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ABSTRACT: The Pigeon-Inspired Optimization (PIO) algorithm constitutes a metaheuristic method derived from the
homing behaviour of pigeons. Initially formulated for three-dimensional path planning in unmanned aerial vehicles
(UAVs), the algorithm has attracted considerable academic and industrial interest owing to its effective balance between
exploration and exploitation, coupled with advantages in real-time performance and robustness. Nevertheless, as
applications have diversified, limitations in convergence precision and a tendency toward premature convergence have
become increasingly evident, highlighting a need for improvement. This review systematically outlines the developmen-
tal trajectory of the PIO algorithm, with a particular focus on its core applications in UAV navigation, multi-objective
formulations, and a spectrum of variant models that have emerged in recent years. It offers a structured analysis of the
foundational principles underlying the PIO. It conducts a comparative assessment of various performance-enhanced
versions, including hybrid models that integrate mechanisms from other optimization paradigms. Additionally, the
strengths and weaknesses of distinct PIO variants are critically examined from multiple perspectives, including intrinsic
algorithmic characteristics, suitability for specific application scenarios, objective function design, and the rigor of the
statistical evaluation methodologies employed in empirical studies. Finally, this paper identifies principal challenges
within current PIO research and proposes several prospective research directions. Future work should focus on
mitigating premature convergence by refining the two-phase search structure and adjusting the exponential decrease
of individual numbers during the landmark operator. Enhancing parameter adaptation strategies, potentially using
reinforcement learning for dynamic tuning, and advancing theoretical analyses on convergence and complexity are also
critical. Further applications should be explored in constrained path planning, Neural Architecture Search (NAS), and
other real-world multi-objective problems. For Multi-objective PIO (MPIO), key improvements include controlling the
growth of the external archive and designing more effective selection mechanisms to maintain convergence efficiency.
These efforts are expected to strengthen both the theoretical foundation and practical versatility of PIO and its variants.

KEYWORDS: Pigeon-inspired optimization; metaheuristic algorithm; algorithm variants; swarm intelligence; variants;
UAVs; convergence analysis

1 Introduction
Optimization, as a core method in the field of engineering, enhances efficiency, reduces costs, and

improves performance under constraint conditions through systematic adjustment of parameters, resources,
or strategies [1]. Since the proposal of Newton’s method in the 17th century, traditional optimization methods
have evolved over centuries, evolving from the initial basic theory of calculus into a systematic mathematical
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tool encompassing linear programming, dynamic programming, etc., and have been widely applied with the
advancement of computer technology in the 20th century.

Modern engineering scenarios (such as smart grid scheduling [2] and autonomous driving decision-
making [3]) often involve high-dimensional, strongly nonlinear problems with dynamic constraints, posing
fundamental challenges to the traditional optimization methods that relies on deterministic models [4–7].
This challenge is evident throughout the history of methodological evolution from Newton’s method [8]
to gradient-based approaches [9], this kind of traditional algorithms are limited by strict differentiability
assumptions. These methods struggle to address the triple complexity of real-world problems, which are
the non-convexity in chemical multi-steady-state optimization, the non-differentiability in mechanical
topology optimization, and the multi-objective conflicts in supply chain games. This inherent limitation
motivates the exploration of gradient-free approaches. Breakthroughs in bionic intelligence offer a new
alternative approach by simulating the behavior of biological groups (such as bird flock collaborative obstacle
avoidance [10] and ant colony optimization [11]), swarm intelligence (SI) algorithms achieve a dynamic
balance between global exploration and local exploitation in complex solution spaces.

SI, originating from the imitation of various biological behaviors and phenomena [12–14], offers a new
approach to optimization problems by simulating the interactions and collaborations within a group. Unlike
traditional optimization algorithms, SI provides a new perspective for solving practical problems without
needing gradient information, by evaluating objective function values [15,16]. Compared to traditional
optimization algorithms, SI algorithms offer several advantages for modern, complex industrial optimiza-
tion problems, including simplicity, a small number of tunable parameters, and ease of implementation
[17–19]. Table 1 presents the comparative results across the following dimensions, which include global
search capability, differentiability requirement, parallelism, flexibility in handling constraints, and applicable
problem complexity.

Table 1: Difference between traditional optimization methods and SI algorithms

Features Traditional algorithms SI algorithms
Global search capability Weak (Gradient locality) Strong (Group diversity)

Differentiability
requirement Required Not dependent

Parallelism Serial calculation Natural parallelism
Constraint handling

flexibility
Dependent on penalty

functions Direct encoding

Applicable problem
complexity

Smooth gradient
problems, convex

High-dimensional/non-convex/
discrete problems

Table 1 illustrates that the traditional methods are suitable for small-scale, convex optimization sce-
narios with high real-time requirements, relying on precise models and gradient information. In contrast,
the SI algorithms illustrate outstanding performance in black-box optimization, multi-objective prob-
lems, and joint optimization of structure and parameters in industrial optimization, such as UAV path
planning [20–22], Neural Networks [23], Image Segmentation [24], and Workshop Scheduling Problem.
Furthermore, Fig. 1 clearly outlines the key developmental trajectory.

Fig. 1 indicates that some SI algorithms were primarily proposed between 1992 and 2017, which are
Particle Swarm Optimization (PSO) [25], Ant Colony Optimization (ACO) [26,27], Bacterial Foraging Algo-
rithm [28], Artificial Fish Swarm Algorithm [29], Firefly Algorithm [30], Cuckoo Search Algorithm [31–33],
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Artificial Bee Colony (ABC) [34], Grey Wolf Algorithm [35], Pigeon-inspired optimization (PIO) [36], and
Beetle Antennae Search Algorithm [37]. Notably, SI originated from the Genetic Algorithm (GA) proposed
in 1975 [38]. An extensive comparison of some classical SI algorithms is presented in Table 2, covering five
aspects: bionic basis, parameter complexity, search strategy, applicable problem types, and main advantages.

Figure 1: Development history of SI algorithms

Table 2: Differences between PIO and several classical swarm intelligence algorithms

Bionic
basis

Parameter
complexity Search strategy Applicable

problem type Main advantages

GA Natural
selection

Medium
(Crossover rate,
mutation rate)

Random search &
selection

Multimodal
optimization

Strong global
search capability

ACO Ant path High (Pheromone
evaporation factor)

Positive feedback
path optimization

Discrete
Combination

Strong path
optimization

capability

PSO Bird Flock
Foraging

Medium (Inertia
weight,

acceleration
constants)

Global pursuit of
optimum

Continuous/
Discrete

Fast convergence,
easy

implementation

ABC Bee pollen
collection

Medium (Role
division

parameters)

Division of Labor
Collaboration

Continuous
optimization

Good diversity
maintenance

PIO
Pigeon
homing
behavior

Medium
(Map & compass
factor, landmark

factor)

Two-phase search
(Map & Compass,

Landmark)

Continuous
optimization

Fast convergence,
good stability

Based on Table 2 and the accompanying text, PSO has achieved widespread adoption due to its
effective balance of conceptual simplicity, rapid convergence, and ease of implementation [39,40]. This
combination enables efficient solutions across diverse continuous and discrete problems. Its foundation
in bird flock foraging behavior translates into a straightforward global pursuit strategy with manageable
parameter complexity (inertia weight, acceleration constants), facilitating both theoretical analysis and
practical deployment [41,42]. This success establishes PSO as a foundational SI algorithm whose core
principles continue to inspire new developments.
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Given its success in establishing PSO as a foundational SI algorithm, Duan and Qiao [36] was inspired
to propose the PIO in 2014 based on pigeon homing behavior [43]. PIO not only inherits the simplicity
and efficiency of swarm intelligence algorithms but also demonstrates strong competitiveness in time-
critical missions such as UAV control and air combat decision-making, owing to its two core advantages:
rapid convergence and strong robustness [44]. Building on this foundation, researchers have continuously
expanded and deepened the PIO. Qiu and Duan [45] proposed the Multi-Objective PIO (MPIO) algorithm
in 2015. A series of improved PIO and MPIO s has been successfully applied to numerous emerging
fields, including distributed obstacle clustering for UAVs [46], cooperative path planning for multi-UAV
systems [47], and longitudinal parameter tuning for UAV automatic landing systems [48]. As applications
deepen, research focus has gradually shifted from practical validation to rigorous analysis of theoretical
properties such as algorithm convergence. Zhang et al. [49] rigorously proved the global convergence of
PIO in continuous space optimization using the martingale method, while Qiu and Duan [45] conducted
convergence analysis of MPIO operators upon its proposal, demonstrating convergence within feasible
parameter ranges. Supported by extensive engineering applications and increasingly refined theoretical
analyses, the PIO system has been studied more profoundly and broadly.

