heterogeneous Coverage Nodes count

[7,8] (Jia et al.
2009)

NSGA-II Distributed 1-Cover Point Heterogeneous Coverage Nodes count, energy
consumption

[9] (Kang et al.
2009)

MOGA Centralized 1-Cover Area Heterogeneous Differentiated
detection
levels,
coverage,

Energy consumption

[10] (Chen et al.
2011)

FD-
MOGA

Centralized 1-Cover Area Heterogeneous Differentiated
detection
levels,
coverage,

Energy consumption

[11]
(Bhondekar
et al. 2009)

SGA Centralized 1-Cover Area Heterogeneous Coverage,
sensors per
cluster in
charge

Energy consumption,
overlap per cluster in
charge error, sensors
out of range error

[12]
(Konstantinidis
et al. 2009)

NSGA-II,
MOEA/
D-RH

Centralized 1-Cover Area Heterogeneous Coverage,
lifetime,
connectivity

[13] (Ferentinos
et al. 2010)

SGA Centralized 1-Cover Area Heterogeneous Connectivity,
mean relative
deviation of
sensor nodes,

Active/inactive
nodes, transmission
ranges, energy
consumption

(Continued)
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2.1.2 Multi Objective Particle Swarm Optimization
The literature review of PSO is presented in Table 2, along with its multi-objective variants.

Table 1 (continued)

Author/Year Algorithm Approach Problem Cover Node type Objectives

Maximized Minimized

[14] (Berre
et al. 2013)

NSGA-II Centralized 1-Cover Point Homogeneous Coverage,
accuracy
constraint

Nodes count

[15] (Sengupta
et al. 2013)

MOEA/
D-ED
MOEA/
DFD
NSGA-II
PSO

Centralized 1-Cover
K-Conn

Point Homogeneous Coverage
constraint,
connectivity,
Lifetime

Energy consumption,
nodes count

[16] (Özdemir
et al. 2013)

MOEA/D
NSGA-II

Centralized 1-Cover Point Homogeneous Coverage,
lifetime

[17] (Unaldi
et al. 2014)

VEGA Centralized 1-Cover Area Heterogeneous Coverage,
connectivity

[18] (Rebai
et al. 2014)

GA Centralized K-Cover Area Heterogeneous Coverage,
connectivity

Nodes count

[19] (Sagar
et al. 2014)

MOGA
NSGA-II

Centralized K-Cover
Dis/set

Point Homogeneous Coverage as
quality of
service,
lifetime

Energy consumption

Table 2: Comparative analysis of particle swarm optimization for a layout problem

Author/Year Algorithm Approach Problem Cover Node type Objectives

Maximized Minimized

[20] (Wang
et al. 2007)

PSO,
VFPSO
VFCPSO

Centralized 1-Cover Point Homogeneous Coverage,
detection
capability

[21] (Hu
et al. 2008)

PSO Centralized 1-Connect Area Heterogeneous Connectivity Energy consumption

[22] (Aziz
et al. 2009)

PSO Distributed 1-Cover Point Homogeneous Coverage Nodes count

[23]
(Pradhan
et al. 2009)

MOPSO Centralized 1-Cover Area Homogeneous Coverage,
life time

[24]
(Salehizadeh
et al. 2010)

IPO
PSO

Distributed 1-Cover Area Homogeneous Coverage

(Continued)
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3 Proposed Solution

In this research, a multi-objective firefly algorithm (MOFA) is proposed and applied for the layout
optimization of WSNs.

3.1 Firefly Algorithm (FA)

The firefly algorithm (FA) approach is inspired by the natural light flashing behavior of fireflies, which
they use to attract prey or their mating partners in the swarm. In this algorithm, the authors assume that all
fireflies are unisexual [33]. The two fundamental properties of brightness (flashing light intensity) and
attraction among fireflies are used in this algorithm under the following principles.

3.1.1 Brightness or Luminance Intensity
The luminance intensity or brightness of a firefly is controlled by the values of an objective function f(x).

