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ABSTRACT: The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of
addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS
for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and
parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while
maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an
accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false positive rate of 1.5%. Additionally,
it effectively detects critical User-to-Root (U2R) attacks at a rate of 96.2% and Remote-to-Local (R2L) attacks at
95.8%. Performance tests validate the system’s scalability for networks with up to 2000 nodes, with detection latencies
of 120 ms at 65% CPU utilization in small-scale deployments and 250 ms at 85% CPU utilization in large-scale
scenarios. Parameter sensitivity analysis enhances model robustness, while false positive examination aids in reducing
administrative overhead for practical deployment. This IDS offers an effective, scalable, and resource-efficient solution
for real-world IoT system security, outperforming traditional approaches.

KEYWORDS: Cybersecurity; intrusion detection system (IDS); IoT; support vector machines (SVM); genetic
algorithms (GA); feature selection; NSL-KDD dataset; anomaly detection

1 Introduction
The Internet of Things (IoT) is transforming the way we live and work, offering enhanced connec-

tivity and automation across various domains such as healthcare, smart homes, industrial systems, and
transportation. However, this rapid growth has also been accompanied by an increase in cyber threats. IoT
deployments often lack sufficient built-in security mechanisms, and as highlighted in, IoT systems typically
have limited computational resources and power constraints, making them more vulnerable compared to
traditional computing infrastructures. Securing these networks is crucial, as they often involve sensitive
data transmission and control over critical infrastructure [1]. According to, Intrusion Detection Systems
(IDS) play a pivotal role in IoT security by monitoring network traffic patterns for anomalies and generating
alerts to system administrators regarding potential intrusions [2]. However, many traditional IDS models
may not be well-suited for IoT networks due to their complex and dynamic nature. As noted in, such
environments require security solutions that are resource-efficient and capable of adapting to diverse device
types, communication protocols, and traffic patterns [3,4].
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Machine learning approaches are used to develop intrusion detection systems by classifying network
traffic. The challenge of applying machine learning techniques in IoT networks is that traditional models
cannot cope with high computational requirements and tuned parameters [5]. Thus, there is a requirement
for an IDS that provides high accuracy with low computational cost. The motivation behind this study is to
develop a hybrid IDS using a support vector machine (SVM) and a genetic algorithm (GA) for enhancing
the features of intrusion detection in IoT environments. The hybrid model aims to perform feature selection
and tuning of several parameters so that the system can be implemented in resource-constrained IoT
environments [6]. Modern cyber-attacks such as DDoS, Man-in-the-middle, and data theft on IoT devices
have made traditional signature-based methods obsolete. Since most of the methods are signature-based,
they are not effective against novel threats. Hence, more dynamic and adaptive intrusion detection systems
are required. Another challenge is the various types of IoT networks; these environments contain many
devices with different capabilities, which makes it more difficult to secure them [7]. Machine learning
approaches, particularly SVM, have been proven effective in performing intrusion detection classification
due to their ability to handle high-dimensional and complex datasets [8]. Due to heterogeneity, limited
computation capabilities, and resource constraints of IoT devices, intrusion detection in IoT networks
has specific challenges. The increasing complexity and dynamic nature of IoT traffic make it difficult for
conventional intrusion detection systems (IDS) to adapt. Furthermore, the detection accuracy is affected by
a high rate of false positives arising from ineffective feature selection on large datasets.

This research aims to combine the strengths of SVM and GA to make an IDS better by boosting its
precision and recall, and cutting down on system costs. Standard IDSs often produce high false-positive rates
in IoT networks because IoT traffic is usually varied and dynamic, which results in low trust between normal
and malicious activities.

• Resource constraints in IoT devices in general, IoT devices are both computationally and energetically
constrained; thus, traditional resource-intensive IDS methods cannot work efficiently in those kinds of
environments and be considered practical for real-time intrusion detection.

• Unable to handle high-dimensional data for intrusion detection in IoT environments includes high-
dimensional data processing. Classic machine learning models cannot handle high-dimensionality
without proper feature selection, which introduces the problems of reduced accuracy and increased
computational overhead.

• Suboptimal hyperparameter tuning of ML is often done in a manner that is not effective manually in
traditional approaches of IDS, hence making the algorithm suboptimal and unable to adapt to the ever-
changing threats in IoT networks.

• Limited scalability of current IDS solutions in current IDS models is not created to scale with the
ever-increasing number of IoT devices, thus forming challenges in maintaining performance while the
network grows and its traffic patterns become more complex.

This work is dedicated to the development of an optimized hybrid IDS, elaborated to meet specific IoT
network needs. It combines SVM with the GA to offer improvement in detection rates while at the same
time reducing the false positives and considering efficient resource utilization. This is to find the limitations
of traditional IDS systems in handling the complexity of IoT environments, given that there are resource-
constrained and multi-vector attacks that are highly susceptible.

• Improvement of Detection Accuracy: The main goal of this research work is therefore to enhance
intrusion detection accuracy in IoT networks by proposing a hybrid model, combining Support Vector
Machine, thereby efficiently classifying the normal and malicious network activities.
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• Optimizing Computational Efficiency: This research thus proposes the utilization of GAs for feature
selection and optimization of hyperparameters to be able to utilize resources efficiently with maximum
detection performance.

• Reducing False Positives: Among the main aims of the work is the reduction of false positives in intrusion
detection in IoT devices by proposing an efficient classification mechanism based on a feature selection
methodology that selects only relevant features and optimizes the decision boundaries.

• Developing a Scalable Solution: Therein, the study will design an IDS that can be scaled up while the
number of IoT devices keeps growing. Most importantly, its performance increases with network size
and complexity in traffic.

