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ABSTRACT: Lithium manganese silicate (Li-Mn-Si-O) cathodes are key components of lithium-ion batteries, and
their physical and mechanical properties are strongly influenced by their underlying crystal structures. In this study,
a range of machine learning (ML) algorithms were developed and compared to predict the crystal systems of Li-Mn-
Si-O cathode materials using density functional theory (DFT) data obtained from the Materials Project database. The
dataset comprised 211 compositions characterized by key descriptors, including formation energy, energy above the
hull, bandgap, atomic site number, density, and unit cell volume. These features were utilized to classify the materials
into monoclinic (0) and triclinic (1) crystal systems. A comprehensive comparison of various classification algorithms
including Decision Tree, Random Forest, XGBoost, Support Vector Machine, k-Nearest Neighbor, Stochastic Gradient
Descent, Gaussian Naïve Bayes, Gaussian Process, and Artificial Neural Network (ANN) was conducted. Among these,
the optimized ANN architecture (6–14-14-14-1) exhibited the highest predictive performance, achieving an accuracy of
95.3%, a Matthews correlation coefficient (MCC) of 0.894, and an F-score of 0.963, demonstrating excellent consistency
with DFT-predicted crystal structures. Meanwhile, Random Forest and Gaussian Process models also exhibited reliable
and consistent predictive capability, indicating their potential as complementary approaches, particularly when data
are limited or computational efficiency is required. This comparative framework provides valuable insights into model
selection for crystal system classification in complex cathode materials.
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1 Introduction
The ever-increasing global population and the ease of transportation have necessitated continuous

advancements in transportation systems, particularly in the automotive sector. The growing demand for elec-
tric vehicles has intensified efforts to develop smart batteries capable of operating for extended periods with
minimal charging times [1]. Among various energy storage technologies, lithium-ion batteries have attracted
significant research interest due to their superior performance characteristics [2]. In this context, lithium
manganese silicate Li-M-Si-O (M=Fe, Mn, and Co) cathodes have emerged as promising candidates for next-
generation lithium-ion batteries [3]. The silicate family is known to be rich in polyforms such as Li2FeSiO4,
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Li2CoSiO4, and Li2MnSiO4. Among them, Li2MnSiO4 has a higher capacity than commercial batteries due
to its oxidation potential (4.2 and 4.4 V) [4]. The polymorphs of Li2MnSiO4 are orthorhombic (Pmnb and
Pmn21), monoclinic (P21/n) [5]. However, when polymorphs undergo crystal structure degradation due to
instability during the delithiation process, a significant capacity loss occurs during subsequent cycling. To
solve the problem, we need to predict the main factor of the stable crystal system of Li2MnSiO4 in delithiated
state [6]. Extensive experimental efforts have been devoted to investigating the crystal structures of cathode
and anode materials used in batteries. For example, Luo et al. [7] examined the structural characteristics of Li
ion battery electrode materials using neutron diffraction, while Nowakowski et al. [8] studied the influence
of crystallographic orientation on Li metal anodes. Although such studies provide valuable insights, they
require substantial time, specialized expertise, advanced instrumentation, and high-purity materials, which
make experimental exploration both resource intensive and costly.

The Materials Project [9] provides an open, web-based database that enables the calculation of physical
and chemical properties of both known and predicted materials using density functional theory (DFT).
Researchers can access valuable data related to cathode materials; however, the extensive datasets can
sometimes be confusing or misleading. Therefore, there is a need for specialized algorithms capable of accu-
rately identifying complex, multifaceted correlations that are difficult to capture using traditional statistical
methods. Machine learning (ML) methods have been extensively employed to predict various structures and
properties of materials in the field of materials science and engineering [10,11]. Various studies have utilized
predictive models to estimate the discharging capacities [12], and health state of Li-ion batteries [13]. Wang
and Jiang demonstrated the successful prediction of battery life cycles even in the presence of incomplete
data [14]. Zhang et al. also predicted the battery lifespan through a feature construction-based approach [15].
Since many material properties are strongly influenced by crystal structure [16], accurate prediction becomes
challenging when different crystal systems exhibit similar characteristics. Prosini employed the K-nearest
neighbors (K-NN) to predict the crystal group of lithium manganese oxides [17]. Overlaps in unit cell vol-
umes, bond angles, and energy levels can make distinguishing between structures difficult. These similarities
often lead to uncertainties and can reduce the reliability of conventional classification methods. For example,
small differences in formation energy (Ef), density (ρ), or bandgap (Eg) may cause a monoclinic structure to
be interpreted as orthorhombic. Such inaccuracies in identifying the crystal structure of cathode materials
can ultimately compromise their performance in practical applications.