The luminance intensity (I) of a firefly at a particular location x in the solution space can be represented as
I(x), which is directly proportional to the value of objective function f(x). The light in nature follows the
inverse square law; when the distance from the light emitting source increases, the intensity decreases due
to absorption in the environment. This principle is used in the algorithm to update the luminance intensity
of fireflies.

The luminance intensity I(r) of a firefly at a distance r can be expressed as in (1), where I0 is the original
light intensity of the firefly at a distance (r = 0), and γ is the fixed light absorption coefficient.

Table 2 (continued)

Author/Year Algorithm Approach Problem Cover Node type Objectives

Maximized Minimized

[25] (Ismail
et al. 2010)

PSO Distributed 1-Cover Point Homogeneous Coverage

[26] (Aziz
et al. 2011)

PSO Distributed 1-Cover Point Homogeneous Coverage Sensor movement

[27]
(Chaudhary
et al. 2012)

MOPSO Centralized 1-Cover Area Homogeneous Coverage,
life time

[28] (Tang
et al. 2012)

Hybrid
Immune-
PSO

Centralized 1-Connect Area Heterogeneous Coverage,
mean
relative
density

Energy consumption,
overlap per cluster in
charge error, sensors
out of range error

[29] (Loscrí
et al. 2012)

Consensus
PSO

Centralized
distributed

1-Cover Area Homogeneous Coverage Energy consumption

[30] (Hu
2013)

PSO Centralized Minimal
k-Cover

Area Homogeneous Coverage Nodes count

[31] (Maleki
et al. 2013)

PSO,
hybrid
PSO-DE

Centralized 1-Connect Point Homogeneous Coverage Energy consumption

[32] (Gu
et al. 2013)

PSO, GA,
hybrid
PSO

Centralized 1-Connect Area Homogeneous Coverage
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I rð Þ ¼ I0e
�c r2 (1)

3.1.2 Attraction
In nature, attractiveness among the fireflies depends on the intensity of light they emit, and it is directly

proportional to the brightness of fireflies. Therefore, for any two flashing fireflies, the less bright always has a
tendency to move towards the brighter one. According to the principle of inverse square law, the values of
attractiveness decrease among fireflies as the distance among them increases. The attractiveness β varies with
the distance r between any two fireflies. As the attractiveness is proportional to the light intensity, so the
attractiveness β is calculated according to (2), where β0 is the attractiveness at a distance (r = 0) from a firefly.

b rð Þ ¼ b0e
�c rm ; with m � 1 (2)

3.1.3 Firefly Position Update
In the FA approach, as shown in Fig. 2, when a firefly i is attracted towards a firefly j, then the firefly i

moves to the firefly j, and the new position x(i + 1) of firefly i can be calculated by using (3), Where xi and xj
are the previous positions of firefly i and firefly j in solution space. The second term with β0 in (2) is
introduced for the attraction, and the third term is for randomization with α as the controlling parameter,
where rand is a random number between (0, 1). In exceptional cases, when all fireflies have the same
brightness values, they are forced to move randomly in search space. The parameter γ controls the speed
of convergence of the algorithm by changing the attractiveness.

x iþ 1ð Þ ¼ xiþ b0e
�c rij xj � xið Þ þ a rand � 1=2ð Þ (3)

In [34], a new term, cooling factor delta (0 < δ < 1), has been introduced in the firefly algorithm to control
the randomization parameter alpha (α) shown in (4). The randomization is reduced by multiplying it with
delta after several iterations (t) of the algorithm so that the random walk become less aggressive towards
the end of the algorithm. Here αo is the initial value of the random factor, and αt is the value of alpha for
iteration number (t).

Figure 2: Pseudocode of the firefly algorithm
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at ¼ aod
t (4)

3.2 Multi Objective Firefly Algorithm

A multi-objective firefly algorithm (MOFA) [35] is an extension of the FA. The MOFA finds a Pareto
optimal front of non-dominated solutions for optimization of more than one competing objectives. In this
algorithm, a random weight vector is used to store the best non-dominating solutions. In each iteration,
these non-dominating solutions are found according to the fitness values of the objective functions and
are passed to the next iteration for the calculation of more non-dominating solutions. The output is a
vector containing the final non-dominated solutions.