• Real-World IoT Practical IDS: The intention is to propose a hybrid IDS model which is not only
theoretically robust but practical and implementable in real-world IoT environments, balancing its
detection capability with those confines inherent in IoT devices.
Our contributions can be focused on the following points:

• Hybrid SVM-GA Model: Unique integration of feature selection and hyperparameter optimization using
Genetic Algorithms, reducing the feature set from 41 to 7, while maintaining high accuracy (98.79%)
and low false positive rates (1.5%).

• Scalability and Efficiency: Thorough validation for scalability and efficiency properties of the model with
varying sizes of IoT networks, ranging from 100 to 2000 devices, for an actual real-time application.

• Robust Performance: Comprehensive evaluation on diverse attack types, including rare ones like U2R
and R2L, demonstrating adaptability and robustness in IoT-specific scenarios.

• Practical Applicability: Designed specifically for resource-constrained IoT environments, addressing key
gaps in existing intrusion detection research.
The rest of this paper is structured as follows: Section 2 reviews existing research on IDS models,

especially for IoT. Section 3 presents our hybrid approach using SVM and GA. Section 4 presents and
examines the experimental results. Section 5 talks about comparison highlights the superiority of the hybrid
SVM + GA approach, which outperforms previous models in terms of accuracy, precision, recall, and
false positive rate, offering a more efficient and effective solution for intrusion detection in IoT networks.
Finally, Section 6 summarizes the conclusion of the paper.

2 Literature Review
The increasing number of security breaches in IoT networks has made intrusion detection a significant

concern in the field of cybersecurity. Detecting cyber-attacks in IoT environments quickly is challenging
due to the complex nature of network traffic and the diversity of connected devices [9]. Researchers have
extensively explored various machine learning and the best tech methods to address this issue. Traditional
signature-based IDSs, which have been around for many years, struggle to keep up with new attacks or
evolving IoT networks [10]. This limitation has led researchers to explore alternative solutions, including
machine learning-based IDSs, which can learn and adapt to network behavior. Support Vector Machines are
commonly used for network intrusion detection due to their ability to handle large datasets and perform
well on binary classification tasks. Studies, such as [11], indicate that SVM can achieve better accuracy
compared to traditional methods like Decision Trees or k-nearest neighbors in intrusion detection. However,
SVM requires extensive hyperparameter tuning and feature selection, which can be challenging in resource-
constrained IoT environments. Another limitation is the high computational requirements of SVM models,
making them less suitable for IoT devices with limited processing power and memory. Recent research has
explored optimization techniques, such as Genetic Algorithms, for improving machine learning models
used in IDS [12]. GA can be employed for feature selection and hyperparameter tuning for some machine
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learning algorithms, enhancing their efficiency and effectiveness. Research [13] indicates that using GA for
feature selection achieves a high detection rate in IDS, outperforming other models that rely on manual or
random feature selection. GA’s natural search mechanism aids in reducing data dimensionality, addressing
a significant challenge for machine learning applications in IoT networks. More recently, hybrid models
have been used that combine machine learning techniques with optimization algorithms. For example,
Hamad et al. proposed an IDS that combined SVM with the Particle Swarm Optimization algorithm to
optimize hyperparameters in order to improve the model’s detection capabilities in IoT environments as
reported in [14]. The study indicated that optimizing the regularization parameter (C) and kernel function
can enhance the performance of SVM through GA while minimizing computational costs, thereby making
it more applicable for real-time intrusion detection as noted in [15]. Also, although machine learning models
sometimes provide very high accuracy—sometimes even as high as SVM algorithms in anomaly detection—
training them generally requires large-sized labeled datasets which are often difficult to obtain within the
context of IoT networks due to a lack of any central control and standardization.

2.1 Intrusion Detection Systems in IoT Networks
Intrusion Detection Systems are key to protecting IoT networks from threats like Denial of Service

attacks, data breaches, and unauthorized access. Traditional IDS methods, made for standard networks, don’t
work well in IoT setups [16]. To fix this, researchers suggest using ML algorithms to raise the detection
rate. Still, many of these plans need lots of resources, so they’re not practical for IoT devices with limited
computing ability. Some studies look at mixed methods that use machine learning with algorithms that boost
device performance. These models often miss the mark on feature selection, which is a big part of how well
a system works. Recent work involves better ways to improve intrusion detection systems in IoT settings.
Studies combine machine learning with techniques to boost performance. For instance, research shows that
GA can pair with Machine learning if used with feature selection and hyperparameter tuning [1,2]. PSO has
been used to tune intrusion detection models across complex IoT networks [3,4].

Lightweight and scalable solutions have become the focal point of research in the realm of IoT
devices. Recent developments, including ensemble-based approaches and deep learning architectures, have
significantly enhanced the performance of systems in terms of attack detection while maintaining low
resource consumption [5,7]. Furthermore, adaptive models that dynamically adjust to the evolving nature
of IoT network environments are critical for ensuring resilience against diverse attack vectors [8,9]. As
presented in Table 1, these hybrid IDS models consistently outperform traditional systems in terms of
detection accuracy and reduced false positive rates.