A previous ML based study [11] used the Materials Project database to predict crystal systems, but
it employed only five ML algorithms. In contrast, our work extends this approach by implementing and
systematically comparing nine different ML methods. These models include Decision Tree (DT), Random
Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM) classifier, k-Nearest
Neighbors (k-NN) classifier, Stochastic Gradient Descent (SGD), Gaussian Naïve Bayes (GNB), Gaussian
Process (GP), and Artificial Neural Network (ANN). These models were chosen to provide a comprehensive
comparison across a diverse range of algorithmic families, including tree-based methods (DT, RF, XGBoost),
distance-based learning (k-NN), margin-based classification (SVM), probabilistic approaches (GNB, GP),
linear optimization (SGD), and deep learning (ANN). This diversity allows us to evaluate how different
learning paradigms handle the nonlinear and complex relationships present in the DFT-derived features
of Li-Mn-Si-O cathode materials. This broader evaluation provides a more comprehensive assessment of
predictive performance and significantly enhances the reliability and generalizability of the results, which
constitutes a key novelty of the present study.
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2 Multi-Algorithm ML Frameworks

2.1 Brief Notes for Various ML Frameworks Employed in This Study
2.1.1 Random Forest (RF)

RF is a ML algorithm that integrates the results of multiple decision trees built from randomly selected
subsets of training data. Each tree is generated using unique random vector, denoted as Θk, which is inde-
pendent of the random vectors used for previous trees (Θ1,. . ., Θk−1). Using these random parameters and
corresponding training subsets, each tree produces an individual classifier h(x, Θk), where x represents the
input vector. The randomization process typically involves selecting random integer indices corresponding
to features or samples, ensuring diversity among trees. The overall prediction of the RF is obtained by
aggregating the outputs of all trees, which improves predictive accuracy and mitigates overfittings. The
character and dimensionality of Θ depend on its use in tree construction [18].

2.1.2 Decision Tree (DT)
In a DT algorithm, the dataset is recursively partitioned into smaller subsets based on specific feature

values. At each node, the algorithm evaluates all variable attributes to determine the most effective feature and
threshold for splitting, typically using criteria such as information gain, Gini impurity, or entropy reduction.
This ensures that each division maximizes class homogeneity within the resulting subsets. The splitting
process continues iteratively for each child node, forming a hierarchical tree structure where internal nodes
represent decision rules and leaf nodes correspond to final class labels. The recursive partitioning terminates
when all data points within a node belong to a single class or when no further meaningful division can be
made. This step-by-step segregation allows DTs to capture nonlinear relationships and provide transparent,
interpretable decision boundaries [19].

2.1.3 Extreme Gradient Boosting (XGBoost)
The XGBoost algorithm, developed by Chen and Guestrin, is an advanced implementation of the

Gradient Boosting framework optimized for classification and regression tasks [20]. It combines multiple
weak learners, typically decision trees, into a strong predictive model through iterative boosting. XGBoost
enhances generalization by incorporating regularization terms in its objective function, thereby minimizing
overfitting while maintaining computational efficiency. During training, parallelized feature processing
accelerates model optimization. Each successive learner is trained on the residuals of the previous iteration,
progressively improving model accuracy. The final output is obtained by aggregating the predictions from
all individual learners, as expressed in Eq. (1).

f (t)
i =

t
∑
k=1

fx (xi) = f (t−1)
i + ft (xi) (1)

where f t(xi) is the learner at step t, f i
(t) and f i

(t−1) are the predictions at steps t and t − 1, and xi is the
input variable. To mitigate overfitting while maintaining computational efficiency, the XGBoost algorithm
formulates an analytical objective function (Eq. (2)) that quantifies the model’s performance or “goodness”
based on both predictive accuracy and regularization terms.