4 Methodology

The optimal layout designing problem is related to the selection of physical positions of sensor nodes in
a way that they entirely cover a geographical area or a set of targets [2,36]. The main goal of layout
optimization is to show that “how well a geographical region or a set of targets are monitored by
deployed sensor nodes in a WSN”. The ideal solution of this problem belongs to the NP-hard
combinatorial class and requires the optimizations of a large number of competing objectives like
coverage, connectivity, lifetime, cost, energy efficiency, scalability, and fault tolerance of WSNs. The
layout optimization problem becomes more complex when the size of WSNs and diversity among sensor
nodes increases. For optimal layout designing, it becomes challenging to calculate the objectives of large-
scale WSNs in a simple way, because of the limitations in energy, detection, communication, and
computational resources of sensor nodes.

The layouts directly affect the efficiency and monitoring capability of WSNs, and if layout optimization
is not considered while deploying the sensor nodes, then WSNs behavior may become unpredictable with
high network failure rates, bad area coverage, and frequent disconnections. This degradation in WSNs
drastically influences the functionality and performance of real-time applications.

4.1 WSNs Solution Representation

In this solution, a two-dimensional plane is used for the representation of monitoring area to be covered
by the deployed sensor nodes. A distance vector (DV) is used to represent a single solution of each problem,
and the size of this vector depends on the total number of sensor nodes as in (5). Each sensor node in the
network has an active or inactive state and is located at a specific position in the monitoring region.
Position of each node in the solution is represented by (x, y) coordinates in the two-dimensional plane,
and n is the total number of nodes.

DV n½ � ¼ x1; y1ð Þ; x2; y2ð Þ; x2; y2ð Þ . . . xn; ynð Þ½ � (5)

When the position coordinates of the monitoring area (length × width) are taken as 100 × 100, then for
all single and multi-objective problems, two vectors X = {0, 1, 2……100} and Y = {0, 1, 2……100} are
used to represent (x, y) coordinates of the two-dimensional area points. A third vector contains the
information of active and inactive sensor nodes in the case of homogeneous WSNs and the size of this
vector is set to “n”. This vector is used for the calculation of the maximum and the minimum number of
sensor nodes for all problems. For heterogeneous WSNs, this third vector is used to represent the various
sensing ranges of nodes (RSense). In all of our experiments, complete solutions of optimization problems
are encoded in the form of firefly chromosomes.

CSSE, 2023, vol.46, no.3 3691



4.1.1 Chromosome, Firefly and Particle Encoding for Homogeneous WSNs
In homogeneous WSNs, all of the nodes are considered identical with the same sensing range (RSense)

and no encoding is required for representing the node properties. Each firefly is encoded as a complete layout
solution of a WSN. The sensor nodes are encoded as genes of a chromosome, and information about their
positions and active and inactive modes is included. In the encoding of each chromosome, an active-
inactive (A/I) mode bit is used, which is set when a node is considered active and could take part in the
fitness calculation of the designed solution, as shown in Fig. 3. Position of each node in the chromosome
is dependent on the coordinates of the deployment plane. For two-dimensional planes, the position of
each node i along (x, y) coordinates are encoded with an equal number of bits for both axes.

4.2 Fitness Calculation

The fitness calculation of each solution is performed by taking the weighted sum of all objective
functions. The fitness calculation methods for coverage, number of nodes, connectivity, lifetime, and
energy consumption of WSNs are presented here.

4.2.1 Number of Nodes
The number of nodes for each solution is calculated using the number of active-inactive (A/I) mode bits.

In solutions of homogeneous WSNs, a single active-inactive (A/I) mode bit is used to calculate active nodes
while set to one.

4.2.2 Coverage
There are two methods available for the calculation of coverage; one is grid-based, and the second is

area-based. In both of the techniques, a binary sensing model is used where the sensing area of a node is
considered as a circular disk with a fixed sensing range (RSense). An object present at a distance less than
the sensory range can be sensed by a node. Here the detection probability Pi of a sensor node Si is
calculated using the Euclidean distance from the center of the node to the target point Ti with respect to
the fixed sensing radius RSense according to (6)

Pi ¼ 1 if dist Si;Tið Þ,RSense

0 Otherwise

�
(6)

In the area-based method, the sensor nodes are randomly distributed in the monitoring area. The area
covered by an individual sensor node is measured depending on its sensing radius (RSense), which is the
same for all sensor nodes in a homogeneous WSN. The total area covered by these nodes is calculated,
and the overlap among sensor nodes is subtracted to get full area coverage according to (7).