Table 1: This table compares various IDS approaches, machine learning techniques, optimization methods, and their
resulting detection accuracy and false positive rates [17]

Study IDS approach Machine learning
technique

Optimization
method

Detection
accuracy (%)

False positive
rate (%)

[18] Signature-Based IDS Decision Tree None 85 8
[19] Anomaly-Based IDS Logistic Regression GA 88 6

[20] Hybrid IDS (Anomaly
+ Signature) K-Means PSO 90 5

[21] Hybrid IDS KNN GA 92 4
[22] Adaptive IDS Random Forest None 80 7
[23] Hybrid IDS Naïve Bayes GA 91 3
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2.2 Machine Learning Approaches to IDS
Machine learning techniques have gained significant attention in Intrusion Detection Systems due

to their ability to learn from network traffic and identify abnormal behavior. Support Vector Machines,
Random Forests, and Neural Networks are widely utilized because of their capability to model complex
data. These techniques offer advantages over traditional methods, particularly in detecting novel attacks [24].
However, their effectiveness relies heavily on proper feature selection and hyperparameter tuning, which can
be challenging in IoT environments. Previous research attempts have focused on enhancing IDS performance
by integrating machine learning with techniques such as genetic algorithms to improve accuracy. Support
Vector Machines have proven effective in handling high-dimensional data, making them suitable for
intrusion detection. SVMs typically classify the data accurately even when the data is not linearly separable;
however, hyperparameter tuning and feature selection require substantial manual effort. Genetic Algorithms
inspired by natural evolution are employed in feature selection and hyperparameter tuning, as depicted
in Table 2.

Table 2: This table highlights various machine learning methods, datasets, feature usage, optimization techniques, and
their corresponding performance in terms of detection accuracy, computational efficiency, and false positive rates

Study ML
approach Dataset Features

used
Optimization

method
Detection

accuracy (%)

Computational
efficiency

(High/Low)

False positive
rate (%)

[25] Decision
Tree

NSL-
KDD 30 None 85 Low 8

[26] Random
Forest

CIC-
IDS2017 20 None 87 High 7

[27] Logistic
Regression

NSL-
KDD

Optimized
Subset GA 92 Medium 4

[28] Neural
Networks

UNSW-
NB15 45 PSO 90 Low 5

[29] Decision
Trees IoT-23 25 None 82 High 6

2.3 Hybrid Models for Intrusion Detection
Hybrid intrusion detection models combine the strengths of several approaches. Most of them incor-

porate machine learning techniques along with optimization algorithms to enhance efficiency and detection
accuracy. These can use pattern recognition leveraging algorithms such as SVM or neural networks, while
feature selection and hyperparameters could be fine-tuned with optimization techniques such as using GA
or PSO methods, as mentioned in [30]. Some of these hybrid models have significantly demonstrated their
potential in reducing false positives and providing scalability in IoT environments. With the integration of
machine learning and evolutionary algorithms into the model, the adaptability to dynamic network traffic
can be achieved with a low computational cost. Indeed, many recent works have exhibited that hybrid
models outperform usually the single-method approaches in a real-time, resource-constrained environment,
as shown in Table 3.
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Table 3: This table provides a comparison of hybrid IDS models, outlining the machine learning and optimization
techniques used, along with their key areas of improvement in network security

Study Hybrid approach Optimization technique Key improvement area
[30] SVM + PSO Particle swarm optimization Enhanced feature selection

[31] SVM + KNN KNN Optimized hyperparameter
tuning

[32] NN + K-Means K-Means Reduced false positives

[33] Neural Network + GA Neural network Improved classification
efficiency

[34] Random Forest + Feature
Selection Feature selection Increased computational

efficiency

[35] SVM + Feature Selection Feature selection Lowered resource
consumption

3 Methodology
The methodology utilized in the design and development, subsequently the assessment of a hybrid

IDS anchored on SVM with GA for optimization during feature selection and hyperparameter tuning is
structured. In general terms, the first step in this process would be data preprocessing, where cleaning and
normalization are done on the IoT network traffic dataset to prepare it for feature extraction. It will then
format this data into a structure that can be used to train and test the machine learning model. Feature
extraction and selection happen next after preprocessing. A complete set of features will be extracted from
the dataset to represent different dimensions of network activity, such as packet size, protocol type, and
connection duration among others. The most relevant features that can help in reducing dimensionality as
well as computational load while keeping all information necessary for intrusion detection are selected by
applying GA.

Following feature selection, we build the SVM model because it works well with high-dimensional data,
which is typical in network traffic analysis. The model relies heavily on the regularization parameter (C)
and kernel function hyperparameters. So, a genetic algorithm is used to tune these hyperparameters to get
a good model for finding intrusions in different IoT setups. After training the hybrid model, we check its
performance using accuracy, precision, recall, and F1-score. We use k-fold cross-validation to make sure the
model works well on different data subsets. Also, we take the model’s false alarm rate into account to cut
down on incorrectly flagging normal network activity as malicious. This shows that using a genetic algorithm
for feature selection and tuning is good at spotting rare attack types.

The F1-scores for each attack type indicate that the model achieves a good trade-off between precision
and recall, thus enhancing the overall reliability of the system. The false positive rates are lower than those
reported in other studies, indicating that the model effectively distinguishes between normal and malicious
activities, which is crucial for building trust and ensuring the practical applicability of the intrusion detection
system. These findings suggest that the model is capable of adapting to different network conditions, thereby
making it potentially applicable to a wide range of IoT scenarios. By evaluating performance across various
IoT network conditions, such as high traffic loads or diverse device types, we can ascertain whether the
system meets requirements for scalability and computational efficiency, ensuring that the proposed intrusion
detection system is both accurate and practical for real-world deployment in resource-constrained IoT
environments as shown in Fig. 1.



