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ABSTRACT: Recently, Internet of Things (IoT) has been increasingly integrated into the automotive sector, enabling
the development of diverse applications such as the Internet of Vehicles (IoV) and intelligent connected vehicles.
Leveraging IoV technologies, operational data from core vehicle components can be collected and analyzed to construct
fault diagnosis models, thereby enhancing vehicle safety. However, automakers often struggle to acquire sufficient fault
data to support effective model training. To address this challenge, a robust and efficient federated learning method
(REFL) is constructed for machinery fault diagnosis in collaborative IoV, which can organize multiple companies
to collaboratively develop a comprehensive fault diagnosis model while keeping their data locally. In the REFL, the
gradient-based adversary algorithm is first introduced to the fault diagnosis field to enhance the deep learning model
robustness. Moreover, the adaptive gradient processing process is designed to improve the model training speed and
ensure the model accuracy under unbalance data scenarios. The proposed REFL is evaluated on non-independent and
identically distributed (non-IID) real-world machinery fault dataset. Experiment results demonstrate that the REFL
can achieve better performance than traditional learning methods and are promising for real industrial fault diagnosis.

KEYWORDS: Federated learning; adversary algorithm; Internet of Vehicles (IoV); fault diagnosis

1 Introduction
Fault diagnosis plays a crucial role in modern vehicles, which can improve vehicle safety and reduce

maintenance costs [1–3]. Various complex machinery and equipment are used in modern vehicles, whose
faults are more difficult to diagnose. Studies on fault diagnosis in the literature can generally be classified
into several categories, as discussed in [4,5]. The model-based method calculates the difference between the
predicted value of the mathematical physics model and the monitor value to diagnose faults. While these
methods can depict the process dynamics mathematically, the mathematical physics model for complex
machinery is hard to establish. By contrast, data-driven fault diagnosis methods directly use historical data.
The Internet of Vehicles (IoV) [6–8] facilitates the collection and analysis of unprecedented volumes of data,
thereby paving the way for the advancement of intelligent methods. Recently, DL-based diagnostic methods
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have been much more popular in many devices, including electrical motors, diesel engines, gearboxes,
etc. [9–12].

Although DL-based fault diagnosis methods achieve excellent performance in many case studies, the
model accuracy may drop when the model is applied to real environments. That is because the training data
is difficult to cover the whole dynamic situation. Hence, researchers usually require collecting a large amount
of data to train a high-performance model. Due to the high capital cost, it is difficult for a single vehicle
manufacturer to obtain sufficient data to develop a high-performance DL-based fault diagnosis model, which
hinders the DL application in the field.

In general, multiple manufacturers often equip their products with identical or similar core devices.
For instance, numerous vehicle models across different brands adopt the same type of engine, enabling
unified monitoring and data aggregation for these engines. Hence, to expand the dataset at lower costs, a
straightforward method called centralized learning (CL) is to aggregate the local monitored data of different
companies. In this method, a centralized server uses the aggregated data to develop the diagnostic model and
enhance the model’s performance. However, vehicle manufacturers are reluctant to share their proprietary
data with others due to potential business competition concerns.

Federated Learning (FL) [13] serves as a promising method to the aforementioned issues by harnessing
the local data resources of distributed participants to build a powerful DL-based model collaboratively.
As presented in Fig. 1, multiple participants perform model training using their proprietary local data and
transmit their updated models. The server aggregates the upload data of the different participants to update
the global model. Only model parameters can be transmitted, and data resources are safely stored locally.
To improve the FL efficiency, some studies [14,15] used momentum terms to accelerate model convergence
speed to reduce resource costs. Most accelerating federated learning studies assumed that the data of the
participants are independent and identically distributed (IID). However, in the practical fault diagnosis
scenarios, the machines at different factories/companies often work under different conditions. These
monitored data are subject to different distributions, which may result in model performance degradation
when the FL system uses the second-order momentum term to accelerate model training speed. Moreover,
the operation mechanisms of DL models are not yet available. Some studies demonstrate that the input data
with noise (such as Gaussian noise) may cause the fault diagnosis model to perform poorly [16,17].