According to the “No Free Lunch” theorem [50], no single algorithm can outperform others across all
possible problems. Given this fundamental constraint, researchers have developed various PIO variants to
overcome its limitations and tailor it to different optimization scenarios. Some variants focus on optimizing
algorithm parameters for enhanced adaptability and efficiency, while others explore hybrid approaches that
combine PIO with other metaheuristic algorithms to complement their strengths. Given the rapid prolif-
eration of these algorithmic innovations, a structured framework becomes imperative to comprehensively
evaluate their theoretical contributions and practical impacts. To reveal the development trace of PIO,
a comprehensive and systematic review is implemented, which is organized by five formulated research
questions in this paper by exploring key aspects of PIO from multiple perspectives. These questions aim to
define the scope and focus of the research, investigate variants of PIO and their challenges, and summarize
the strengths and weaknesses of existing studies to guide future research. Table 3 lists these core questions,
serving as the research framework for this literature review.

Table 3: Research questions discussed and analyzed in this paper

No. Description Answer
Q1. What is the data collection strategy? Section 2
Q2. What is the basic principle of PIO and MPIO, and what are its parameters? Section 3
Q3. What are the modifications of PIO and MPIO, respectively? Section 4

Q4. In terms of application, in which specific domains of UAVs have PIO and MPIO
been implemented, and how are they associated with objective functions? Section 5

Q5. What are the potential future research directions, improvement areas, and
application fields for PIO, MPIO, and their variants? Section 6

To address the research questions presented in Table 1, the remainder of this paper is structured as
follows: Section 2 provides a detailed introduction to our research methodology and the strategies for litera-
ture collection. Section 3 delves into key concepts, offering readers a foundational understanding. Section 4
conducts an in-depth analysis of PIO and MPIO variants and thoroughly examines the literature. Section 5
analyzes the application of PIO and MPIO to drones. Section 6 synthesizes the findings of this review and
emphasizes the future development directions of PIO and MPIO.
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2 Methodology and Data Collection
By analyzing the literature related to the PIO, we have clarified the key themes and scope of discussion

and identified subtasks of research value to address Question 1. Subsequently, a coherent literature collection
strategy was formulated to determine the core literature that needed to be analyzed, answering Question 3.
The research method of this review is shown in Fig. 2.

The framework is divided into three main phases: methodology design (Section 2), data analysis and
research question resolution (Sections 4 and 5), and conclusion synthesis (Section 6). The research begins
with defining the core questions and search strategy, then systematically retrieving target databases and
screening relevant studies based on predefined criteria. Subsequently, quantitative/qualitative analysis and
an in-depth exploration of topological properties (or domain-specific characteristics) are conducted. Finally,
the results are synthesized to address the research questions and summarize theoretical contributions
and practical implications. The process follows a linear progression with phased integration, ensuring
methodological rigor and logical coherence throughout the study.

Figure 2: Research framework of this manuscript

To enhance methodological rigour and mitigate potential research bias, this section details the literature
review protocol, following the framework outlined in reference [51]. The protocol comprises the key
components of search strategies, paper selection criteria, and associated methodologies.

A. Search strategy for the primary study.
Six scientific databases were carefully selected as the main resources for comprehensive exploration,

with detailed information shown in Table 4. The search terms are described as follows: (1) PIO, (2) PIO
variants, (3) improved PIO, (4) PIO parameter improvement, (5) hybrid PIO, (6) adaptive PIO, (7) binary
PIO, (8) practical applications of PIO, (9) theoretical applications of PIO, (10) PIO review.
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Table 4: Resource of reviewed articles

Scientific source Uniform resource location
ACM https://dl.acm.org
IEEE https://ieeexplore.ieee.org

SCOPUS https://www.scopus.com
Science Direct http://www.sciencedirect.com

Springer https://www.springer.com
Wiley Online Library https://onlinelibrary.wiley.com

B. Paper selection criteria.
In dealing with the extensive corpus of research on PIO, this paper adopted targeted selection criteria,

adhering to the methodological guidelines described in references [52–54]. This literature review conducted
searches across six databases or publishers: ACM, IEEE, SCOPUS, Science Direct, Springer, Wiley Online
Library and Web of Science, focusing on comprehensive search keywords. The publication year range was set
from 2019 to 2025, including both conference papers and journal articles. From the preliminary search, a large
number of research papers were identified. The distribution of papers within the databases is summarized
in Table 5.

Table 5: Distribution of papers in resources with given search terms

Search terms ACM SCOPUS IEEE Science direct Springer Wiley online
library

Web of
science

PIO 248 1152 616 4713 3091 1913 6978
PIO variant 175 15 6 621 291 1322 173

Improved PIO 210 179 74 2971 227 991 1204
PIO parameter
improvement 148 16 5 1145 392 602 82

Hybrid PIO 91 47 25 759 593 177 153
Adaptive PIO 147 64 23 1441 503 62 111
Binary PIO 106 11 6 464 370 211 55
Real-world

applications of PIO 212 2 0 372 394 174 23

Theoretical
applications of PIO 127 6 3 649 322 118 36

Review of PIO 150 88 0 3003 264 103 1046

Following the aforementioned search, it was found that there is a sufficient number of PIO articles
to support the writing of a literature review, hence papers were selected from SCOPUS for the literature
review based on the following criteria. The quality of the papers was assessed based on the title, abstract,
introduction, experiments and results as delineated in Table 6.

To explore the research domains related to PIO, this paper conducted further analysis using VOSviewer
and obtained a keyword co-occurrence network of PIO, as shown in Fig. 3. The correlation shown in Fig. 3
indicates that the PIO is most closely related to Unmanned Aerial Vehicles (UAVs) across numerous

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.scopus.com
http://www.sciencedirect.com
https://www.springer.com
https://onlinelibrary.wiley.com
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application domains. This intimacy suggests that PIO holds significant value and extensive potential for
application in the field of UAVs. The complexity of UAV systems and their reliance on efficient algorithms
provide a typical and challenging application scenario for PIO. Therefore, this paper will focus on UAV
applications as the core and delve into the practical applications of the PIO in areas such as path planning,
task allocation, and swarm cooperative control. It will analyze its advantages, characteristics, and directions
for improvement in solving UAV-related optimization problems. Through this focused discussion, not only
can the application potential of the PIO be revealed, but it can also provide references and lessons for research
in related fields.

Table 6: Assessment criteria

Assessment indicators Inclusion criteria Exclusion criteria

Title

Exemplary keywords, including PIO, PIO
variant, improved PIO, PIO parameter

improvement, hybrid PIO, adaptive PIO,
binary PIO, applications of PIO, and review

of PIO

Keywords not provided

Abstract
Discusses the background of the study, the

problem, the proposed methodology, and the
assessment with clear logic

Abstract lacks strong logic

Introduction Highlights literature review, research
methodology and research findings

Lack of proper discussion of
literature review, methodology

and contributions

Experiment The experiment can demonstrate the
effectiveness of the proposed approach

Lack of properly designed
experiments

Result Results have efficient evaluation criteria
Lack of proper discussion of

literature review, methodology
and contributions

Figure 3: Relationship display of PIO keywords in VOSviewer
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As a novel bio-inspired algorithm with sustained evolutionary potential, Figs. 4 and 5 reveal the dynamic
characteristics of PIO research through publication growth trends and domain distribution mapping in
the SCOPUS database. Statistical data indicate that although a foundational review in 2019 established the
research framework, the subsequent years (2020–present) have witnessed an annual publication growth rate
of 37.2% (as shown in Fig. 4).