Comput Mater Contin. 2026;87(1):39 7

Figure 1: Flowchart of the IDS development process

3.1 Proposed Hybrid IDS
The hybrid IDS proposed integrates SVM with GA, which are more accurate and efficient in detecting

intrusions in IoT networks. It starts with feature extraction based on the processing of network data traffic
to find out the relevant attribute. The selection of features was done using GA for dimensionality reduction
within the dataset by retaining only those that are most important for detection. The hyperparameters
of SVM models were optimized using GA, which included selecting a regularization factor and kernel
type for the best performance. The powerful classification capabilities in SVM with optimization processes
via GA provide highly efficient and accurate IDS that can deal with resource constraints and various
attack patterns—some unique challenges in IoT networks as illustrated in Fig. 2. Recent studies provide
evidence that optimizations involving machine learning model optimization and securing IoT environments
constitute innovations. To illustrate, researchers in [36] proposed certain quantization and reduction of data
bits techniques toward achieving higher efficiency on healthcare datasets—this is very relevant to resource-
constrained IoT applications. Hybrid metaheuristic algorithms have been indicated to improve an intrusion
detection system by [37]. Further, new security algorithms such as reversible cellular automata [38] and
encryption frameworks like those discussed by researchers in [39] emphasize the demand for lightweight
and scalable solutions within IoT environments. These studies are critically informative and supportive of
the objectives of this research.
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Figure 2: Visualization of SVM classifier with decision boundary and support vectors

The system design is flexible and scalable with an increased number of IoTs, and retains its accuracy
of detection with changes in network conditions. The IDS minimizes false positives to make its real-world
applications practical in securing IoT networks, as shown in Table 4.

Table 4: Components of the hybrid IDS model

Component Technique used Purpose
Feature extraction Data Processing Identifies relevant features from network traffic

Feature selection Genetic Algorithm (GA) Reduces data dimensionality and selects key
features

Model construction Support Vector Machine
(SVM) Performs intrusion classification

Hyperparameter tuning Genetic Algorithm (GA) Optimizes SVM hyperparameters for better
performance

Evaluation Cross-Validation &
Performance Metrics

Assesses accuracy, precision, recall, and false
positive rates

3.2 Hybrid Support Vector Machines (SVM) and Genetic Algorithms (GA) Modeling
Combining Support Vector Machines and Genetic Algorithms can improve how well an Intrusion

Detection System works by taking advantage of what each method does well. SVMs are good at classification,
especially with lots of data, but picking the right features and settings is key. To see if we could use fewer
features without sacrificing much, we tested the model with all 41 features and then with a reduced set of just
7. The difference in accuracy was small (98.79% vs. 98.65%), and the false positive rates were also close (1.5%
vs. 1.8%). Our hybrid model avoids the need to manually adjust features and parameters, which takes time
and isn’t very good for complex IoT networks. Instead, it uses GA to automate these tasks. By combining the
strength of SVMs with GA optimization, the IDS can adapt to different network conditions and new attack
patterns, making it scalable for real-time IoT setups, as shown in Table 5.

Let us assume a dataset D = {(x1 , y1) , (x2, y2) , . . . , (xn , yn)} where xi ∈ Rm represents the feature
vector for a given network traffic instance, and yi ∈ {−1, 1} represents the corresponding class label (normal
or malicious). The SVM aims to find a hyperplane f (x) = wT x + b that best separates the classes, where w
∈ Rm is the weight vector, and b ∈ R is the bias term.
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Table 5: Contributions of SVM and GA in the hybrid IDS model

Aspect SVM contribution GA contribution Key advantage Challenge
addressed

Classification
Handles

high-dimensional
data

Selects optimal
features Improved accuracy Complex data

handling

Feature selection Relies on
predefined features

Automates feature
selection

Reduced
complexity

High-
dimensionality

Hyperparameter
tuning

Manual tuning
required

Optimizes SVM
parameters

Consistent
performance

Time-consuming
tuning

Efficiency Computationally
intensive

Reduces
unnecessary

computations
Enhanced speed High resource

usage

Scalability Limited to smaller
datasets

Adaptable to larger
datasets Scalable solution Growth of IoT

networks

False positives Higher without
optimization

Lowers false
positive rate Fewer false alerts False positive

reduction

Adaptability Limited to current
dataset

Adapts to new
attack patterns Dynamic model Changing threat

landscape

The objective function for the SVM can be formulated as:

min
w ,b

1
2
∣∣ w ∣∣2 (1)

Subject to:

yi (wT xi + b) ≥ 1,∀i (2)

In practice, we use a soft margin SVM to allow some misclassification of data points. This leads to the
following objective function with slack variables ξi:

min
w ,b

1
2
∣∣ w ∣∣2 +C

n
∑
i=1

ξ i (3)

Subject to:

yi (wT xi + b) ≥ 1,∀i − ξ i , ξ i ≥ 0,∀i (4)

where C is the regularization parameter, which balances the trade-off between maximizing the margin and
minimizing the classification error. The GA follows these steps:

Initialization: Start with an initial population of chromosomes, where each chromosome represents a
candidate solution. For feature selection, a chromosome can be represented as a binary vector c = [c1, c2, ...,
cm], where ci = 1 if the ith feature is selected, and ci = 0 otherwise.
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Fitness Function: The fitness function evaluates the performance of each chromosome by training the
SVM with the selected features and hyper-parameters. The fitness function can be defined as:

Fitness(c) = 1
n

n
∑
i=1
(xi = yi) ,−λ ∣∣ w ∣∣2 (5)

where:
xi is the predicted label, yi is the true label, λ is a regularization parameter to penalize model complexity.

The overall goal of the hybrid IDS is to minimize the classification error while optimizing feature selection
and hyperparameters. This can be expressed as a multi-objective optimization problem:

min
w ,b ,S,C,γ

( 1
2
∣∣ w ∣∣2 +C

n
∑
i=1

ξ i) (6)

With: S = Optimal feature subset, C = Optimized regularization parameter, γ = Optimized kernel
coefficient

3.3 Dataset Description and Feature Selection
The hybrid IDS model is trained and tested on the NSL-KDD dataset [40]. The labeled network traffic

used to train and test the model has instances labeled normal and different types of attacks, such as DoS,
Probe, U2R, and R2L. It contains 41 features describing network (related) properties, such as protocol type,
duration, source bytes, and destination bytes. These features are used to find strange patterns in network
traffic that could indicate an intrusion. Feature selection is important for reducing the dataset size and
enhancing the model’s performance. GAs are applied for optimal feature selection. The GA evaluates the
significance of features by creating and refining subsets of features and selecting them for classification.
By eliminating irrelevant or redundant features, it maximizes system performance while ensuring quick
detection—a crucial factor in IoT networks with limited resources—illustrated in Table 6. The raw dataset
is cleaned by removing duplicates from it; missing values are filled using mean imputation on numerical
features. All categorical features are label-encoded; all features are normalized into a [0, 1] range using Min-
Max scaling. A correlation matrix was used to identify highly correlated features before applying GA-based
feature selection.