In this study, a robust and efficient federated learning approach is proposed for machinery fault
diagnosis in collaborative AIoT. The primary contributions made by this study are summarized as follows:

1) FL for machinery fault diagnosis is studied in this article, which is seldom studied in the current
literature. Different vehicle manufacturers can collaboratively develop a global fault diagnosis model without
transferring their data to external parties.

2) To the best of our knowledge, the gradient-based adversarial algorithm is first introduced to the fault
diagnosis field. The adversarial algorithm generates a lot of adversarial samples at low computation costs for
enhancing the fault diagnosis model robustness to resist external noises.

3) To accelerate model convergence speed and resist the unbalanced data scenarios in federated learning
tasks, we proposed a local model updating scheme based on Adam optimization method.

The rest of this article is structured as follows. Section 2 presents the related works. The preliminaries
are introduced in Section 3. Section 4 presents the REFL method for machine machinery fault diagnosis in
detail and experimentally evaluates the method in Section 5. Section 6 discusses the proposed method by
comparing it to similar studies. Finally, Section 7 concludes this study. The notation definitions of this paper
are listed in Table 1.
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Figure 1: Illustration of the FL system

Table 1: Notation definitions

Notation Definition
N The industrial participant number
bk The mini-batch size of the participant k
Dk The local data of the participant k
L() The empirical loss function

glocal, k The local model gradients of the participant k
gglobal The global model gradients

wlocal, k The local model weights of the participant k
x; y The sample; the label
x′; ε The adversary samples; multiplier to ensure the perturbations are small

ρ The proportion of data used to make adversary samples
η; β1; β2 Learning rate; first-order momentum rate; second-order momentum rate

2 Related Work
Deep neural network models can directly extract deep-level features from raw monitoring signals,

facilitating the design of end-to-end fault diagnosis methods that take raw monitoring signals as inputs
and output fault diagnosis results. The emergence of deep learning significantly reduces the difficulty of
building fault diagnosis models for practical tasks. Many studies [18–20] directly adopted the vibration and
acoustic signals to diagnose mechanical device health conditions. Khorram et al. [18] designed an end-to-
end diagnostic algorithm using deep learning neural networks, which directly uses accelerometer signals as
model inputs. Ben Abid et al. [20] proposed the intelligent induction motor fault diagnosis method called
deep-SincNet that can automatically extract fault features from the raw motor current.

As mentioned in the above section, current DL-based fault diagnosis methods significantly suffer from
insufficient data. FL, as a promoting collaborative learning method, has been adopted in the fault diagnosis
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field. Zhang et al. [21] designed an efficient federated framework for rolling bearing fault diagnosis and
utilized the first-order momentum term to improve model training speed. Li et al. [22] proposed a stacking
model for diagnosing permanent magnet synchronous motors and used federated learning to train the
model for overcoming data islanding. Zhang et al. [23] designed a federated transfer learning approach for
machinery diagnostics. While these FL-based studies can alleviate the data island issue, they did not address
the need to enhance the model robustness.

To improve the diagnostic performance of models in real-world industrial scenarios, the robustness
of deep learning (DL) models has garnered significant attention. Numerous studies have shown that DL
models are susceptible to attacks from noise-contaminated samples. Most existing studies employ generative
models such as generative adversarial networks or adversarial training to enhance robustness. Ren et al. [24]
proposed a Few-shot GAN that avoids the overfitting problem encountered when training GANs with
very few samples. Wang et al. [25] presented a robust fault diagnosis framework based on an improved
domain-adversarial neural network integrated with multi-module fusion, which enhances the robustness
of the model. Wang et al. [26] proposed a traceable multi-domain collaborative generative adversarial
network, aiming to improve the performance of fault diagnosis models on imbalanced data. Wang et al. [27]
proposed a novel method to enhance the robustness of fault diagnosis models for high-speed trains. However,
such methods based on generative adversarial networks require substantial computational resources when
generating adversarial samples. Some gradient-based adversary algorithms are proposed, which can generate
a lot of adversary samples for model training at low computation costs. The gradient-based adversarial
methods have demonstrated significant effectiveness in enhancing model robustness across domains such as
images and text. Consequently, this study pioneers the application of gradient-based adversarial algorithms
in the field of fault diagnosis to enhance the fault diagnosis model robustness.