Figure 4: Proportion of publication categories in recent years

Figure 5: Number of publications in recent years

Additionally, the application domains have expanded from traditional path planning to emerging
interdisciplinary fields such as UAV swarm control and medical image processing (as depicted in Fig. 5).
This sustained research momentum not only demonstrates the extensibility of the PIO methodology but also
highlights under explored academic spaces within its theoretical framework. Building on this foundation,
this study constructs an analytical framework targeting the latest literature from 2019 to 2025, systematically
examining theoretical innovation trajectories and providing a detailed analysis and discussion of the
innovations, developmental trajectories, and application cases in these studies.
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The main contributions of this review paper are as follows:
A thorough and critical examination of PIO and its variants has been conducted. This review identifies

the inherent limitations of current PIO variants and offers insightful suggestions for addressing these
shortcomings. Moreover, the paper provides clear guidance, outlining the fundamental steps required to
develop robust new PIO variants. Given the significant importance of PIO in the field of artificial intelligence,
this paper attempts to provide an exhaustive review of its applications. This comprehensive approach ensures
a sound and detailed understanding of the development, progress, and multifaceted applications of PIO
across various disciplines.

Statistical analysis of PIO literature reveals only one relevant systematic review [55]. This review
summarizes PIO-related work before 2019 from four aspects: components, operations, structures, and
application extensions. However, he only described these studies based on the methods used to improve
them. In contrast, this paper systematically reviews PIO-related work from 2019 to 2025, categorizing
the research into single-objective and multi-objective sections. It connects the characteristics of PIO with
unmanned aerial vehicles and distinguishes them based on improvement objectives, methods, and objective
functions. Therefore, by reading this paper, readers can gain a more intuitive and in-depth understanding of
the development of PIO.

3 Basic Concepts of PIO, MPIO and UAVs
This section introduces the core concepts of this paper, including the definition of the PIO, the definition

of the MPIO, and the definitions related to drones. These discussions are directly related to Question 2.
The PIO, by simulating the homing behavior of pigeons, abstracts two core operators: the Map and

Compass Operator and the Landmark Operator. The former enables long-distance navigation based on the
Earth’s magnetic field and the position of the sun, while the latter relies on visual landmarks for precise local
positioning. Together, they efficiently balance global exploration and local exploitation in the search space.
Its phased search mechanism and dynamic population adjustment strategy endow PIO with outstanding
efficiency and robustness in continuous optimization problems.

3.1 Basic PIO
3.1.1 Fundamentals of PIO

PIO’s basic principle is based on the simulation of the speed and position update equation from the
homing behavior of pigeons. This behavior is divided into two parts: the map operator, the compass operator,
and the landmark operator. Pigeons are assigned two vector velocities V and positions X. When initializing
the flock, these two vectors are initialized as v0 = [vi1 , vi2, vi3, . . . , vid im] , x0 = [xi1 , xi2, xi3, . . . , xid im]
where i = 1, 2, 3, . . . , N , where i = 1, 2, 3, . . . , N . Fig. 6 presents the flowchart of the PIO and the process of
algorithm iteration.

In the calculation process of the map and compass operator, the pigeon flock will be updated strictly
according to the following Eqs. (1) and (2):

vt
i = vt−1

i e−Rt + rand(xb est − xt−1
i ) (1)

xt
i = xt−1

i + vt
i (2)

Among them, t refers to the current number of iterations; R represents the map and compass operator
ranging from 0 to 1; rand is a random number between 0 and 1; means the best individual in the pigeon flock



10 Comput Mater Contin. 2026;87(1):5

during the current iteration; when t reaches the maximum number of iterations of the map and compass
operator, the PIO will enter the landmark operator phase.

Figure 6: Algorithm iteration process

After the above iterations, the algorithm sorts the fitness values of the pigeons. Only half of the
pigeons with the highest fitness values will be retained in the next iteration. This retention mechanism will
be carried out in every generation. In this round of iteration, the PIO will be updated according to the
following Eqs. (3)–(5):

xt−1
c = ∑

N t−1

i=1 xt−1
i ⋅ f (xt−1

i )
N t−1∑N t−1

i=1 f (xt−1
i )

(3)

N t = N t−1

2
(4)

xt
i = xt−1

i + rand ⋅ (xt−1
c − xt−1

i ) (5)

where xc, is the center point that the pigeon flock is searching for; f is the fitness value of the pigeon; N
represents the number of pigeons performing the landmark operator iteration each time. Depending on the
requirements of the problem to be solved, it can be divided into maximization and minimization problems,
as shown below:

f (xt−1
i ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
f (xt−1

i ) + ε
The problem of finding the minimum value.

f (xt−1
i )The problem of finding the maximum value.

(6)

As with the first phase, the landmark operator stops iterating when the maximum number of iterations
is reached, and the algorithm ceases to work.

3.1.2 Main Components
The inspiration of PIO is realized through the following main components. In the PIO, the map and

compass factor is a key parameter that directly influences the convergence speed of the PIO. Typically, its
value ranges between [0, 1]; the larger the R, the fewer iterations the algorithm will perform. Additionally,
there is a parameter Rand that scales the step size for global optimal exploration to prevent the pigeons from
bypassing the optimal point during the optimization process. T1 is the number of iterations for the PIO to
enter the landmark operator exploration. When the number of explorations by the map and compass factor
reaches T1, PIO will switch to the landmark operator for convergence and local exploration. At this stage, the
pigeon flock rapidly converges towards the central individual. The termination condition is the total number
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of iterations of the pigeon flock, which is the sum of the exploration counts in both phases. Table 7 represents
the components of PIO.

Table 7: Main components of PIO

Main components Represents the meaning
N Number of pigeons

Rand A random number between 0 and 1
R A fixed value between 0 and 1
T1 The number of iterations in the first phase
T Maximum number of iterations

3.1.3 Mathematical Modeling
PIO starts with the initialization of key parameters, including population size, maximum number of

iterations, and other related factors such as R, T1, T, and N. Subsequently, the position and velocity of each
pigeon individual in the flock are randomly assigned, and the fitness value of each pigeon individual is
evaluated. The pigeon individual with the best fitness value is selected as xbest , and all individuals are iterated
according to Eq. (1), continuously searching for the optimal solution globally. When the number of iterations
reaches the maximum number T1 for the map and compass operator, the PIO will switch to the landmark
operator. At this point, the individuals are sorted based on their fitness values, and only the top half with
the highest fitness values are retained for center position calculation. All pigeons iterate according to Eq. (5),
continuously converging towards the center position of the pigeon flock, as shown in Fig. 7. When the
number of iterations reaches the maximum number T, the algorithm will terminate and output the optimal
solution. The main steps of the algorithm can be summarized as follows:

i. Define the problem and initialize parameter values

The optimization of the problem mainly aims to find its maximum or minimum value. when the
problem appears in the form of finding the minimum value, the objective function will take the following
form:

{ min f (x)
s.t.xi ∈ Xi , i = 1, 2, 3, . . . , N (7)

where f (x) is the objective function, x is the solution vector composed of decision variables (x =
1, 2, 3, . . . , N), and x consists of decision variables x1, x2, . . ., xN .

In the initialization process of PIO, each parameter is initialized to its respective value. This includes the
population size N, the maximum number of iterations T, the number of iterations for the Map and Compass
operator T1, and the Map and Compass factor R.

ii. Initialize the population

Generate an initial population of N pigeons, each pigeon containing N dimensions corresponding
to the dimensions of the target problem. Then, initialize the position and velocity for each pigeon,
v0 = [vi1 , vi2, vi3, . . . , vid im] and x0 = [xi1 , xi2, xi3, . . . , xid im].
iii. Update positions

All pigeons in the population update their positions and velocities according to Eq. (1), and when the
number of iterations reaches T1, they switch to using Eq. (5) for position and velocity updates.
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Figure 7: PIO flowchart

iv. Check the termination condition of the algorithm

During each iteration, a determination is made whether the maximum number of iterations T has been
reached; if not, the algorithm will continue to proceed according to the above steps until the termination
number is reached.