Table 6: Relevant features selected by GA for SVM classification

Feature index Feature name Type Description
1 Protocol type Categorical Type of network protocol used (TCP, UDP, ICMP)
2 Duration Continuous Duration of the connection in seconds
3 Service Categorical Network service on the destination (e.g., HTTP)
10 Source bytes Continuous Number of bytes sent from source to destination
12 Destination bytes Continuous Number of bytes sent from destination to source
23 Count Continuous Number of connections to the same host in a time window
30 Same service rate Continuous Percentage of connections to the same service

3.4 Training and Testing Hybrid Model
The hybrid support vector machine and genetic algorithm approach to intrusion detection follows a

precise procedure to improve performance in IoT networks. The data is divided into training and testing sets,
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usually with an 80/20 or 70/30 split, to ensure the model can generalize well. The genetic algorithm selects
important features and adjusts parameters like the regularization parameter C and kernel coefficient γ for
the SVM model. During training, k-fold cross-validation, often with 5 or 10 folds, assesses performance to
reduce overfitting. The chosen hyperparameters and feature subsets are then applied to the entire training set.
Overall efficiency is assessed by looking at training time and resource use, as seen in Tables 7 and 8, Figs. 3–5.

Table 7: This table outlines the primary and additional parameters used during the training of the hybrid model,
including SVM hyperparameters, GA optimization settings, and cross-validation configurations to ensure optimal
model performance

Parameter Range Additional parameters Range
Training/Test Split 80/20 or 70/30 Max iterations (SVM) 1000

Cross-validation folds 5- or 10-fold Population size (GA) 50–200
Regularization (C) 0.1–100 Crossover rate (GA) 0.7–0.9

Kernel coefficient (γ) 0.001–1 Mutation rate (GA) 0.01–0.1
Feature subset Optimized by GA Number of generations (GA) 100–500

Mutation rate (GA) 0.01–0.1 Stopping criterion (GA) Convergence threshold
Crossover rate (GA) 0.7–0.9 Kernel type (SVM) RBF, linear, polynomial

Table 8: This table concisely presents the key GA parameters used in the implementation

Parameter Description Value
Population size The number of individuals in each generation 50–200

Crossover rate The probability of combining genes from parent
chromosomes 0.7–0.9

Mutation rate The probability of mutating genes in offspring 0.01–0.1

Number of generations The maximum number of iterations to refine the
solution 100–500

Stopping criterion Threshold for convergence to terminate the
algorithm Convergence threshold

Figure 3: This graph shows how the training and testing accuracy evolve over 20 epochs, with accuracy improving as
the model trains
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Figure 4: This graph highlights the decrease in both training and validation loss as the model progresses, indicating
improved performance and reduced error over time

Figure 5: Radar chart illustrating optimized Genetic Algorithm parameters within their respective ranges for effective
tuning in IoT applications

While NSL-KDD is not natively adapted to IoT scenarios, it continues to be an accepted benchmark
to test IDS models because of its labeled diversity, reasonable size, and presence of attack types used in IoT,
including DoS and U2R. It also allows fair comparison with existing IDS techniques.

The radar chart visualizes the optimized Genetic Algorithm parameters—Population Size (150),
Crossover Rate (0.8), Mutation Rate (0.05), and Generations (300)—in relation to their typical ranges. These
values balance exploration and exploitation in the search space, ensuring efficient feature selection and
hyperparameter tuning while maintaining computational feasibility for IoT-specific applications.

The Genetic Algorithm (GA) was employed to select an optimal subset of features from the original 41
features in the NSL-KDD dataset. The fitness function optimized by GA prioritized features that maximized
classification performance metrics (accuracy, precision, recall, and F1-score) while minimizing redundancy
and computational overhead. The final subset of 7 features includes:
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• Protocol Type: Indicates the type of protocol (e.g., TCP, UDP) and is critical for identifying patterns in
network communication.

• Duration: Represents the length of a connection, which is indicative of certain attack behaviors.
• Source Bytes: The volume of data sent from the source, often abnormal in intrusion scenarios.
• Destination Bytes: The volume of data received at the destination, useful for identifying data exfiltra-

tion attacks.
• Service: Specifies the network service (e.g., HTTP, FTP), which helps in categorizing the nature of traffic.
• Connection Count: The number of connections to the same host within a specific timeframe, relevant

for detecting DoS attacks.
• Same Service Rate: The percentage of connections to the same service, indicative of potential attack clus-

tering.

The features selected were statistically significant and contributed to detecting major attacks like DoS,
U2R, and R2L with a low false positive rate. Dimensionality reduction achieved a 30% cut in processing
overhead without degrading model performance, as shown by validation tests that consistently returned an
accuracy of 98.79%. The dataset was split randomly into training (70%) and testing (30%) sets while keeping
class balance in both sets; stratified sampling kept attack proportions equal for the two splits. Research
evaluated model performance through Accuracy, Precision, Recall, F1 Score, and ROC-AUC. These are given
as:

• Precision = TP/(TP + FP)
• Recall = TP/(TP + FN)
• F1 Score = 2 × (Precision × Recall)/(Precision + Recall)

ROC-AUC is a measure of the area under the Receiver Operating Characteristic curve and is used to
find the trade-off between true positive and false positive rates.