Ob j(t) =
n
∑
k=1

l (yi yi) +
t
∑
k=1

Ω ( fi) (2)



4 Comput Mater Contin. 2026;87(1):21

where l is the loss function, n is the number of observations used, and Ω is the regularization term, and
defined by the relation given in Eq. (3).

Ω ( f ) = γT + λ∥ω∥2 (3)

where ω is the vector of scores in the leaves, λ is the regularization parameter, and γ is the minimum loss
needed to further partition the leaf node. The detailed information and computation procedures of the
XGBoost algorithm can be found in Chen and Guestrin [20].

2.1.4 Nearest Neighbors Classifier Method
Among supervised learning techniques, the K-NN algorithm is widely recognized for its reliable

performance without requiring assumptions about the underlying data distribution. It operates by comparing
a new data point with labeled examples from the training set and assigning the class based on the majority
label among its ‘k’ nearest neighbors. Typically, k is chosen as a small, odd number (e.g., 1, 3, or 5) to prevent
ties, while higher k values can minimize the impact of noise. The optimal k is generally determined using
cross-validation to balance bias and variance [21].

2.1.5 Stochastic Gradient Descent (SGD)
SGD has been recognized for its respectable status and fast computation when the learning data is huge.

For the scattered data, this technique is known for its scaling capability to a huge number of features and
samples. SGD is an efficient algorithm because of its linear complexity. Let Q be the matrix having a size
(a,b), then the cost of training the system is O(iaδ), where i is the number of iterations and δ is the average
of the number of non-zero attributes over all the samples in the dataset [22].

2.1.6 Gaussian Process (GP)
The training dataset consists of N observations, denoted as D = {(xi, yi)∣i = 1, ..., N}, where x represents

the input and y the corresponding output. The objective is to learn an underlying function f that can predict
the output for an unseen input x*. Since multiple functions may fit the data, Gaussian Process (GP) regression
introduces a probabilistic framework that assigns likelihoods to possible functions based on their ability
to model the data. A prior distribution encodes initial assumptions about the function’s mean, variance,
and smoothness, the latter being governed by a covariance function (kernel). By combining the prior with
observed data, a posterior distribution is obtained, enabling both predictions and uncertainty estimates
for new inputs. Owing to its Bayesian nature, the GP model continually improves as more data become
available [23].

2.1.7 Gaussian Naïve Bayes (GNB)
A NB classifier calculates the probability of a given instance belonging to a certain class. Given an

instance X described by its feature vector (x1, . . ., xn) and a class target y, the conditional probability P(y∣X)
can be expressed as a product of simpler probabilities using the Naive independence assumption according
to Bayes’ theorem represented by Eq. (4).

P (y∣X) = P (y) P(X∣y)
P(X) = P(y)∏n

i=1 P(xi ∣y)
P(X) (4)

Here, the target y may have two values, where y = 1 means a hot spot residue and y = 0 represents a
non-hot spot residue. X for one residue (one instance) is a feature vector with the same size for describing



Comput Mater Contin. 2026;87(1):21 5

its characteristics using high-frequency modes generated by GNM. For example, X is equal to a vector
composed of ith component uki for ith residue in a sequence when only one high frequency mode uk is
used. If three high-frequency modes, denoted by u1, u2, and u3, are taken into account, the vector X will be
(u1i, u2i, u3i) for residue i in a protein sequence. Moreover, if a window size of 3 with respect to the residue
i is adopted, X becomes (u1i−1, u1i, u1i+1, u2i−1, u2i, u2i+1, u3i−1, u3i, u3i+1). Since (X) is constant for a given
instance, the following rule is adopted to classify the instance whose class is unknown [24].