3 Preliminaries

3.1 FL
FL is adopted to solve the machine fault diagnosis task in this article. We consider a standard model of

FL in which several participants cooperatively train a deep learning model, which consists of a cloud server
S and multiple distributed participants. The participants connect with the server via secure communication
channels to protect the integrity and security of the uploaded ciphertext.

1) Cloud server S: The core task of the server is to aggregate the model parameters uploaded
by participants to update the global model parameters, and then broadcast the updated parameters to
all participants.

2) ParticipantsP: Each participantPK (k = 1, . . ., N) stores a replica of the global model parameters and
holds its local private data Dk. The participant trains the local model on its private data and then encrypts the
local model parameters before uploading it to the server. After receiving the global model parameters from
the server, a new round of training is carried out. This process is repeated until a satisfactory convergence
criterion is obtained. FL’s objective is to find local optimal weights w that simultaneously minimize the
expected experience loss on all participants’ data:

min∑N
i=1 Li ( f (x; wglobal) , y) (1)

where L represents the loss function of PK , respectively.
The assumptions for federated learning are as follows:
1) Multiple industrial participants hold the data of the same/similar machines for collaboratively training

a fault diagnosis model.
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2) The participants have different data distributions due to varying operating conditions.
3) The cloud server and participants are assumed as honest which is commonly used in the FL field.

That means that they will rigorously follow the designed protocols. The data resources of each participant
cannot be accessed by others.

3.2 Gradient-Based Adversary Algorithm
Szegedy [28] first defined adversarial samples as malicious inputs produced from legitimate samples by

adding small perturbations to deep neural classification models into misclassifying. Literature indicated that
gradient-based adversary algorithms (e.g., [29,30]) can quickly produce adversarial samples, which fool the
deployed deep neural model successfully. As a famous gradient-based adversary algorithm, FGSM proposed
by Goodfellow et al. [30] can fast generate adversarial examples utilizing model gradient information.
Inspired by the above literature, this study uses the algorithm to generate adversary samples to enhance the
model robustness. As shown in Fig. 2, an attacker adds small perturbations to the original images, which
results in model misclassification. The process of adding these perturbations involves six steps in this order:

1. Taking a training sample
2. Making predictions on the sample with a trained deep-learning model
3. Computing the loss value of the prediction result based on the true class label
4. Computing the model gradients for the input sample
5. Calculating the sign of the model gradients
6. Using the signed gradients to generate the adversarial samples as x′ = x + ε ⋅ sign (∇x J (w, x, y)).

3.3 Paillier Homomorphic Encryption
This paper selects the Paillier homomorphic encryption algorithm, which is briefly described as:
1) Key Generation: Key Generation generates the public key pk(n,g), secret key sk(λ) and sends them to

all clients.
2) Encryption: Each edge encrypts the plaintext m using the public key pk(n,g) by

E (wlocal,k) = gw ⋅ rnmod n2 (2)

3) Aggregation: The server collects the uploaded model parameters of all clients and performs global
model update as follows:

E (wglobal) =∏
N
k=1 E (wlocal,k)αk , αk = (Dk) /∑

N
i=1 Di (3)

4) Decryption: Each clients decrypts E(wglobal) using the private key sk(λ) by

wglobal =
L (E (wglobal)

λ modn2)
L (gλmodn2) mod n (4)
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Figure 2: The visualization process of the adversary samples

4 Method

4.1 Overview
Fig. 3 presents the overview of the REFL, which mainly includes three stages: initialization, federated

training, and model evaluation (Algorithm 1).