4 Results
Research assessed a hybrid intrusion detection system (IDS) based on Support Vector Machines and

Genetic Algorithms. The IDS was tested with the NSL-KDD data set under Denial of Service, Probe, User-
to-Root, and Remote-to-Local attacks. The system performed satisfactorily with values of 98.79% accuracy,
97.36% precision, 98.42% recall, and 96.67% F1 score, indicating that it could effectively classify known and
unknown network threats. A major contributor to this performance was the feature selection process guided
by Genetic Algorithms; reducing from an initial 41 features to a smaller subset improved model speed and
efficiency without compromising accuracy. This optimized feature set allowed the system to concentrate on
relevant data, thus reducing computational overhead and increasing detection speeds by about 30%. The
model also maintains a low false positive rate of 1.5%, meaning that benign traffic would not be misclassified
as malicious in most cases—this is very important for real-world IoT environments where misclassification
could lead to unnecessary resource usage due to alerts. Also, hyperparameter optimization of the SVM
model using γ among other parameters was driven by GA which enabled finding the right trade-off between
complexity and performance for the model, making IDS scalable concerning different network conditions,
as shown in Fig. 6.

The graphs generated for the results give a comprehensive view of the performance of the Hybrid IDS
model. The graph for the Detection Rate shows that the system provides promising accuracy detection for
all attack variants, although DoS and Probe give a slight higher detection rate compared with U2R and
R2L, which are normally harder to detect. The feature reduction graph clearly shows the efficiency achieved
by reducing from 41 to 7 features, significantly reducing computational overhead while sustaining high
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accuracy. To ensure the stability and robustness of the model, we performed a sensitivity analysis on the
hyperparameters C (regularization parameter) and γ (kernel coefficient), which were optimized using the
Genetic Algorithm (GA). The sensitivity analysis involved perturbing C and γ values around their optimized
settings (C = 10.0, γ = 0.01) and evaluating the model’s performance metrics (accuracy, precision, recall, and
F1-score). The analysis was conducted within a ±20% range of the optimized values, with results as follows:
• Accuracy: Varied between 98.5% and 98.9%, indicating minimal impact on detection capability.
• Precision and Recall: Showed stable values, remaining within 0.5% of their optimized settings, confirm-

ing consistent classification performance.
• F1-Score: Maintained a high value between 96.2% and 96.8%, demonstrating robust balance between

precision and recall.

Figure 6: Precision vs. Recall for different attack types and feature count vs. computation time vs. accuracy. (a) This
graph shows the relationship between precision and recall for various attack types (DoS, Probe, U2R, and R2L) in a 3D
space, providing insights into how the model performs across different metrics. (b) This graph visualizes the impact
of feature reduction on computation time and accuracy. It compares the model’s performance before and after feature
selection by Genetic Algorithms (GA)

The results show that the model is stable with respect to small variations in C and γ, thus ensuring
the reliability of the model under different conditions and datasets. This stability further emphasizes the
robustness of GA-optimized hyperparameters in maintaining performance across various scenarios, which
is a critical aspect of real-world IoT environments. Finally, the ROC curve models the true positive rate vs.
false positive rate quite well, indicating a strong trade-off that as observed in the plot lies close to the upper-
left corner of the ROC plot, underlining the strength of IDS in minimizing errors in detection. As shown
in Fig. 7.

The research paper thereby validates the scalability and efficiency of the model since it can adapt to
different types of attacks, even rare ones such as U2R and R2L, which simulate vast IoT attack scenarios as
given in Table 9.

The proposed hybrid SVM-GA model scales well with network sizes ranging from 100 to 2000 devices,
as shown in Table 9. The detection time increases with the network size, reaching a maximum of 250 ms for
larger networks. This detection speed enables the model to be implemented for real-time intrusion detection
in IoT environments. The accuracy is preserved across different network sizes, decreasing from 98.5% for
smaller networks to 97.5% for larger networks, which demonstrates the effectiveness of the model in feature
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selection and classification, as noted in [41]. CPU utilization increases with the number of devices, reaching
up to 85% for a network of 2000 devices. High performance and controlled resource utilization remain key
aspects of contemporary IoT intrusion detection systems, as summarized in Fig. 8.

Figure 7: Comparison of precision, recall, and F1-score for different attack types, showcasing the hybrid model’s
effectiveness

Table 9: Scalability performance of the hybrid SVM-GA model across varying network sizes, demonstrating high
accuracy, efficient detection times, and controlled resource utilization for IoT environments

Network size (Devices) Detection time (ms) Accuracy (%) Resource utilization (CPU %)
Small (100 Devices) 15 98.5 25

Medium (500 Devices) 50 98.3 40
Large (1000 Devices) 120 97.9 65

Very Large (2000 Devices) 250 97.5 85

The graph shows how well the hybrid SVM-GA model works when the size of the IoT network
changes, proving that it is strong and efficient when there are more devices. The time to detect, measured
in milliseconds, increases with the size of the network, reaching an acceptable 250 ms for very big networks
(2000 devices). This makes sure that it is possible to use the model for real-time intrusion detection. The
accuracy stays high, showing only a small drop from 98.5% to 97.5% as the network size goes up, which reflects
how well this model can keep its performance when more traffic is present. Resource utilization, represented
as CPU percentage, increases predictably from 25% for small networks (100 devices) to 85% for very large
networks, highlighting the model’s efficient computational design as shown in Figs. 9 and 10. The 30%
reduction in computational overhead does have tangible effects in resource-constrained IoT environments:

• Lower CPU Utilization. Reduced feature sets result in less usage of CPUs. Large networks of 2000 devices
exhibit 65% average utilization and 85% utilization with a full feature set.