2.1.8 Support Vector Machines (SVM)
SVM methods find the maximum margin hyperplane wTφ(xi) + b that separates the positive datapoints

from the negative datapoints [25]. Where w is the normal vector to the hyperplane, xi is the training dataset,
and φ(xi) maps the training data to the feature. The optimization problem can be formulated by Minimize
1
2 wTw + C∑1 ξi , Subject to:

yi (wT φ (xi) + b) ≥ (1 − ξi) ; ξi ≥ 0

where C> 0 is the parameter that controls the trade-off between the training errors and the model complexity,
ξi are slack variables used to achieve a soft margin, and φ is a non-linear mapping from an input space
into a feature space. By introducing the Lagrange multiplier ai, a corresponding dual problem can be
derived by following the quadratic programming (QP) problem, maximize − 1

2 ∑i , j ai a j yi y jk (xi , x j) +
∑i ai , subject to

∑
i

ai yi = 0, 0 ≤ a i ≤ C, I = 1, . . . , N,

where k is a kernel function k(Xi , X j) =<⊢ ϕ(Xi , ϕ(x j)) >⊣, e.g., radial basis function (RBF) kernel k(xi,xj)
= exp(∥xi − xj∥2)/2σ2). Once the dual QP problem is solved, the resulting decision function at any test data
point x is as follows: f (x) = wTφ(x) + b = ∑N

i=1 ai yi k(xi , x) + b = ∑i∈SV ai yi k (xi , x) + b
Only those data points for which ai is nonzero are referred to as support vectors, and they define the

decision function. In the test phase, we estimate the class of the test datapoint x based on the sign(f (x)).
Since P(X) is constant for a given instance, the following rule is adopted to classify the instance whose class
is unknown, as given in Eq. (5).

ŷ = arg max yP(y)∏n
i=1 P(xi ∣y) (5)

2.1.9 Artificial Neural Network (ANN)
An ANN model, which is based on multilayer perceptrons, consists of input, hidden, and output layers

in computational systems. The input layer has neurons for obtaining multiple inputs. Each input is multiplied
by its weight, which can be summarized as a neuron of a hidden layer. The neurons in the hidden layer use
the transmission function to generate new values, and these new values are multiplied again by the weight for
the output layer. The model is trained as a backpropagation algorithm and feed-forward using the sigmoid
function as an activation function. ANN model has five sequentially optimized factors (Neurons, Hidden
Layer, Learning Rate, Momentum terms, and Iterations) [26].

The summary of strengths, limitations and key characteristics of these models are given in Table 1.
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Table 1: Summary of the ML models employed in this study

ML method Strength Limitations Key characteristics

Decision tree Fast training Not suitable for small
dataset Rule-based hierarchical splits

Random forest Good accuracy and
less overfitting

More computations
involved

Ensemble of multiple decision
trees

XGBoost Efficient boosting Sensitive to noise Gradient-boosted decision tree
ensemble

SVM classifier Suitable for small
dataset Required kernel section Maximizes margin between

classes
Nearest neighbors

classifier Very simple Slow for large datasets Distance-based classification

SGD classifier Simple
implementation Sensitive to learning rate Linear classifier optimized via

SGD
Gaussian naive

bayes Very fast Limited with correlated
features

Bayes theorem with Gaussian
likelihood

Gaussian process High accuracy More computations
involved More computations involved

ANN Captures complex
nonlinear patterns Needs careful tuning Multilayer architecture

3 Materials and Methods

3.1 Workflow for ML–Based Frameworks for Prediction of Crystal Structures
Fig. 1 presents the workflow employed in this study to predict the crystal structure of lithium manganese

silicate cathodes using data sourced from the Materials Project. The dataset consisted of 211 DFT-computed
entries containing the selected input features, while the output crystal structure was encoded as a binary
label, with 0 representing monoclinic and 1 representing triclinic structures.

Figure 1: Workflow of the present study for predicting the crystal structure of lithium manganese silicate cathodes
using Materials Project data
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The data were divided into 169 training samples and 42 testing samples, and nine ML algorithms were
applied to develop predictive models. This 80:20 division follows a widely accepted practice in machine-
learning studies, providing a balanced compromise between model training and unbiased evaluation.
The split was generated through random partitioning to avoid sampling bias and ensure that the model
performance reflects true generalization to unseen data. Model performance was evaluated using multiple
assessment metrics including accuracy (ACC), Matthew’s correlation coefficient (MCC), recall (RCC),
precision (PRE), F-score (F), negative predictive value (NPV) using Eqs. (6)–(11). Based on overall prediction
accuracy, the best-performing model was identified and subsequently subjected to detailed optimization and
analysis of its architecture and predictive behavior.