Area Coverage ¼
XN
i

pR2
sense � overlap Sensor1ð . . . SensorNÞ (7)

Gene

Chromosome

Xi Yi A/I

0 1 1 0 0 0 1 0 1 1 0 1 0 ... 0 1 1 0 0 0 1 0 1 1 0 1 0 0 .0 1 1 0 0 0 1 0 1 1 0 1 0 0  

Figure 3: Chromosome with binary encoding for a homogeneous WSN
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In the grid-based method, the whole monitoring region is divided in square grids of equal sizes.
Euclidean distance of sensor nodes from the center point of each grid is calculated to determine if a grid
is completely covered by some of the nodes or not. The maximum area covered by any sensor node i at
position (xi, yi) is calculated by using the sensing radius (RSense). The total covered grid points of the
grid are then normalized by the total points in the area according to (8).

Point Coverage ¼ Ui ¼ 1n R2
sense xið ; yiÞ

� �
=Total Points (8)

The grid-based method is fast when the number of sensor nodes and the monitoring area or points are
small, but it becomes slow when the WSNs size grows due to the presence of a large number of nodes. To
avoid the performance degradation of the algorithm, the area-based coverage calculation method is used for
area coverage and the grid-based method is used for point coverage.

4.2.3 Connectivity
AWSN is considered connected when there exists at least one single or multi-hop communication path

between all of the sensor nodes and the data sink. The main goal of the optimization algorithms is to
minimize the number of disconnected nodes in the network, so that a fully connected network is attained.
The connectivity of each layout solution is tested by creating a graph with nodes as its vertices, and a
minimal spanning tree is developed with the data sink as the root node. Two nodes i and j are considered
connected if the distance (dij) between them is less than their communication radius (RComm) and the
edge weight (EWij) is set to the distance (dij) between them as in (9). Then the Bellman Ford algorithm
of single source shortest path is applied to calculate the shortest paths from the data sink, which is placed
at the middle of the monitoring area, to all of the active nodes. The nodes are considered disconnected
when there exists no feasible path to the data sink.

EWij ¼ dij if dij,RCOMM

1 otherwise

�
(9)

4.2.4 Energy Consumption
Every node in a WSN may perform several different tasks such as maintenance, sensing, processing,

transmission and reception of data to and from other sensor nodes. These operations consume energy and
for an optimal layout, the minimum data transmission path must be used to conserve this energy. For the
calculation of energy consumption (ECi) at each node i, the data transmission cost for the shortest path
(Pathi) to the data sink is calculated using the minimal spanning tree method. The neighboring nodes (Ini)
from which data can be received are calculated and the node maintenance energy (Mi), the transmission
energy (Trai), and the reception energy (Reci) are summed up according to (10). The energy consumption
of the whole network is the sum of the energies consumed by the active nodes (n) in the network and is
calculated using (11).

ECi ¼ Mi þ Pathi � Trai þ Ini � Reci (10)

Total Energy ¼
Xn
i¼1

ECi (11)

4.2.5 Life Time
The life time of a WSN depends on the failure of the first node in the network. The life time of a single

node (LTi) is calculated using the initial energy (IEi) and the consumed energy estimate (ECi) of each node.
The time until which a node can work is calculated as in (12). The network breaks down when the first node
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fails and the life time of the whole network is calculated as the minimum lifetime of an active node i
according to (13).

LTi ¼ IEi=ECi (12)

Life Time ¼ Min LTif g (13)

4.3 Experimental Setup

The performance of MOFA is tested by comparing it with the multi-objective genetic algorithms (IBEA,
NSGA-II) and the particle swarm optimizers (SMPSO, OMOPSO) according to the parameter settings
presented in Table 3. In all of our experiments, the randomization parameter (α) for MOFA is initialized
with low values. The random movement of fireflies toward the end of the algorithm run is increased by
using the cooling factor delta (δ). In the parameter settings of MOFA, the randomization is increased by
15% after every 20 iterations of the algorithm.