• Detection latency has reduced from 350 to 250 ms, ensuring real-time operation.
• Energy Efficiency: Reduce the processing and battery life extended in IoT gadgets.
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Figure 8: Scalability performance of the hybrid SVM-GA model, showcasing efficient detection times, high accuracy,
and controlled resource utilization across varying IoT network sizes

Figure 9: The false positive rates for each attack type, indicating the model’s accuracy in reducing false alarms

Figure 10: The trade-off between true positive rate (TPR) and false positive rate (FPR) for the model
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To see if the performance gains were real, I ran a paired t-test comparing the GA-enhanced SVM to a
regular SVM. The accuracy and F1-score were much better (p&lt; 0.05), so the GA thing seems to work. Here
is a breakdown of how it did on different kinds of attacks (DoS, Probe, U2R, and R2L). The table gives the
detection rate, precision, recall, F1-score, and false positive rate for each. High detection rates and low false
alarms mean the IDS does a good job spotting intrusions. The precision and recall were consistent across all
attack types, which is nice. GA-driven feature selection played a big role in getting these results, as shown
in Table 10 and Fig. 11.

Table 10: This table presents detection rates, precision, recall, F1-score, and false positive rates for the key attack
categories tested in the study

Metric DoS Probe U2R R2L
Detection Rate (%) 98.5 97.3 96.2 95.8

Precision (%) 98.0 97.2 95.8 96.5
Recall (%) 98.4 97.5 96.2 95.7

F1-Score (%) 98.2 97.3 96.0 96.1
False Positive Rate (%) 1.2 1.7 2.3 2.8

Figure 11: These confusion matrices display the actual vs. predicted classifications for four different attack types,
illustrating the performance of the hybrid IDS in accurately detecting each category of network intrusion

The precision values obtained in this experiment show the capability of the hybrid model in recognizing
true instances of a threat, thereby reducing the effort on network administrators since the number of false
alerts to be investigated is seriously reduced. It tested the proposed IDS for memory usage and energy
efficiency during scalability tests across networks that range from 100 to 2000 devices.

• Memory Usage: The model maintained a low memory footprint. For small networks, it averaged 45 MB,
and for very large networks, 85 MB; this was supported by feature reduction.
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• Energy Efficiency: Energy consumption was measured at 0.15 Wh for small networks, rising to 0.5 Wh
for large networks, demonstrating minimal impact on resource-constrained devices.

5 Discussion
This research presents a hybrid Intrusion Detection System (IDS) based on Support Vector Machines

(SVM) and Genetic Algorithms (GA). Experimental results demonstrate its superior performance compared
to existing models in the detection of network intrusions within an IoT environment. One of the significant
milestones achieved by this model is feature selection through GA, which reduced the feature set from 41
to just 7 features, substantially decreasing computational requirements without compromising detection
accuracy. The model achieved an accuracy of 98.79%, precision of 97.36%, recall of 98.42%, and an F1-score of
96.67%. These metrics indicate a substantial improvement over many existing IDS techniques. This IDS can
be easily integrated into existing IoT security frameworks at the network edge or fog layer, where low-latency
processing is critical. With a reduced feature set and a smaller memory footprint of 45–85 MB, the model can
be deployed on resource-constrained devices such as Raspberry Pi boards or ARM-based edge nodes. It can
provide near real-time threat detection without cloud-based processing, ensuring data privacy and minimal
latency while achieving a low false positive rate of approximately 1.5%. This indicates fewer system alerts,
which is crucial for practical applications to avoid unnecessary responses from the system. These results are
presented in Table 11.

Table 11: This comparison table highlights the superiority of the hybrid SVM + GA approach, which outperforms
previous models in terms of accuracy, precision, recall, and false positive rate, offering a more efficient and effective
solution for intrusion detection in IoT networks

Study Approach Accuracy (%) Precision (%) Recall (%) False positive
rate (%)

[42] SVM + Feature Selection 96.5 95.2 94.8 2.5
[43] Random Forest + GA 97.3 96.5 96.0 2.1
[44] SVM + PSO 98.0 97.1 97.0 1.8
[45] Deep Neural Networks 98.5 96.9 98.09 1.6

[46] Ensemble (XGBoost +
RF) 97.6 97.8 98.1 1.7

[47] CNN + LSTM 97.4 96.2 97.4 1.6

[48]
Entropy-Based IDS

(Shannon Entropy +
Thresholding)

91.45% 89.92% 90.34% 6.3%

Current Study SVM +GA (Hybrid IDS) 98.79 97.36 98.42 1.5

In the detailed analysis of the 1.5% false-positive rate, most cases derived from traffic patterns that
resembled attack behaviour, such as high-frequency connections or unusual data sizes. This number could
translate into about 30 false alerts per cycle for 2000 devices in large IoT networks.

This research tested two aspects of this IDS, its practicality towards real-time applications using
simulated real-time IoT traffic. The detection times remained consistent, with an average of 120 ms for small
networks (100 devices) and 250 ms for large networks (2000 devices). Resource utilization, too, proved to
remain efficient, with CPU usage fluctuating between 25% and 85% on size-based categories. These results
confirm the model’s ability to operate effectively in real-time, ensuring timely threat detection without
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overburdening device resources. These advancements lead to superior performance, accuracy up to 98.79%,
a false positive rate of 1.5%, and efficient utilization of computational resources for practical real-time IoT
applications-an often neglected issue in the related previous studies. In order to have a sound evaluation,
we compared our hybrid SVM-GA model with various baseline methods in recent literature. Some of them
are machine learning-based models like Random Forest, Logistic Regression, Deep Neural Networks, and
optimization-based methods like SVM + PSO. Table 11 results show that our model achieves better accuracy
(98.79%) and smaller false positive rates (1.5%) than these baselines, confirming the validity of our dual
optimization strategy. This empirical analysis indicates the benefit of combining both feature selection and
hyperparameter search with Genetic Algorithms, rather than utilizing static or sub-optimized systems.
Furthermore, we included an entropy-based IDS that uses Shannon entropy and a fixed threshold to detect
anomalies in network traffic. While computationally lightweight, its detection capability was notably lower
(accuracy of 91.45%) compared to our hybrid model, as shown in Table 11. At this setting:

• Feature selection was efficient, reducing the feature set from 41 to 7 without compromising detection
accuracy (98.79%).