3.2 Basic MPIO
Before introducing MPIO, it is necessary to understand the concepts of multi-objective optimization

and the Pareto principle. When solving multi-objective problems (MOP), general approaches include
decomposition-based multi-objective algorithms, such as MOEA\D [56], or Pareto-based sorting multi-
objective optimization algorithms, such as NSGA-II [57]. The MPIO introduced in this paper is a
Pareto-based sorting MOP, which incorporates the Pareto sorting mechanism to enable the basic PIO to
solve MOP. The Pareto solutions obtained through MPIO are the strategies required for the problem.
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3.2.1 Multi-Objective Optimization
In MOP, due to multiple conflicting objectives, it is usually impossible to find a solution optimal for all

objectives [58,59]. Therefore, the goal is to find solutions that lie on the Pareto front, meaning they are as
good as possible across all objectives, and no other solutions are better in at least one objective. Assuming
the mathematical definition of the MOP minimization problem is as shown in Eq. (8):

minF(x) = min[ f1(x), f2(x), . . . , fM(x)] (8)

where M represents the number of objective functions, and x is the solution vector or decision variable.
The core task of MOP is to seek a set of non-dominated solutions with good diversity and convergence.
Furthermore, if x dominates y or y is superior to x, then a decision variable x is called strictly dominated,
and the other decision variable y can be expressed as x < y, as shown in Eq. (9):

∀i∶ fi(x) ≤ fi(y)and∃ j∶ f j(x) ≤ f j(y), i , j ∈ 1, 2, 3, . . . , M (9)

In MOP, when a solution is not dominated by any other solution, it can achieve the Pareto optimal
solution.

3.2.2 Pareto Optimality
Pareto optimality is an important concept in MOP problems. It first evaluates each solution based on

multiple criteria and then provides a subset of solutions that satisfy the Pareto optimality conditions. The
resulting subset is the optimal solution that the algorithm seeks. The following is the definition of the Pareto
optimal solution set.

If there is no decision vector in the feasible region that can dominate a certain specific decision vector,
then that decision vector is called a Pareto optimal solution or non-dominated solution. The definition of a
Pareto optimal solution or non-dominated solution is as follows:

PS∗ = {x∗ ∈ X∣¬∃x ∈ X , x ≻ x∗} (10)

Pareto optimality refers to a situation in MOP where it is impossible to improve any objective without
making at least one other objective worse. For an optimization problem with m objective functions, all Pareto
optimal solutions are mapped as points in an m-dimensional space, depending on the values of the objective
functions. The region composed of these points is called the Pareto Optimal Frontier (POF), and its definition
is as follows:

PF∗ = {F(x∗) = [ f1(x∗), f2(x∗), . . . , fn(x∗)]T ∣x∗ ∈ PS∗} (11)

In the process of multi-objective problem solving, non-dominated solutions are classified as Pareto rank
1, which is the required Pareto front. Subsequently, the solutions that are dominated are classified as rank 2,
3, ..., n. As shown in the Fig. 8.

In Fig. 8, the blue area represents Rank 1, which consists of the non-dominated solutions obtained
through the solving process. The red area indicates the solutions dominated by Rank 1. Generally, the goal
of solving such problems is to get the set of Rank 1 solutions.
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Figure 8: Pareto rank sorting diagram

3.2.3 Fundamentals of MPIO
Zhang et al. [59] proposed the MPIO. To simplify the problem, they combined the map-compass

operator with the landmark operator by setting an integration parameter λ. The new implementation can be
expressed as follows:

vi(t) = vi(t − 1) ⋅ e−R×t + rand1 ⋅ tr ⋅ (1 − l g t
T) ⋅ (xgbest − xt−1

i )
+ rand2 ⋅ tr ⋅ l g t

T ⋅ (xt−1
c − xt−1

i ) (12)
xi(t) = xi(t − 1) + vi(t) (13)

xt−1
c =

∑nx
1

j=1 Sx
1 j

nx
1

(14)

where T is the maximum number of iterations. As the number of iterations increases, the pigeons tend to
favor xc rather than xgbest . Sx

1 j represents the solution obtained in each non-dominated sorting.
To integrate the map-compass operator and the landmark operator, a regulation parameter tr is

introduced. This parameter has a significant impact on the performance of the MPIO. As pointed out in
literature [45], the value of tr can adjust the balance between diversity and convergence of the algorithm.
When the value of tr is low, the algorithm focuses more on the map and compass operator, which helps
to increase the diversity of the population. Conversely, when tr increases, the con vergence ability of the
landmark operator is enhanced, which helps the algorithm to approach the optimal solutions more quickly.

3.2.4 Main Components
Table 8 presents the main parameters of MPIO, which directly affect the optimization process of MPIO.
The MPIO primarily consists of the following components, as shown in Table 8, The inspiration for

MPIO is realized through the following main components. N is the number of individuals at the start of the
iteration. Unlike PIO, a transition factor tr (0 < tr < 1) is introduced to merge the two phases into one. The
parameter represents the number of pigeons eliminated in each iteration, and during the algorithm’s iteration
process, are weeded out to reduce some unnecessary exploration in the later stages. The external set A is the
collection that preserves the non-dominated solution set and also serves as the source for the selection of
xcenter and xgbest .
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Table 8: Main components of MPIO

Main components Represents the meaning
N Number of pigeons

Nd ec The number of pigeons eliminated in each iteration
R A fixed value between 0 and 1
tr A fixed value between 0 and 1
A The set of non-dominated solutions

3.2.5 Mathematical Modeling
The MPIO begins by initializing parameters and setting the position and velocity of all pigeons. Then,

it evaluates the positions of the pigeons using the Pareto ranking scheme and stores the non-dominated
solutions into the external archive set A. Subsequently, the centroid position is determined from the external
set xcenter , and a pigeon is randomly selected as the xgbest . All pigeons are updated iteratively according
to the Eq. (12), and the non-dominated solutions are continued to be stored in set A, while the external
archive set A is Pareto-ranked, retaining only the non-dominated solutions, as shown in Fig. 9. This process
is repeated until the algorithm terminates, and the resulting Pareto front is outputted MPIO:
i. Define the problem and initialize parameter values

In the solution of MOP, when solving for the minimum value, the objective function is set as follows:

minF(x) = min[ f1(x), f2(x), . . . , fM(x)] (15)

In the initialization process of MPIO, each parameter is initialized to its respective value. This includes
the population size N, the maximum number of iterations T, the map and compass factor R, the transition
factor tr, and the number of pigeons Nd ec reduced in each iteration.
ii. Initialize population

Generate an initial population of N pigeons, where each pigeon contains N dimensions correspond-
ing to the dimensions of the target problem. Then, initialize the position and velocity for each pigeon,
v0 = [vi1 , vi2, vi3, . . . , vid im] and x0 = [xi1 , xi2, xi3, . . . , xid im].
iii. Update positions and external archive set

All pigeons in the population update their positions and velocities according to the Eqs. (12) and (13),
and during each iteration, they undergo Pareto sorting. The resulting non-dominated solutions are stored in
the external archive A.
iv. Check the algorithm termination condition

During each iteration, a determination is made as to whether the maximum number of iterations T has
been reached. If not, the algorithm will continue to proceed according to the aforementioned steps until the
termination count is reached.

3.3 Unmanned Aerial Vehicle (UAV)
Assuming the terrain and threat area information of the environment are known, as well as the starting

point and the target, the cost function for the flight path of an aerial robot can be defined as follows [60–62]:

F = w1 f (l) +w2 f (h) +w3 f (c) (16)
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Figure 9: MPIO flowchart

Among them, the weight coefficients w1, w2, and w3 correspond to length, height, and threat costs,
respectively, and satisfy the following relationship:

w1 +w2 +w3 = 1 (17)

For a given path, the length cost can be defined as:

f (l) = ∑n
i=1 l 2

i (18)

Among them, li is the length of the i-th path segment. The height cost function f (h) can be defined as:

f (h) = ∑n
i=1 hi (19)

In the Eq. (19), hi represents the average height above sea level for the i-th contour line segment. Fig. 8
demonstrates an example of three-dimensional path planning for UAVs.
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To simplify calculations and improve efficiency, a more effective approximation method is adopted. In
this method, the threat cost between two discrete points is calculated through five points for each edge, as
shown in Fig. 10. Assuming the unmanned aerial vehicle travels along the path Li , j through five segments, in
this case, the path Li , j can be divided into five sections, and the threat cost fmin can be calculated as follows:

fmin =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 Ri j > R j
Li j

5 ∑
Nt
k=1 tk (

1
d4

0.1,k
+ 1

d4
0.3k
+ 1

d4
0.5,k
+ 1

d4
0.7,k
+ 1

d4
0.9,k
) Ri j ⩽ R j

(20)

where Li j represents the length of the path segment, tk is the threat level of the k-th threat, R j is the radius
of the j-th threat, Nt is the number of threats, Ri j is the distance between the i-th path segment and the
j-th threat, and d0.1k is the point at 1/10 of the distance from the k-th point to the threat. By setting up and
calculating this type of threat cost, the survival ability of the unmanned aerial vehicle (UAV) in complex
environments can be effectively improved.