5 Results and Discussion

The results for best non-dominated solutions are obtained by varying the number of homogeneous
sensor nodes in the range (20–70) with a swarm size of 20. For all the experiments, 1000 iterations are
run to find the Pareto optimal solutions.

5.1 Multi Objective Point Coverage Problem (MO Point Cover)

A solution with five competing objective is designed for the multi-objective point coverage problem. It
involves the maximization of point coverage, lifetime and connectivity of sensor nodes, along with the
minimization of energy consumption and the number of sensor nodes. The results are presented in Table 4.

Table 3: Parameter settings for comparative analysis

Sensing radius RSense 10 m Energy consumption Maintenance = 15 mA,
Reception = 2 mA,
Transmission = 20 mACommunication radius 20 m

Node type Homogeneous Population size 20

Points 100 points Archive size 10

Initial energy 1000 mA Maximum iterations 1000

Deployment
dimensions

2-D NSGAII parameters Crossover Rate CR = 0.9,
Mutation Rate MR = 0.05

Area 100 × 100 m2 IBEA parameters Crossover Rate CR = 0.9,
Mutation Rate MR = 0.05

Nodes count 20, 30, 40, 50, 60, 70 SMPSO parameters Mutation Rate MR = 0.05

Deployment scheme Random OMOPSO
parameters

Mutation Rate MR = 0.05

Sensing model Binary MOFA parameters Alpha (α) = 0.53,
Gemma (γ) = 0.96, (delta) δ = 1.15

3694 CSSE, 2023, vol.46, no.3



5.2 Multi Objective Area Coverage Problem (MO Area Cover)

The solution for the multi-objective area coverage problem is formed with the simultaneous optimization
of six objectives. These objectives are the maximization of area coverage, lifetime and connectivity of sensor
nodes and the minimization of energy consumption, overlapped region and the number of deployed sensor
nodes for homogeneous WSNs. The results of this experiment are presented in Table 5.

5.2.1 Comparison of Area Coverage Solutions
WSNs layouts obtained by plotting the best solutions of multi-objective area coverage problem are

shown in the Fig. 4. These layouts are designed by MOFA, NSGAII, IBEA, SMPSO and OMOPSO with
a varying number of nodes. It can be observed from the results that NSGAII and IBEA provide layouts
with low area coverage and these algorithms did not explore the solution space completely. The layouts
generated by IBEA and NSGAII left empty outer regions of the monitoring area. The layout schemes
generated by MOFA, SMPSO and OMOPSO are better in the distribution of nodes. MOFA designed
better layout schemes with evenly distributed nodes in the whole monitoring area and provided 100%
area coverage with a fully connected network. OMOPSO generated the second best layouts and it also
attained 100% area coverage of connected WSNs.

Table 4: Comparison of the best solutions for multi-objective point coverage problem

Algorithms Node
count

Optimization objectives

Coverage
%

Nodes
count

Disconnected
nodes

Energy
consumption

Lifetime

NSGAII 40 85 37 0 690 11

50 89 44 0 933 9

60 90 50 0 963 8

70 93 59 0 6582 0

IBEA 40 81 34 0 647 11

50 89 39 0 779 9

60 81 56 0 18369 0

70 87 69 0 6774 0

SMPSO 40 91 34 0 13053 0

50 91 44 0 4663 0

60 96 51 0 11352 0

70 98 60 0 1023 7

OMPOSO 40 83 34 0 5207 0

50 89 47 0 27762 0

60 97 53 0 1014 8

70 99 60 0 9303 0

MOFA 40 91 40 0 4563 0

50 95 50 0 10527 0

60 97 60 0 11425 0

70 98 70 0 13125 0
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5.3 Discussion