ACC = TP + TN
(TP + TN + FP + FN) (6)

MCC = (TP ∗ TN − FP ∗ FN)√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(7)

Recall (RCC) = TP
(TP + FN) (8)

Precision (PRE) = TP
(TP + FP) (9)

F − score (F) = 2 ∗ RCC ∗ PRE
RCC + PRE

(10)

NPV = TN
(TN + FN) (11)

Here, TP = true positive, TN = true negative, FP = false positve, FN = false negative.

3.2 Dataset Description and Preprocessing
The entire dataset was obtained from the Materials Project Database [9], which provides DFT computed

properties of 211 cathode materials with Li-Si-(Mn)-O compositions. All DFT calculations and structural
optimizations were performed using the VASP software within the Materials Project framework. The
exchange–correlation potentials were treated using the generalized gradient approximation (GGA) or GGA
+ U, and the DFT energies for the Li-Si-(Mn)-O systems were generated through a high-throughput
computational workflow. The initial DFT calculations containing positions of atoms and lattice parameters
of crystals can be based on available data from inorganic crystal structure database [27].

The dataset includes the Ef, Eh, Eg, number of sites (Ns), density (ρ), the volume of the unit cell (V), and
crystal structure of each electrode. The available dataset is divided into 80:20 as training and testing datasets.
To avoid any bias in the training process, each method-based model is trained 100 times, and the models
are stored. The data inputs are the chemical formula, space group, Ef (eV) Eh (eV), Eg (eV), Ns, ρ (g.cm−3)
and V (A3). The output is the crystal structures of Li-Si-(Mn)-O cathode materials that are monoclinic (0) or
triclinic (1). Fig. 2 presents the pair plot of the properties of Li-Si-(Mn)-O cathode materials in the dataset.
The diagonal elements illustrate the distribution of individual features, while the off-diagonal plots show
pairwise relationships between variables. The symmetry along the diagonal reflects similar distributions
across parameters, and the axes appear mirrored due to the pairwise plotting arrangement.
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Figure 2: Pair plot of the properties of the Li-M-Si-O (M=Fe, Mn, and Co) cathode materials from Materials Project
about the relative input parameter

No clear correlation is observed between the selected features and the resulting crystal system,
highlighting that simple linear or direct relationships are insufficient to describe the underlying structure–
property interactions. This lack of explicit trends underscores the necessity of employing advanced modelling
techniques capable of capturing complex, nonlinear dependencies within the data. Therefore, ML-based
modelling becomes essential for reliably predicting the crystal structures of lithium manganese silicate
cathodes, where multiple compositional and structural factors interact in a non-trivial manner.

4 Results and Discussion

4.1 Prediction Performance of ML Models
A comparative assessment of each of the nine ML algorithms was conducted to evaluate their perfor-

mance using various statistical indicators, including ACC, RCC, PRE, specificity, NPV, and F-score (Table 2).
The results revealed substantial variability in the generalization capability of different models. The DT model
exhibited good fitting during training (accuracy= 0.887) but demonstrated a sharp decline in testing accuracy
(0.639), indicating overfitting. In contrast, the ensemble-based models, RF and XGBoost, showed superior
performance, achieving nearly perfect training accuracies (1.000 and 0.993, respectively) and strong testing
accuracies (0.803 and 0.721, respectively). Notably, RF outperformed all other models in terms of balanced
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accuracy, recall, and precision on the test set (accuracy = 0.803, recall = 0.786, precision = 0.917, F-score
= 0.846), highlighting its robustness and effective handling of complex nonlinear relationships. The SVM
classifier demonstrated moderate predictive ability (testing accuracy = 0.688), providing a stable but not
outstanding performance. The Nearest Neighbors Classifier yielded lower testing accuracy (0.606), which
may be attributed to its sensitivity to noise and local data variations.