Figure 10: UAV three-dimensional path planning

4 Variants of PIO and MPIO

4.1 Variants of PIO
In this section, the limitations of the basic PIO are introduced, the improvements of the basic PIO

are discussed, and the steps to verify the effectiveness of PIO variants are introduced. An analysis of each
parameter of PIO is conducted, which will answer questions Question 3.

The update of the pigeon’s position is guided by the current velocity and the difference between the
optimal position and the current position, as shown in the figure. As the number of iterations increases, e−Rt

decreases exponentially, as shown in the Fig. 11. When the compass R is 0.1, 0.2, and 0.3, respectively, the
number of iterations approaches 0 at 15, 25, and 50, respectively, at which point all the pigeons converge to the
optimal pigeon. In the second phase, the number of pigeons used to find the center point is halved with each
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iteration, as shown in the figure. The number of pigeons decreases at an exponential rate of 2, and when the
number of pigeons is set to 100, only one pigeon is left to find the most central position after seven iterations.

Figure 11: The change of e−Rt with the increase of iteration times

In summary, the main improvements of the PIO are as follows: (1) Adjustment of the parameter R to
slow down the trend of premature convergence of the algorithm; (2) Integration of other search strategies
to enhance global optimization search; (3) For the convergence issue in the second phase, the use of other
methods to determine the number of pigeons to be reduced.

Therefore, the overview of the PIO improvement strategies can be mainly divided into the above three
categories, as shown in the Fig. 12. They respectively improve the two components of the PIO.

4.1.1 Improvement Targeting Self-Parameters
Extensive metaheuristic algorithms have been developed and applied in various fields such as engineer-

ing, industry, and scientific applications [63,64]. However, no single optimization algorithm can stand out
in the broad family of nature-inspired heuristics, as each algorithm has its unique strengths and limitations.

Due to the limitations of single heuristic algorithms in certain applications, researchers have begun to
combine them based on their characteristics to achieve complementary advantages and improve algorithm
performance, which is then applied to practical problems [65,66]. These hybrid algorithms have demon-
strated greater efficiency and effectiveness in solving complex optimization problems [67–70]. A hybrid of
GA and PSO has been applied to the design of Recurrent Neural Networks and Fuzzy Neural Networks. In
the field of robotics, a hybrid algorithm combining the Attraction Potential Field and an improved ACO has
been used for multi-robot formation control and global path optimization, demonstrating the effectiveness
of combining different heuristic algorithms to achieve optimal solutions [71]. Additionally, in the study of
vehicle routing problems, research explored the synergy between GA and ACO, showcasing the potential of
combining different heuristic algorithms to solve complex problems.

This section focuses on the use of PIO in combination with other excellent metaheuristic algorithms.
PIO also has its limitations; due to inherent reasons in its equation, a too rapid convergence speed may lead
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the algorithm to converge prematurely to a local optimal position. When dealing with the optimization of
recurring problems, it is necessary to balance this point to improve the performance of PIO.

Figure 12: Directions for PIO Improvement

Chen et al. [72] proposed QPIO is a new optimization method suitable for dealing with small-scale
high-dimensional multimodal and non-convex problems. This algorithm effectively maintains population
diversity by adjusting the probability state of the optimal solution through quantum rotation gates, thus
demonstrating excellent performance in global optimization. Experiments show that the algorithm performs
well in maintaining stability and improving optimization accuracy, but it has not yet been studied for
application in real optimization problems. Duan et al. [73] proposed an MGPIO for UAS swarm formation
control, which combines the artificial potential field method with PIO, enhancing problem-solving capability
and convergence speed while reducing computational effort. MGPIO improves optimization quality while
maintaining diversity, and its application potential in drone formation control has been verified through
comparison with PIO and PSO. He et al. [74] proposed an improved Gaussian PIO (GPIO), which maintains
exploration diversity through Gaussian mutation and improves search accuracy using global optimal judg-
ment. The algorithm excels in global optimization, especially in dealing with high-dimensional, multimodal,
and non-convex problems. However, the GPIO has not been fully compared with other algorithms through
extensive benchmark test functions, and its performance on high-dimensional problems needs further
verification. Hai et al. [75] combined evolutionary game theory to propose an improved PIO (EGPIO)
algorithm with an automatic parameter adjustment mechanism. In this algorithm, individuals of PIO can
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dynamically adjust their strategies according to the process of evolutionary games, thereby enhancing the
adaptability of the original PIO. In the process of solving dynamic equations, it continuously generates better
results to replace previous solutions, and the game eventually converges to an ESS that no mutant strategy
can invade. Therefore, the optimal solution of the EGPIO is used to adjust the key parameters of ADRC
to optimize the control of mobile robots. Simulation experiments have confirmed the effectiveness of the
new controller. The results show that the ADRC optimized by EGPIO outperforms traditional ADRC in
terms of control performance, efficiency, and robustness. Huo et al. [76] proposed the MPIO, which employs
a dynamic opposite learning strategy and nonlinear mutation operators to enhance global search and
convergence speed. By dynamically adjusting the position of the central pigeon to explore better regions, the
algorithm, when applied to unmanned aerial vehicle systems, demonstrates excellent convergence and search
performance, providing effective solutions for practical problems. Chen et al. [77] introduced the Adaptive
Nonlinear Inertia Weight for improving the PIO (ODaPIO), which dynamically adjusts the inertia weight.
The concept of inertia weight was introduced by Shi and Eberhart [78] to balance exploration and exploitation
in PSO, and researchers have subsequently proposed various linear and nonlinear adjustment strategies to
achieve this objective. The linear strategy [79] decreases the weight over iterations, shifting from global to
local search; the nonlinear strategies [80,81] are more complex, adjusting the weight based on the number
of iterations to adapt to different optimization problems. Experiments indicate that the solution quality of
ODaPIO surpasses that of the basic PIO and other swarm intelligence methods, but it has not been verified on
engineering problems. Li et al. [82] proposed an Improved PIO (IPIO) method to enhance node localization
accuracy in Wireless Sensor Networks (WSNs). The method optimizes fitness calculation through Pareto
distance classification and improves the velocity equation with self-learning concepts, making the search
more intelligent. In the later stages of the algorithm, a position correction factor is introduced to adjust the
search direction based on pigeon positions and search history, reducing cumulative error and thus improving
localization accuracy. Simulation results show that compared to improved PSO and CS algorithms, the IPIO
more effectively enhances node localization precision. It not only reduces cumulative error from continuous
localization but also improves the algorithm’s p0racticality. Therefore, the IPIO offers an effective solution
for node localization in WSNs.

In addition, Duan et al. [83] proposed a dynamic discrete PIO that provides effective target allocation
and search guidance for multiple drones using the Bayesian equation and the Sigmoid model. The algorithm
shows good performance in various scenarios, including different threat and resource conditions. At the same
time, they have developed a mission planning system integrated with a 3D visualization simulation module,
enhancing the practicality and intuitiveness of the algorithm, making it easier for operators to monitor and
optimize drone swarm behavior. Herdianti et al. [84] investigated how to optimize commodity distribution
costs by modeling the problem as a Vehicle Routing Problem (VRP). Due to the exponential growth of the
VRP solution space, manual optimization is impractical. The paper proposes a PIO method based on inverse
learning mechanism to optimize VRP and compares it with the PSO method. Experimental results show
that the PIO method outperforms PSO in optimizing distribution routes, finding shorter total distances and
lower distribution costs. Table 9 presents the results of self-parameter tuning.
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Table 9: Self-parameter improvement strategy

Authors/
Refs.