The results show that MOFA and OMOPSO found near optimal solutions and provided the best
solutions with 100% point and area coverage with full connectivity of the network. SMPSO and NSGAII
found better results than IBEA with 100% connectivity. The closeness of the non-dominated solutions
generated by the multi-objective algorithms to the true Pareto Front can be determined if the true Pareto
Front is known. In the absence of the information about the true front, the values of spread is a quality
indicator of solutions. For the performance comparison of multi-objective algorithms, we use the hyper
volume quality indicator, and its value is maximized to gain good quality non-dominated solutions. The
algorithm with a high hyper volume value of non-dominated solutions is considered superior to those
with low hyper volume values. The comparison of the hyper volume and spread indicators for non-
dominated solutions generated by multi-objective algorithms MOFA, NSGA-II, IBEA, SMPSO and
OMOPSO are shown in Figs. 5 and 6.

Table 5: Comparison of the best solutions for multi-objective area coverage problem

Algorithms Node
count

Optimization objectives

Coverage
%

Nodes
count

Disconnected
nodes

Energy
consumption

Lifetime Overlap

NSGAII 20 55 18 0 255 67 0

40 86 34 0 8085 0.7 19

60 95 51 0 43914 0.4 37

70 96 54 0 40791 0.3 44

IBEA 20 53 20 0 5003 0.5 8

40 85 39 0 25982 0.4 35

60 73 56 0 47757 0.2 100

70 66 66 0 57431 0.2 106

SMPSO 20 48 16 0 225 66 1

40 83 32 0 11919 0.4 15

60 91 36 0 14413 0.3 19

70 85 41 0 21798 0.3 21

OMPOSO 20 54 19 0 270 66.7 4

40 82 35 0 31074 0.3 26

60 98 42 0 64717 0.1 31

70 100 41 0 41184 0.1 24

MOFA 20 62 20 0 5997 0.3 0

40 88 40 0 21715 0.2 35

60 98 60 0 54879 0.3 87

70 100 70 0 91555 0.1 114
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NSGAII IBEA

SMPSO OMOPSO

MOFA
(a) Area coverage with 20 nodes

NSGAII IBEA

SMPSO OMOPSO

MOFA

(b) Area coverage with 40 nodes

Figure 4: (Continued)
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NSGAII IBEA

SMPSO OMOPSO

MOFA

(c) Area coverage with 70 nodes

Figure 4: Layouts of homogeneous WSNs for the multi-objective area coverage problem

Figure 5: Non-dominated solutions spread for the homogeneous point coverage problem

Figure 6: Non-dominated solutions hyper volume for the homogeneous area coverage problem
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The spread values of solutions generated by MOFA are low when the number of nodes is small, but they
improve with increments in nodes. The solution spread values of MOFA are better than SMPSO and
OMOPSO with 50, 60 and 70 nodes. NSGA-II and IBEA show high spread values with a small number
of nodes but provide a zero spread of solutions with 60 and 70 nodes, as shown in Fig. 5.

The hyper volumes of solutions generated by MOFA are lower than values provided by OMOPSO and
SMPSO but higher than NSGA-II and IBEA values. This shows that solutions generated by MOFA are
dominated by SMPSO and OMOPSO but better than solutions of NSGA-II and IBEA, as shown in
Fig. 6. The NSGA-II and IBEA hyper volume values are zero with 50, 60 and 70 nodes.

6 Conclusion

Our experiments show that the multi-objective firefly algorithm efficiently optimizes the layout schemes
for homogeneous WSNs by providing Pareto optimal front of non-dominated solutions. The algorithm well
utilizes the exploration and exploitation capabilities associated with meta-heuristic algorithms. Our results
show that MOFA maximizes the area coverage to 100% and the point coverage to 99%. It is also
noticeable that the layout diagrams obtained from our simulations show improvement in energy
consumption and lifetime of the network, which leads to ideal layouts of WSNs. Moreover, MOFA is
scalable for large-scale wireless sensor networks. Comparative analysis with SMPSO, OMOPSO,
NSGAII and IBEA show that MOFA provides near optimal results with a better convergence speed.

This study can be further extended for the optimization of heterogeneous WSNs with probabilistic
sensing models. MOFA can also be applied to other multi-objective optimization problems, such as
localization, energy-aware routing, clustering and scheduling of WSNs.
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