Table 2: Summary of the evaluation of training data and testing data accuracy using the various ML methods

ML Method Train/Test ACC RCC PRE Specificity NPV F-Score

Decision tree Training 0.887 0.858 1 1 0.638 0.924
Testing 0.639 0.630 0.944 0.714 0.200 0.756

Random forest Training 1 1 1 1 1 1
Testing 0.803 0.786 0.917 0.842 0.64 0.846

XGBoost Training 0.993 0.990 1 1 0.979 0.995
Testing 0.721 0.731 0.833 0.7 0.56 0.779

SVM classifier Training 0.92 0.925 0.961 0.907 0.829 0.942
Testing 0.688 0.729 0.75 0.625 0.6 0.739

Nearest neighbors classifier Training 0.827 0.841 0.922 0.783 0.617 0.879
Testing 0.606 0.636 0.778 0.529 0.36 0.7

SGD Classifier Training 0.413 0.683 0.279 0.312 0.723 0.389
Testing 0.443 0.583 0.194 0.408 0.800 0.292

Gaussian naive bayes Training 0.647 0.731 0.767 0.429 0.383 0.749
Testing 0.656 0.683 0.778 0.600 0.480 0.727

Gaussian process Training 0.993 0.990 1.000 1.000 0.979 0.995
Testing 0.705 0.737 0.778 0.652 0.600 0.757

ANN Training 1.000 1.000 1.000 1.000 1.000 1.000
Testing 0.761 0.447 0.800 0.857 0.827 0.906

The SGD classifier exhibited the weakest performance across all metrics (testing accuracy = 0.443, F-
score = 0.292), indicating poor convergence in nonlinear feature spaces. Among the probabilistic approaches,
Gaussian NB and GP classifiers achieved comparable results, with the latter showing slightly higher
predictive balance (testing accuracy = 0.705, F-score = 0.757). The ANN achieved perfect training accuracy
(1.000) and demonstrated strong generalization on the testing dataset (accuracy = 0.761, F-score = 0.906).
Although minor overfitting was observed, the ANN effectively captured intricate nonlinear dependencies,
outperforming most conventional algorithms in terms of overall predictive reliability.

These findings suggest the ANN model achieved the highest prediction accuracy and demonstrated
the strongest capability to learn the complex, nonlinear interdependencies among the input features.
The remaining eight models were optimized using standard and widely accepted hyperparameter-tuning
procedures (e.g., grid search, cross-validation, and built-in optimization routines), and their performance
showed relatively low sensitivity to tuning variations. Therefore, an extensive architectural explanation
was not required for them. In contrast, the ANN contains multiple architecture-dependent parameters
such as the number of layers, neurons per layer, activation functions, learning rate, and momentum
terms, and its performance was highly sensitive to these choices. To ensure transparency, fairness, and
reproducibility, the detailed ANN architecture, optimization strategy, and training behavior will be provided
in the coming sections.
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4.2 Data Splitting for ANN Model
Fig. 3 shows the data classed for training and testing data in monoclinic and triclinic crystal structures.

In the monoclinic crystal structure, 111 training data and 28 data out of 139 data were investigated, and the
training data were not classified, with four of the testing data being unclassified. Also, 58 training data and 14
testing data out of the total 72 data were investigated in the triclinic crystal structure, and the triclinic crystal
structure also showed unclassified data in the training data, and the testing data showed unclassified data in
six testing data.
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Figure 3: The misclassified training data and testing data in monoclinic and triclinic crystal systems

4.3 Optimum ANN Model Architecture
The ANN model was trained using the training dataset with systematic optimization of key hyperpa-

rameters. The core ANN algorithm was implemented in the C programming language for computational
efficiency, while a user-friendly graphical user interface (GUI) was developed in Java to facilitate model
execution, parameter adjustment, and visualization of results. The number of hidden layers were varied
from 1 to 3, the number of neurons per layer from 1 to 30, the momentum coefficient from 0.1 to 1.0, the
learning rate from 0.1 to 1.0, and the number of training iterations from 5000 to 70,000. The corresponding
changes in model behavior under these settings are illustrated in Fig. 4. The optimized ANN architecture
consists of three hidden layers with fourteen neurons in each layer (Fig. 4a). A momentum value of 0.3
(Fig. 4b), a learning rate of 0.6 (Fig. 4c), and 20,000 training iterations (Fig. 4d) yielded the best performance,
achieving a prediction accuracy of 94.31%. Further refinement through iteration tuning demonstrated that
the highest accuracy of 95.26% was reached at 20,000 iterations. These results clearly demonstrate the
significant impact of hyperparameter selection on the ANN’s ability to accurately predict the crystal system
of Li-Mn-Si-O materials.
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Figure 4: The line graphs show the accuracy of different hyperparameters for the ANN