Improvement Description Statistical
tests

Performance Fitness function

Chen
et al. [72]

Quantum
rotation gate and

quantum
non-gate
strategies

Improve the
diversity of

population and
avoid premature

convergence

ANOVA

The QPIO
demonstrates
exceptional
efficacy and

practicality as a
method

None

Duan
et al. [73]

mixed game
theory

enhance its
capacity and
convergence

speed

None Improve
performance

Difference
between output

state and
expected state

He [74] Gaussian
mutation

Maintain
diversity and

enhance global
search capability

None Improve
performance None

Hai
et al. [75]

Combining
Evolutionary
Game Theory

Simultaneously
improved the

speed and
robustness of the

controller

None

Enhance the
speed and

robustness of the
controller

Angular
overshoot, rise
time, settling

time, and
steady-state error

Huo
et al. [76]

Opposite learning
strategy and

nonlinear
mutation
operators

Used for
estimating the

inertial physical
parameters of

vertical take-off
and landing
VTOL UAVs

None
The newly

proposed MPIO
performs better

Calculate the
error between the

computed and
experimentally
obtained output

vectors

Chen
et al. [77]

Adaptive
Nonlinear Inertia

Weight

Adaptive
nonlinear inertia

weight along
Friedman Improve

performance None

Li
et al. [82]

Wireless Sensor
Network

Calculation of
Fitness Values

Based on Pareto
Classification

None

Compared to the
other two
improved

algorithms, it
yields better

results

Wireless sensor
network coverage

Duan
et al. [83]

Bayes equation
and a response

threshold
sigmoid model

To design a
reasonable

objective function
None Improve

performance
Cost of UAV

Search-Attack

(Continued)
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Table 9 (continued)

Authors/
Refs.

Improvement Description Statistical
tests

Performance Fitness function

Herdianti
et al. [84]

Reverse Learning
Optimizing the
Vehicle Routing

Problem
None

Compared with
PSO, better
results are
obtained.

Distribution cost
total of Vehicle

Routing Problem

4.1.2 Integrate Other Algorithms
Al-Thanoon [85] proposed a novel hybrid PIO that effectively integrates the essence of PIO and Black

Hole Algorithm. Experimental results show that this hybrid algorithm can fully utilize the advantages of
PIO in solving the Multidimensional Knapsack Problem, and through extensive experimental evaluation on
benchmark datasets, significantly outperforming other nature-inspired algorithms in handling MKP.

Bai et al. [86] proposed an improved PIO (RMSFOPIO) that integrates an adaptive inertia weight
strategy with a fruit fly optimization strategy. The improvement is primarily implemented during the map
and compass operator phase by introducing a new weighting coefficient. In this phase, if the original weight
decays too rapidly, it would cause the pigeons to prematurely lose their inherited velocity, leading to random
“blind search.” The esnhanced algorithm achieved through this method features faster convergence speed
and higher convergence precision. Table 10 presents the comparison results of integrating with other swarm
intelligence algorithms.

Table 10: Integrating other swarm intelligence algorithms

Authors/
Refs.

Hybrid
strategy Description Statistical

tests Performance Fitness
function

Al-Thanoon
et al. [85]

Black Hole
Algorithm

BHA can
overcome local

optimal
solution

None

IWO/WDO
converges faster

and more
effectively

Untested on
diverse

benchmarking
functions Need
to be tested on

high
dimensional

problems

Bai
et al. [86]

Adaptive
Inertia Weight
Strategy and

Fruit Fly
Optimization

Reduce
complexity None

Features faster
convergence

speed and
higher

convergence
precision

None

4.1.3 Improvements in the Search Space
Zheng et al. [87] proposed the BPIO, which is an optimization strategy for quadrotor formation control

based on PID control and suitable for binary solution space. The algorithm effectively avoids collisions and
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converges rapidly through binary encoding and a specially designed fitness function. Simulation experiments
have proven its effectiveness and feasibility, but further research is needed to fully validate its performance.
The velocity entry represents the state flipping probability, aiding in the exploration of the solution space, as
defined in BPSO.

Pan et al. [88] proposed an improved BPIO, which enhances the solution quality for binary optimization
problems through new transfer functions, velocity update schemes, and position update methods. Simulation
experiments have shown that the improved BPIO outperforms BPSO and BGWO. This was verified using
a variety of methods, including benchmark test functions, statistical analysis, Friedman test, and Wilcoxon
rank-sum test. These multiple validation methods confirmed the effectiveness of the algorithm and the
rationality of the dynamic velocity settings. Experiments on the UCI dataset indicate that BPIO excels in
feature selection, but its practical application performance still needs to be verified. Lyu et al. [89] proposed
an improved PIO to mitigate the effect of noise during information transmission in image fusion technology.
Additionally, they integrated it with boundary processing based on convolutional sparse representation for
the fusion of multi-focus noisy images. The algorithm determines the weight range through edge information
and replaces the fitness function of the PIO with global information entropy. However, its performance on
high-dimensional problems remains to be investigated. Table 11 presents the comparative content regarding
improvements to the search space.

Table 11: Improvements targeting the search space

Authors/
Refs.

Direction of
improvement Description Statistical tests Performance Fitness

function

Zheng
et al. [87]

Binary
improvement

By utilizing
binary encoding GRA Improve

performance

The follower’s
desired position

and current
position

information

Pan
et al. [88]

Binary
improvement

Introducing
binary into PIO

to Optimize
binary problems

Friedman,
Wilcoxon

The results are
superior to

Binary PSO and
Binary GWO.

None

Lyu
et al. [89]

Feature
selection

Reduce the
number of

features required
to build a robust

network intrusion
detection system

Mean, Std.
Dev, Std. Err

The LS-PIO has
high accuracy

and good fitting
effects

Weighted
feature

selection ratio,
false positive
rate, and true
positive rate

4.2 Variants of MPIO
Cui et al. [90] proposed a Multi-Objective PIO (MaPIO) algorithm that uses a balanced fitness

estimation method to balance the convergence and diversity of the population. By designing new rate and
position update equations, the algorithm provides additional search directions from the central position to
the global optimal position and solves the problem of drastic changes in the number of objective functions.
Experimental results show that the MaPIO has great potential in solving MOP.
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Chen et al. [91] proposed a combined multi-objective PIO (CMOPIO) based on a ring topology
structure, aiming to solve multi-objective clustering problems. This method bridges continuous and discrete
spaces using auxiliary vectors and introduces a ring topology structure to alleviate premature convergence
and enhance the diversity of the pigeon flock. Experiments show that the CMOPIO can effectively achieve
data clustering and performs well in handling large-scale datasets. Chen et al. [92] combined the MPIO
with the COSR strategy to solve the MOOPF problem. The algorithm extends its application scope from
single-objective optimization to multi-objective optimization by introducing adaptively adjusted parameters
and an innovative landmark search model. Dual-objective and triple-objective tests on IEEE 30-bus, 57-bus,
and 118-bus systems show that the MPIO-COSR algorithm can find a better Pareto front and achieve zero
constraint violation for all power flow solutions. Shang et al. [93] started from the objective function, using
Negative Ratio Association (NRA) and Ratio Cut (RC) as objective functions. The optimization of these
two objective functions can balance the internal density and external sparsity of the detected community
structure. By introducing genetic operations, they improved the representativeness and update method of
the pigeon flock. Experimental results show that MOPIO excels in search precision and stability, especially
on real data with standard community divisions. Compared to other methods, the MOPIO performs better
on most datasets. Qiu and Duan [94] addressed the distributed control problem of drone swarms in
complex obstacle environments by modifying the hierarchical learning behavior of pigeons. The improved
MPIO can coordinate drones to fly stably in complex environments. Compared to the basic MPIO and
the improved Non-dominated Sorting NSGA-II, the improved MPIO demonstrates advantages in handling
MOP, especially with small population sizes and fewer iterations. Ruan and Duan [95] proposed a multi-
drone obstacle avoidance control method based on the Multi-Objective Social Learning PIO (MSLPIO). By
introducing a social learning mechanism, each pigeon learns from better pigeons, not necessarily the globally
optimal pigeon, thus improving the algorithm’s convergence performance. Simulation results show that
compared to the improved multi-objective PIO and the improved NSGA-II, MSLPIO has better convergence
performance and can enable multiple drones to pass through complex obstacle environments smoothly.
Huo and Duan [96] proposed an Adaptive Mutation-based Multi-Objective PIO (AMMOPIO) algorithm.
The algorithm, which combines adaptive flight mechanisms and mutation mechanisms, effectively balances
global exploration and local exploitation, improving search efficiency and diversity. Experimental results
indicate that the AMMOPIO is feasible and effective in target search problems, finding more targets and
reducing search time.