Figure 3: (Continued)
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Figure 3: Overview of the REFL for machinery fault diagnosis

Algorithm 1: Robust and efficient federated learning
Input: Dk, training parameters, e.g., η, b, ρ and Epoch.
Output: The global fault diagnosis model
Initialization:

1 a). Secure data transmission channels for the server and each
2 participant are established;
3 b). All the modules of the system are initialized
4 Federated training:
5 For e ≤ Epoch do
6 (I). Local training at the participants:
7 for k ≤ N do //distributed training
8 xk, yk ← Dataloader(b, Dk)//load training samples
9 x′k ← FSGM(xk, yk, ρ)//generate adversary samples
10 glocal,k ← SGD(model(wlocal,k, x′k),yk)//calculate gradients
11 PK upload glocal,k to the server
12 end
13 (II). Parameter aggregation at the server:
14 Receive glocal,k from the participants;
15 Aggregate model parameters as shown in Eq. (5);
16 Send gglobalto all participants;
17 (III). Local model updating at the participants:
18 for k ≤ N do//distributed computing
19 load the global model gglobal
20 PK calculates the momentum terms
21 PK updates the local model weights

(Continued)
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Algorithm 1 (continued)
22 end
23 end
24 Evaluation:
25 All participants use their local data to evaluate the model
26 return Fault diagnosis model

1) Initialization stage: A representative industrial company is selected to initialize the intelligent model
and training parameters, including the learning rate, and momentum rate. The initialized fault diagnosis
model and training parameters are then broadcast to the other industrial participants.

(2) Federated training: In each training round, the local model gradients calculated by the participant
are sent to the server, which then aggregates these parameters to update the global gradients. The participant
downloads the updated global gradients from the cloud server, and updates the local model according to
the optimization algorithm for the next local model training. Through multiple iterations with adversarial
learning, the participants’ local model can learn other participants’ knowledge.

(3) Model evaluation: After finishing the federated training process, the participant evaluates the local
fault diagnosis model on its testing dataset to confirm that the model reaches satisfactory performance.

4.2 Initialization Stage
First, the secure data transmission channels are established for the cloud server and the participants.

Then, all modules of the REFL system are initialized. Recall that in this study, different participants use the
same structure model and training parameters.

4.3 Local Model Training at the Participant
After initialization, local model training at the participant starts to train the fault diagnosis model

with the gradient-based adversarial algorithm. First, each participant uses FSGM to generate adversarial
samples with adversary rate ρ, which injects noise into the percentage ρ of the local training samples (detailed
in Section 3.2). Then, SGD optimizer is used to calculate the gradients of the local fault diagnosis model.
Thereafter, each participant uploads its model parameters glocal,k to the cloud server.

4.4 Parameter Aggregation at the Server
The server recursively aggregates local gradients to derive the global gradients of the fault diagnosis

model, and their expression is as follows:

gglobal = ∑
N
k=1 (αk ⋅ glocal,k) (5)

where gglobal denotes the global gradients of the fault diagnosis model, and αk denotes data contribution
ratios calculated by αk = bk/b.

4.5 Local Model Updating at the Participant
Upon receiving the global model parameters gglobal, the participant k loads the global model parameters

to its local fault diagnosis model.
Much literature [31–33] has demonstrated that the Adam optimization algorithm is efficient when

working with large problems involving a lot of model parameters. Intuitively, Adam hasthe advantages of the
momentum gradient algorithm and the root mean square propagation algorithm. However, Sun et al. [34]
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demonstrated that the Adam optimization algorithm is used directly by the participant in the FL system
to update its local model, which would degrade the model performance, empirically in imbalance data
distribution scenarios. In this study, to accelerate the model convergence speed and avoid performance
degradation, we modify the local model updating process. Its core idea is that the participant uses the global
gradients to update its model, not its local gradients, as shown in Fig. 4. This design not only essentially
resolves the influence of unbalanced data distribution scenarios but also conforms to subsequent privacy
preserving algorithms.