All data, including the chemical formula, space group, experimental, and ANN predicted crystal
structure, are presented in the Table 3. The four unclassified data are monoclinic crystal structures in the
experimental crystal system and represent triclinic crystal structures in the ANN model. The six unclassified
data represent the triclinic crystal structure in the experimental and the monoclinic crystal structure in the
ANN model. The commonality of these is that the Space group is P1.

Table 3: Data for misclassified Lithium manganese silicate cathodes from the dataset. Bold compositions of cathode
materials were misclassified

Sr. No. Formula Space group Experimental ANN predicted
1 Li4Fe3(SiO4)3 P1 Triclinic Triclinic
2 Li2Fe(Si2O5)3 P1 Triclinic Triclinic
3 Li16Fe4SiO16 P1 Triclinic Monoclinic
4 LiFe2(SiO4)2 P1 Triclinic Monoclinic
5 Li7Fe7SiO16 P1 Triclinic Monoclinic
6 Li2Co3(SiO4)2 P1 Triclinic Monoclinic
7 Li3Co2(SiO4)2 P1 Triclinic Triclinic
8 Li3Co2(SiO4)2 P1 Triclinic Triclinic
9 Li2Co(Si2O5)2 P1 Triclinic Triclinic
10 Li6Co(SiO4)2 P1 Triclinic Monoclinic
11 LiCo3(SiO4)2 P1 Triclinic Triclinic
12 Li5Co4(Si3O10)2 P1 Triclinic Triclinic
13 LiCoSiO4 P1 Triclinic Monoclinic

(Continued)
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Table 3 (continued)

Sr. No. Formula Space group Experimental ANN predicted
14 Li3Co2(SiO4)2 P1 Triclinic Triclinic
15 Li2MnSiO4 Pc Monoclinic Monoclinic
16 Li2MnSiO4 P21/c Monoclinic Monoclinic
17 Li4MnSi2O7 Cc Monoclinic Monoclinic
18 Li4Mn2Si3O10 C2/c Monoclinic Monoclinic
19 Li2Mn3Si3O10 C2/c Monoclinic Triclinic
20 Li4MnSi2O7 C2 Monoclinic Monoclinic
21 LiMnSiO4 P21 Monoclinic Monoclinic
22 Li2MnSiO4 P21/c Monoclinic Monoclinic
23 LiMn(SiO3)2 C2/c Monoclinic Triclinic
24 Li2Mn(SiO3)2 Cc Monoclinic Monoclinic
25 Li2MnSiO4 P21/c Monoclinic Monoclinic
26 Li2Mn(SiO3)2 C2/c Monoclinic Monoclinic
27 Li2Mn2Si2O7 P21/c Monoclinic Triclinic
28 Li10Mn(SiO5)2 C2/m Monoclinic Monoclinic
29 Li3MnSi2O7 P21 Monoclinic Monoclinic
30 Li5Mn(SiO4)2 C2 Monoclinic Monoclinic
31 Li2Mn(Si2O5)2 P21/c Monoclinic Monoclinic
32 Li2Mn2Si3O10 Cc Monoclinic Monoclinic
33 Li2Mn2(SiO3)3 P21/c Monoclinic Monoclinic
34 LiMn(SiO3)2 C2/c Monoclinic Monoclinic
35 Li2MnSi3O8 P21 Monoclinic Monoclinic
36 Li3Mn2(SiO4)2 P21 Monoclinic Monoclinic
37 Li4Mn(SiO3)3 C2 Monoclinic Monoclinic
38 Li2MnSi3O8 P21 Monoclinic Monoclinic
39 Li2Mn(SiO3)2 C2 Monoclinic Triclinic
40 LiMn2Si2O7 Cc Monoclinic Monoclinic
41 Li3Mn2(SiO4)2 Pc Monoclinic Monoclinic
42 Li3Mn2(SiO4)2 Pc Monoclinic Monoclinic