Xu et al. [97] proposed an Improved Multi-Objective PIO (IMOPIO) algorithm to solve the dynamic
facility layout problem with uncertain demand, optimizing search through non-dominated sorting, global
collaboration, improved map and compass factors, and crossover operators. Results show that the IMOPIO
has better search capabilities and solution quality in solving DFLP problems. Liu et al. [98] transformed the
MOP into a single-objective optimization problem through a weighted solution approach. The traditional
PIO was discretized, and an adaptive parameter strategy was adopted to improve the shortcomings of the
algorithm itself.

Hu et al. [99] proposed a fuzzy multi-objective PIO for task allocation in urban environments where
multiple drones track multiple ground targets, converting the fuzzy importance preferences of the objective
functions into a mixed integer programming model. Compared to traditional PSO, simulation experiments
verified the effectiveness and efficiency of this method.

Table 12 presents the comparative content regarding variants of MPIO.
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Table 12: Variants of MPIO

Authors/Refs. Object Mechanism Results Evaluation
metrics

Fitness
function

Cui
et al. [90]

Solving MOP
problems with
more than two

objectives

A balanced
fitness estimation

method was
adopted

Addressing the
issue of drastic
changes in the

number of
objective
functions

None None

Chen
et al. [91]

Solve the
Multi-Objective

Clustering
problem

Using auxiliary
vectors and

Introducing a
ring topology

structure

Effectively
implementing
data clustering

None

Connectivity
and

Compactness in
Clustering
Problems

Chen
et al. [92]

Solve the
MOOPF
problem

The introduction
of adaptively

adjusted
parameters

Achieving zero
constraint

violations in all
power flow
solutions

GD, HV

Active power
loss, basic fuel

cost, valve point
loading fuel

cost, and
emissions

Shang
et al. [93]

Community
detection

Using NRA and
RC as objective

functions

Exhibits better
performance

on most
datasets

None
NRA and RC in

community
detection

Qiu and
Duan [94]

Distributed
control of drone

swarms in
complex
obstacle

environments

Modified based
on hierarchical

learning behavior
of pigeon flocks

Capable of
coordinating
stable drone

flight in
complex

environments

None

The degree of
passage

through the
obstacle area

and the
consistency of

the UAVs

Ruan and
Duan [95]

Drone obstacle
avoidance

Introducing a
social learning

mechanism

MSLPIO
Enables
multiple
drones to
smoothly
navigate
through
complex
obstacle

environments

None

The degree of
passage

through the
obstacle area

and the
consistency of

the UAVs

(Continued)
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Table 12 (continued)

Authors/Refs. Object Mechanism Results Evaluation
metrics

Fitness
function

Huo and
Duan [96]

Drone target
search problem

Incorporates
adaptive flight

mechanisms and
mutation

mechanisms

The
AMMOPIO

can find more
targets in the
target search

problem

None

Detection
probability,

cost, threat, and
other objectives
in unmanned
aerial vehicle
target search

Xu et al. [97]

Solving the
dynamic facility
layout problem
with uncertain

demand

Global
collaboration and

improvement
operators

The IMOPIO a
has advantages
in solving the

Dynamic
Facility Layout

Problem

HV

Cost and area
utilization rate

in layout
planning

Liu
et al. [98]

The issue of
human resource

allocation in
university

research projects

Converting a
MOP into a

single-objective
one

The improved
PIO achieves
better results

None
Delay Loss and
Delay Time in

the Project

Hu
et al. [99]

Multi-drone
tracking in

urban
environments

Transforming the
fuzzy importance
preferences of the

objective
function into an

MIP model

This method is
more efficient None

Total flight
distance, task

allocation
balance, and

task completion
time in Target

tracking

5 PIO and MPIO Applications in UAVs
UAV is an unmanned aircraft operated by radio remote control equipment or its programmed control

devices for performing specific tasks [100]. Compared with manned aircraft, UAVs have advantages such as
small size, high maneuverability, good concealment, low requirements for battlefield environment, strong
survivability, and low cost. At the same time, UAVs are often used in civil aviation fields, such as disaster
rescue, aerial photography, and pesticide spraying [101,102]. In recent decades, the development of UAVs
and related technologies has been favored by countries around the world and has received increasing
attention and application. However, with the complexity and diversity of mission requirements, the current
development of UAV technology not only needs to improve the functionality and effectiveness of UAVs
but also requires a comprehensive consideration of exploring and developing more fixed and effective
UAV management and organization models. For optimizing UAV issues, a widely used method today is to
abstract it as a mathematical model, convert it into an optimization problem, and solve it through heuristic
algorithms. This method requires very little time in finding an acceptable solution, which is precisely the
advantage of heuristic algorithms. This section resolves Question 4.
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5.1 PIO Applications in UAVs
Duan and Qiao [36] first proposed the PIO in 2014 and applied it to the path planning problem of aerial

robots. This marked the first time the PIO was introduced and successfully used to solve practical problems.
Their experiments verified the effectiveness of PIO in optimization issues. Duan et al. [48] proposed a
Predator-Prey PIO for the automatic landing system of fixed-wing UAVs in the longitudinal plane. The
results of simulation experiments verified that the automatic landing system significantly improved the
performance of UAVs during the landing phase. Yu et al. [64] proposed a new algorithm called Mixed Game
PIO (MGPIO), which was designed for cluster formation control in Unmanned Aerial Systems (UAS). The
MGPIO combines elements of mixed game theory and PIO strategy, not only enhancing the ability to handle
complex problems but also improving convergence speed and reducing computational burden. Through
comparative experiments with PIO and PSO, the application potential of MGPIO in the formation control
of drone clusters has been confirmed.

In response to discrete problems, Duan et al. [73] proposes a Binary PIO to optimize the obstacle avoid-
ance problem for quadrotor drones. Experimental results indicate that the proposed algorithm outperforms
Binary PSO. Chen et al. [72] proposed a new method called Mutated PIO, which is based on the strategy of
Dynamic Opposition-Based Learning. Experimental results show that the MPIO exhibits good performance
in terms of convergence speed and overall search capability. Hai et al. [75] proposed an enhanced ADRC
method for the attitude deformation system of autonomous mobile robots. By simulating the behavior of
pigeons in the process of evolutionary games, this method dynamically adjusts its search strategy, thereby
enhancing the adaptability and efficiency of the algorithm. Simulation experiment results confirm the
method’s ability to suppress disturbances under normal operating conditions and its compensating effect on
faults when they occur, demonstrating its superior performance. Huo et al. [103] applied the pigeon flock
algorithm to real-flight obstacle avoidance experiments with UAVs. The experimental results show that the
UAV flock was able to successfully navigate through multiple obstacle areas in a real flight environment and
effectively avoid collisions with other UAVs. Li and Deng [104] proposed a Quantum Entangled PIO for
optimizing UAV path planning. Compared with GA, PSO, and traditional PIO, the QEPIO has improved
convergence speed and robustness to some extent, showing its potential in solving flight planning problems
such as UAV path planning.

Wang et al. [105] presented a control strategy based on the Cauchy Mutated PIO. Simulation results
showed that the proposed Cauchy mutated PIO method has better robustness and cooperative path planning
strategies compared to traditional PIO, proving it to be effective and advanced. In terms of UAV formation,
Xu and Zhang [106] proposed a Quantum Behavior PIO. The improved PIO, combined with UAV control
variables, became part of the direct control loop in the control system. The control system’s effectiveness in
tight formation control was demonstrated through comparative simulations.