Figure 4: Comparison of our proposed scheme and the traditional scheme

The process of the local model training is expressed as follows:
(1) After receiving the global model gradients from the server, the participant computes momentum

terms as

m (t) = β1 ∗m (t − 1) + (1 − β1) ∗ gglobal (t) (6)

v (t) = β2 ∗ v (t − 1) + (1 − β2) ∗ g2
global (t) (7)

m̂ (t) =m (t) / (1 − β t
1 ) (8)

v̂ (t) = v (t) / (1 − βt
2) (9)

(2) The participant uses the above momentum terms to update the local model weights as

wlocal = wlocal − η ⋅ (m̂ (t) / (
√

v̂ (t) + ε)) (10)

Since the improved algorithm does not change the essence of the Adam algorithm, the convergence
analysis of the algorithm in this paper is specifically introduced as follows [35]. Consider the objective
function in the context of federated learning, where the goal is to minimize the expected risk. Assuming
the objective function is convex loss with bounded gradients, ∥∇L (θt)∥2 ≤ G, ∥∇Lt (θ)∥∞ ≤ G∞ for all θ,
and distance between any θt generated by Adam is bounded. ∥θn − θm∥2 ≤ D, ∥θn − θm∥∞ ≤ D∞ for any m,
n ∈ {1, ..., T}. We define γ ≜ β2

1 /
√

β2 and β1,t = β1 λt−1. The values of parameters β1 and β2 fall within the
range [0, 1], satisfying β2

1 /
√

β2 < 1.
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It is worth noting that all participants have the same model weights since they use the same gradients to
update their local models. Through the model updating process, the FL can accelerate the model convergence
rate while avoiding performance loss. In addition, the local model updating scheme can be extended to other
optimization algorithms according to task requirements.

5 Experimental Study

5.1 Fault Diagnosis Task
The Case Western Reserve University (CWRU) rolling bearing fault dataset has been utilized in multiple

studies to evaluate the performance of diagnostic methods [36–39]. Hence, this paper also uses the fault
dataset to evaluate the proposed REFL. As shown in Fig. 5, the experimental setup includes a motor, a torque
transducer/encoder, a dynamometer, and auxiliary systems. The test bearings include three fault modes: ball
fault, inner race fault and outer race fault. Each fault mode has three fault depths: 7, 14 and 21 mils. The
information of CWRU fault dataset is listed in Table 2.

Figure 5: Experimental setup of CWRU fault diagnosis dataset

Table 2: CWRU fault dataset information

Label Fault mode Depth Load (HP)
B007 Ball 7 mils 0, 1, 2
B014 Ball 14 mils 0, 1, 2
B021 Ball 21 mils 0, 1, 2

IR007 Inner race 7 mils 0, 1, 2
IR014 Inner race 14 mils 0, 1, 2
IR021 Inner race 21 mils 0, 1, 2

OR007 Outer race 7 mils 0, 1, 2
OR014 Outer race 14 mils 0, 1, 2
OR021 Outer race 21 mils 0, 1, 2

N0 Normal 0 0, 1, 2

Referring to these papers [21,40], the same data processing methods are adopted in this paper, whose
detailed introduction is as follows:
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(1) Data normalization: To enhance the convergence rate and precision, the raw data are normalized as

xi = (xi −Mean (x)) /
√

Var (x) (11)

(2) Data segmentation: Instead of the fixed interval sliding window, the random sliding window is
adopted to produce samples, as shown in Fig. 6.

Figure 6: Random sliding window

(3) Data reconstruction: According to the input channels of the fault diagnosis model, one-dimension
time-series samples are reconstructed into two-dimensional samples as presented in Fig. 7.

Figure 7: Data reconstruction process

Through the above preprocessing, the raw data are transformed into training samples for the fault
diagnosis model. In real industrial scenarios, companies and factories often hold data in different modes. In
this paper, the fault dataset is split into non-IID datasets for the FL system, which indicates that a participant
holds only one mode of fault data. Therefore, the non-IID scenario is very suitable to verify the proposed
fault detection method. The fault data is divided for the participants in the FL system.

5.2 Experimental Setting
1) Environment: Intel CPU i7-7700HQ, RAM 16 GB and NVIDIA 1070. The FL system is implemented

by PyTorch 1.9.0 and CUDA 11.1.
2) Referring to prior studies, the specific deep learning model architecture is shown in Fig. 8.
3) We set epoch to 30, b to 32, η to 0.001, β1 to 0.9, β2 to 0.999, ρ to 0.4 and N to 5.
4) Metrics: Accuracy, precision, recall and F1-score serve as evaluation metrics to assess the diagnos-

tic performance.
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Figure 8: The architecture of the CNN-based fault detection model