4.4 Evaluation of the Confusion Matrix
A confusion matrix between the ANN model and the DFT calculated data predicts all data in the dataset

as either positive or negative. This classification produces four outcomes.
TP values are accurate positive predictions, FP values are incorrect positive predictions, TN shows

accurate negative predictions, and FN represents incorrect negative predictions. The TP value represents the
data number when the ANN model prediction and the DFT prediction are both monoclinic, and the TN
values represent the data number when both the ANN model and the DFT prediction are Triclinic. Table 4
shows the evaluation of the confusion matrix. The total data sets are 211. The number of TP, FP, FN, and TN
values show 135, 6, 4, and 66. To ensure the reliability of the classification results and to assess the performance
of the ANN model, its predictions were compared with the corresponding DFT-calculated data. The model’s
performance, evaluated using several statistical metrics, is presented in Fig. 5.
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Table 4: Confusion matrix between the ANN model and the DFT calculated data

Data No. of Data DFT (0) DFT (1) Total

Test
ANN (0) TP (111) FP (0) 111
ANN (1) FN (0) TN (58) 58

Total 111 58 169

Train
ANN (0) TP (24) FP (4) 28
ANN (1) FN (6) TN (8) 14

Total 30 12 42/61

All Data
ANN (0) TP (135) FP (6) 141
ANN (1) FN (4) TN (66) 70

Total 129 72 211

Figure 5: The spider plot showing the performance of ANN by different evaluation matrices

The ACC value of the optimized ANN model was found to be 0.953, indicating a high level of predictive
reliability. The MCC, which evaluates the balance between under- and over-predictions—where MCC = 1
represents a perfect prediction and MCC = 0 corresponds to a random assignment—was 0.894, signifying
strong consistency between predicted and actual classifications. The precision (PRE), representing the ratio
of correctly predicted positive cases to all predicted positives, was 0.957. The F-score, defined as the harmonic
mean of precision and recall (ideal value = 1), was 0.963, further confirming the model’s strong performance.
The NPV, which measures the ratio of correctly predicted negatives to total predicted negatives, was 0.943,
demonstrating that the model effectively distinguishes between the two crystal systems.

5 Conclusions
In this study, various machine learning (ML) algorithms were developed and compared for predicting

the crystal system of lithium manganese silicate (Li-Mn-Si-O) cathode materials using density functional
theory (DFT) data from the Materials Project database. The dataset contained 211 compositions with key
features such as formation energy, energy above the hull, bandgap, number of atomic sites, density, and
unit cell volume. These descriptors were used to classify the crystal system into monoclinic (0) and triclinic
(1) phases.
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The comparative analysis of multiple classification techniques—Decision Tree, Random Forest,
XGBoost, Support Vector Machine, Nearest Neighbor Classifier, Stochastic Gradient Descent, Gaussian
Naïve Bayes, Gaussian Process, and Artificial Neural Network (ANN)—revealed that the ANN model
exhibited the highest predictive performance. The optimized ANN architecture (6–14-14-14-1) achieved an
accuracy of 95.3%, a Matthews correlation coefficient (MCC) of 0.894, and an F-score of 0.963, indicat-
ing strong consistency between DFT-predicted and ANN-classified crystal systems. Random Forest and
Gaussian Process models also showed high accuracies (0.803 and 0.705, respectively) and served as robust
complementary approaches, particularly when data are limited or computational efficiency is required.

This study establishes a reliable ML-based framework for classifying lithium manganese silicate crystal
structures, providing a solid foundation for future generative work. Although the present focus is classifi-
cation, the developed model and insights will guide our next phase, where we aim to extend the approach
toward predicting and generating new crystal structures.

6 Limitations and Future Work
The present study is limited by the size and scope of the available dataset, which restricts the application

of advanced validation strategies and additional thermodynamic analyses such as convex-hull stability
mapping. In addition, the current framework is focused on accurate crystal-structure classification rather
than generative prediction of new structures, which represents an important next step for real-world
materials discovery. Future work will focus on expanding the dataset, incorporating comprehensive phase-
stability information, and extending the model toward generative and predictive capabilities, complemented
by thermodynamic calculations and experimental validation to further strengthen the robustness and
generality of the proposed approach.
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