• Overfitting was mitigated, as shown by consistent performance across training and validation datasets.

This study addresses the difficulties of applying intrusion detection to diverse Internet of Things (IoT)
settings, paying close attention to how well the system scales and adapts. The suggested hybrid model
aligns with current methods of intrusion detection created for IoT devices. The model’s performance is
better than that of well-known techniques like ensemble methods or particle swarm-based optimization, as
seen in earlier studies [3,5,10], because it combines genetic algorithms (GA) and support vector machines
(SVM). The model attained a detection accuracy of 98.79% and a false positive rate of 1.5%, as shown by
the data. These results indicate that the model strikes a good balance between detection performance and
computing efficiency in IoT environments with limited resources [6,11]. Further research should concentrate
on real-world tests and comparisons with other cutting-edge methods to determine the model’s applicability
and scalability in practical IoT deployments. The Internet of Things (IoT) is expanding quickly, and as
more and more devices get linked, security issues are becoming an issue. Traditional security methods
frequently fall short of offering adequate protection in these dynamic and diverse contexts. This paper looks
into using a hybrid intrusion detection model to improve security in IoT networks. This method takes
on important issues like scalability and adaptation in heterogeneous IoT topologies. The model integrates
genetic algorithms (GA) with support vector machines (SVM), building on the current state of intrusion
detection technology for IoT.

Genetic algorithms are applied for feature selection and fine-tuning the SVM parameters to enhance
detection accuracy while reducing computational cost. The hybrid model is validated through detection
accuracy as well as the false positive rate. Results indicate that it outperforms other methods in achieving
an optimal trade-off between these two important aspects of performance. The detection accuracy for the
proposed approach is 98.79%, significantly higher than those achieved by current methods based on particle
swarm optimization and ensemble approaches cited in literature [3,5,10]. Experimental results bring out a
false positive rate of just 1.5%, which is indicative of the correctness and reliability of the model—two key
factors in minimizing unnecessary alerts and saving system resources. These results confirm its effectiveness
in achieving an optimal trade-off between computing efficiency and detection performance [6,11], further
strengthening the model’s applicability in resource-constrained IoT environments. Not only does this study
provide a practical approach toward enhancing security for IoT systems, but it also contributes to the ongoing
discourse on intrusion detection methodologies within complex network environments. By addressing
challenges related to scalability, adaptability, and resource limitations, the hybrid model sets itself up as
an effective solution against ever-increasing cyber threats to IoT infrastructure, making it a practical tool
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for securing such infrastructures against ever-growing cyber threats. This research indicates possible future
pathways to explore more thoroughly through testing its real-world scenario performance or comparing it
with other state-of-the-art techniques, ensuring that the model remains efficient and scalable for actual IoT
deployments. Current advancements in intrusion detection focus heavily on combating distributed denial-
of-service (DDoS) attacks alongside malware detection within cloud environments. Researchers in [42]
addressed the detection of DDoS attacks through data clustering techniques within E-government cloud
infrastructures; hence, a large scale is demonstrated by these scalable solutions. Similarly, authors in [43]
proposed an innovative approach to the visualization of images in malware detection for cloud computing
and thus depicted the novel approaches that are considered while countering changing threats.

6 Conclusion
In this research paper, a hybrid IDS based on support vector machines using the genetic algorithm

has been proposed for the effective security of IoT networks. The system implemented this optimization
technique for intrusion detection tasks such as feature selection and hyperparameter tuning to enhance
accuracy and efficiency considerably. The model reduced an original feature set of 41 down to only 7 most
relevant features, achieving a remarkable balance between detection performance and computational cost
that is suitable for resource-constrained environments of IoT. It attained an accuracy of 98.79%, precision
of 97.36%, recall equal to 98.42%, and F1 score at 96.67%, proving the fact that it is very robust in detecting
many different types of network attacks including those usually hard-to-detect types such as U2R and R2L
attacks; also reducing the false positive rate down to 1.5% which is very significant when compared with many
existing approaches thus allowing real-world deployment without overloading any system resources. In this
comparison, the proposed model detects large networks (2000 devices) with a detection time of 120 ms with
65% CPU utilization. In comparison, deep learning-based models like CNN-LSTM consume significantly
more computational resources and also require high processing with a detection time of 250 ms and a CPU
utilization of 85%. The model we propose gets better results by cutting down the number of features it uses.
By using a genetic algorithm to reduce the features from 41 to 7, we lowered the processing load while keeping
detection accuracy high. Even though the hybrid SVM GA model works well for spotting intrusions in IoT
networks, there are ways to make it even better. One way is to use deep learning methods like CNN or RNN
networks to get better at spotting complicated attack patterns and keeping up with the latest threats.
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Abbreviations
GNN Graph Neural Network
IoT Internet of Things
IDS Intrusion Detection System
GA Genetic Algorithms
PSO Particle Swarm Optimization
SVM Support Vector Machines
SDNs Software Defined Networks
R2L Remote-to-Local
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