5.3 Case 1
In this case, different learning approaches are implemented to demonstrate the superiority of the REFL,

which are presented as follows:
1) CL: Centralized learning is used for comparisons, where aggregates all participants’ local data for

model training. Specifically, for the CL, the mini-batch size is set to 5 × 32.
2) MFL: Momentum federated learning uses the first-order momentum term to accelerate the model

training process [27].
3) FL-Adam: In the FL-Adam system, the participant uses the Adam optimization algorithm to update

their local model.
MFL and FL-Adam set the same training parameters as the REFL. Fig. 9 presents the training curves

of different learning approaches, while Table 3 lists their diagnostic outcomes. From the accuracy and loss
curves, Adam effectively accelerates convergence. Although the FL-Adam can improve training speed, its
performance remains inferior to the CL and our proposed REFL. That is because the data distribution of
the FL system is unbalanced. As Table 3 listed, REFL has better diagnostic competence compared with the
FL-Adam and MFL. Through the above experiment results, it proves that the REFL can effectively improve
the training speed while maintaining model accuracy.

Figure 9: Training curves of the different learning approaches
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Table 3: Experiment results of different methods on CWRU fault dataset

Method Accuracy Precision Recall F1-score
CL 98.87% 98.92% 98.87% 98.85%

FL-Adam 98.40% 98.46% 98.40% 98.37%
MFL 87.53% 87.82% 87.53% 86.08%
REFL 98.73% 98.78% 98.73% 98.71%

5.4 Case 2
In this case, to showcase the advantages of our proposed model, we add Gaussian noise with different

levels to the testing datasets. The distributions of gaussian noises are set to (μ = 0, σ = 0.05), (μ = 0,
σ = 0.1) and (μ = 0, σ = 0.2), respectively. The EFL approach consists of the FL and the proposed model
updating scheme. SVM, CL and EFL are used to compare with the REFL. The diagnosis results of the
different learning approaches on CWRU dataset with gaussian noise are listed in Table 4. Figs. 10 and 11
show the confusion matrixes and F1-Score of the different learning approaches on Testing-Gaussian (0, 0.2)
dataset, respectively. It is evident that REFL significantly outperforms other methods. The fault diagnosis
model trained by the REFL can effectively resist the negative effects of Gaussian noise, especially in Testing-
Gaussian (0, 0.2) dataset. Therefore, our method can effectively resist external noise interferences by utilizing
adversary samples.

Table 4: Diagnosis results of different learning approaches on CWRU fault dataset with Gaussian noise

Method Testing Testing-Gaussian
(0, 0.05)

Testing-Gaussian
(0, 0.1)

Testing-Gaussian
(0, 0.2)

SVM 82.23% 82.23% 82.20% 61.40%
CL 98.87% 98.87% 98.47% 87.00%
EFL 98.80% 98.67% 98.13% 80.73%

REFL 98.73% 98.67% 98.47% 95.00%

Figure 10: (Continued)
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Figure 10: Diagnostical matrixes of the different learning approaches on Testing-Gaussian (0, 0.2) dataset

Figure 11: Different method F1-Score values on Testing-Gaussian (0, 0.2) dataset

5.5 Case 3
In this case, we assess the influence of the rate ρ on the REFL performance and present experimental

results in Fig. 12 and Table 5. When the adversary range rate ρ rises from 0.2 to 0.6, the fault diagnosis
performance of the REFL drops from 99.27% to 98.93%, but the resisting noise performance of the model is
improved. Therefore, how to set ρ will be further investigated in the future.

Figure 12: Training experiment curves of the REFL with different ρ
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Table 5: Diagnosis results of the REFL with different ρ

Method Testing Testing-Gaussian
(0, 0.05)

Testing-Gaussian
(0, 0.1)

Testing-Gaussian
(0, 0.2)

REFL (ρ = 0.2) 99.27% 99.27% 98.87% 87.13%
REFL (ρ = 0.3) 99.00% 98.93% 98.60% 88.60%
REFL (ρ = 0.4) 99.20% 99.13% 99.07% 88.93%
REFL (ρ = 0.5) 98.80% 98.73% 98.73% 91.00%
REFL (ρ = 0.6) 98.93% 98.73% 98.60% 94.80%

5.6 Case 4
In this case, we assess the influence of the rate ε on the REFL performance and present experimental

results in Fig. 13 and Table 6. When ε rises from 0.05 to 0.2, the fault diagnosis performance of the REFL
drops from 99.27% to 98.87%, but the resisting noise performance of the model is improved. Therefore, how
to set ε will be further investigated in the future.

Figure 13: Training curves of the REFL with different ε

Table 6: Diagnosis results of the REFL with different ε

Method Testing Testing-Gaussian
(0, 0.05)

Testing-Gaussian
(0, 0.1)

Testing-Gaussian
(0, 0.2)

REFL (ε = 0.05) 99.27% 99.27% 98.93% 86.27%
REFL (ε = 0.1) 99.20% 99.13% 99.07% 88.93%

REFL (ε = 0.15) 98.53% 98.53% 97.80% 92.40%
REFL (ε = 0.2) 98.87% 98.67% 97.47% 87.00%

6 Discussion

6.1 Comparison to Similar Studies
Traditional DL-based fault diagnosis methods require a lot of training samples in practical scenarios. To

solve this issue, several recent similar studies also use federated learning to develop fault diagnosis methods
with different participants. However, they do not consider protecting the data information of the industrial
participants. Moreover, these prior works do not consider enhancing the robustness of the fault diagnosis
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methods. To improve the system efficiency, we modify the Adam algorithm for the FL paradigm to accelerate
convergence speed while ensuring model accuracy under unbalance data scenarios. Considering the noise
in the operation environment, the gradient-based adversary algorithm is introduced to boost the model
robustness. Our proposed fault diagnosis method is verified through experimental cases in Section 5. The
advantages of the REFL are as follows.

First, a federated learning framework is used to build the REFL for the machinery fault diagnosis. The
structure of the REFL is inspired by this study. The Paillier encryption scheme is used to encrypt the gradients
of the participants to preserve their local data information. Therefore, our proposed method can organize
distributed participants to collaboratively build the fault diagnosis model.

Second, the REFL utilizes the first-order and second-order momentum terms to accelerate the con-
vergence speed while ensuring model accuracy under unbalanced data scenarios, which can improve the
operating costs of the FL system.

Third, the gradient-based adversary algorithm is adopted in the proposed method. The adversary
algorithm can generate a lot of adversary samples at low resource costs. The model with adversary training
has applicable diagnostic performance to resist the interference of noise.

6.2 Time of Training and Testing
An excellent fault diagnosis method requires accurate diagnosis and fast diagnosis speed. DL-based fault

diagnosis methods require model training and then are applied to online diagnosis. Table 7 lists the training
and testing times for REFL and SVM. By utilizing a GPU, the local model training time of the participant is
faster than that of the SVM. However, the total consummation time of the REFL is still larger than that of
SVM. As prior literature demonstrated, the training time does not need to be focused. The main concern is
the testing time. From the table, our model testing time is approximately 0.20 s, which can be acceptable for
online diagnostic tasks.

Table 7: Training and testing time of the REFL and SVM

Method Training (s) Testing (s)
REFL 13.63 0.20
SVM 18.92 8.79

7 Conclusions
This paper investigates federated learning methods in the field of machine fault diagnosis. Multiple

companies can efficiently collaborate to build robust deep learning-based models while protecting their data
resources. Considering the FL and industrial requirements, the operation steps of the Adam algorithm are
modified to accelerate the model convergence speed and alleviate model performance degradation under
unbalance data scenarios. Moreover, the gradient-based adversarial algorithm is first introduced to the
fault diagnosis field, enhancing the model robustness against external noise. Four cases are conducted for
validation, which demonstrates that the proposed method achieves outstanding performance. In the future,
we plan to deploy and evaluate REFL in a truly distributed, multi-company setting to assess its performance
and scalability within a live IoV ecosystem. Additionally, we will conduct systematic sensitivity analyses and
develop dynamic adaptive strategies for the adversarial training parameters, aiming to automate the balance
between model accuracy and robustness under varying operational conditions.
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