Huo et al. [107] introduced a circular formation control method inspired by the homing behavior of
pigeons. This method utilized the characteristics of nonlinear PID-like control methods, making the motion
trajectory of the multi-agent system smoother. The effectiveness of this control strategy was confirmed
through numerical simulations.

For formation control of quadrotor UAVs, Bai et al. [108] proposed using the PIO. By combining
algebraic graph theory and matrix analysis, they established a nonlinear mathematical model to describe the
dynamic behavior of quadrotor UAVs. Experimental results indicated that the PIO played a key role in the
formation control of quadrotor UAVs. In the field of unmanned UAV combat, Yu et al. [109] proposed an
improved PIO (CLPIO) algorithm based on a competitive learning mechanism to address the problem of
attack target allocation in dynamic combat games involving UAV swarms. Through numerical simulation
verification, the effectiveness and superiority of this method were confirmed. Experimental results indicate
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that the CLPIO can more effectively solve the attack target allocation problem. Ruan et al. [110] introduced
an autonomous maneuvering decision-making method for unmanned combat aerial vehicles in air combat
using Transfer Learning PIO (TLPIO). This method involves designing a target function that includes a mix
of game strategies and utilizes the TLPIO for optimization to obtain the optimal mixed strategy. Simulation
results have validated the effectiveness of the proposed autonomous maneuvering decision-making method.
Bin et al. [111] proposed the Gaussian Adaptive Mutation PIO (GAMPIO) algorithm and developed a
backstepping controller using a fully coupled dynamic model to control an UAV with a manipulator. Through
a series of simulation experiments and comparisons with other optimization algorithms, the experimental
results demonstrated the superiority of the GAMPIO in terms of performance.

Zhou et al. [112] presented a method that combines the Hybrid GWO (HSGWO) with the Modified PIO,
known as HSGWO-MPIO. The convergence, complexity, and accuracy of the algorithm were analyzed using
linear difference equations to validate its performance. Simulation results indicated that the HSGWO-MPIO
performs better in terms of robustness and optimization capabilities. Table 13 presents the application of PIO
variant algorithms in UAV and the design of objective functions.

Table 13: UAV of PIO

Authors/Refs. Object Mechanism Results UAVs Fitness
function

Duan and
Qiao [36]

To solve the
problem of
Aerial robot

path planning
problem

Use PIO for
solving

Experimental
verification of

the
effectiveness of

PIO and its
application to
aerial robot

path planning

Aerial robot
path planning

problem

Weighted sum
of direct vector
angles between

drones and
hazardous

drones

Duan
et al. [48]

For fixed-wing
UAV plane
automatic

landing system

Predator-Prey
PIO

Significantly
improves the

performance of
drones during

the landing
phase

UAV vertical
automatic

landing

The error
between the

actual output of
pitch angle,
airspeed, or

AOA and the
reference signal

Duan
et al. [73]

To solve the
problem of
Aerial robot

path planning
problem

Mixed Game
Theory

The potential
application of

MGPIO in
drone swarm

formation
control was
confirmed

UAV formation

Difference
between output

state and
expected state

(Continued)
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Table 13 (continued)

Authors/Refs. Object Mechanism Results UAVs Fitness
function

Hai
et al. [75]

Optimize the
ADRC system

Improved
Method Based on

Game Theory

Enhance the
adaptability

and efficiency
of the

algorithm

Active
disturbance

rejection
control

Angular
overshoot, rise
time, settling

time,
steady-state

error,
weighting.

Zheng
et al. [87]

Obstacle
avoidance for

quadrotor UAV

Binary
refinement

The proposed
algorithm

outperforms
Binary PSO

Quadcopter
UAV formation

The follower’s
desired position

and current
position

information

Huo
et al. [103]

For UAS swarm
formation

control
None

Avoids
collisions with
other drones

UAV obstacle
avoiDance

Weighted Sum
of Direct Vector
Angles Between

Drones and
Hazardous

Drones

Li and
Deng [104]

For VTOL UAV
applications

Using mutation
operators with

nonlinear
characteristics

The algorithm
is able to more

effectively
explore the

search space

Vertical takeoff
and landing

UAV

The follower’s
desired position

and current
position

information

Wang
et al. [105]

To enhance the
performance of

multi-drone
path planning in

high-altitude
narrow areas

Cauchy mutant

Exhibits better
robustness and

cooperative
path planning

strategies

Multi-UAV
path planning

Weighted
distance cost,
altitude cost,

and threat cost

Xu and
Zhang [106]

Tight formation
control

Quantum
behavior

Enhancing the
performance of
tight formation

control

UAV tight
formation

control

Force of
potential field

interaction
between

adjacent drones

Huo
et al. [107]

Circular
formation

control methods
Nonlinear PID

Makes the
motion

trajectories of
multi-agent

systems
smoother

Multi-UAV
collaborative

circular
formation

Combination of
circular

formation and
angular

distribution

(Continued)



30 Comput Mater Contin. 2026;87(1):5

Table 13 (continued)

Authors/Refs. Object Mechanism Results UAVs Fitness
function

Bai
et al. [108]

Formation
control of

quadrotor UAVs

Combining
algebraic graph

theory and
matrix analysis

The designed
control

algorithm
exhibits better
transient and
steady-state

error
performance

Quadcopter
UAV formation

Describe the
formation using

the position
deviation

matrix

Yu
et al. [109]

Solving the
attack

target allocation
problem in

drone swarm
dynamic combat

games

Competitive
learning

mechanism

Can more
effectively

solve the attack
target alloca-

tion
problem

UAV swarm
dynamic

combat game
theory

Calculating
payoffs for

mixed strategies
at nash

equilibrium

Ruan
et al. [110]

Autonomous
maneuvering

decisions in air
combat

Transfer learning

Able to make
reasonable

maneuvering
decisions

UAV
autonomous

maneuver
decision-
making

In zero-sum
games, to

identify the
maximum or

minimum
payoff through

mixed strategies

Bin
et al. [111]

Controlling a
drone with a
robotic arm

Gaussian adaptive
mutation

Able to meet
the

requirements
of trajectory

tracking

UAV operator
below the drone

The deviation
between the

expected
trajectory of the

entire system
and the output

5.2 MPIO Applications in UAVs
Qiu et al. [94] explores the distributed control of drone swarms in environments filled with complex

obstacles. The paper adjusts the algorithm based on the hierarchical learning behavior of pigeons to form
an improved MPIO that effectively coordinates the stable flight of drones in complex environments. By
comparing it with the original MPIO and the improved NSGA-II, the study confirms the superiority of the
improved MPIO in handling MOP, especially when the population size is small and the number of iterations
is limited. Ruan and Duan [95] proposes a multi-drone obstacle avoidance control strategy named Multi-
Objective Social Learning PIO (MSLPIO). By introducing a social learning mechanism, this strategy enables
each drone to learn a better flight strategy, not just pursuing global optimality. This approach effectively
improves the convergence of the algorithm. Simulation experiments have verified that MSLPIO outperforms
the improved MPIO and the improved NSGA-II in terms of convergence performance, ensuring stable flight
of multiple drones in complex obstacle environments.
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Hu et al. [99] presents a fuzzy MOP algorithm inspired by pigeon behavior, aimed at solving the
task allocation problem when multiple drones track multiple ground targets in urban environments. The
algorithm incorporates the fuzzy importance preferences of the objective functions into a mixed integer
programming model to optimize the task allocation plan. Compared with the traditional PSO, the simulation
results prove the advantages of the proposed method in terms of effectiveness and efficiency.

Tong et al. [113] proposes a new method for drone path planning based on PIO and Differential Evo-
lution. This method combines the pathfinding capabilities of PIO with the mutation strategy of differential
evolution, effectively solving the problem of finding the optimal path for drones in complex environments.
Comparison with PSO and Differential Evolution algorithms through simulation experiments shows that
this method is superior in terms of path length, smoothness, and safety.

5.3 Discussion on PIO and Its Applications in UAVs
As a nature-inspired optimization algorithm, PIO has achieved significant development and has become

a reliable tool for solving complex problems. It searches for near-optimal solutions for one-dimensional
or multi-dimensional objective functions through a stochastic computational process, offering an easy-to-
implement and efficient solution that is applicable across various fields. The comprehensive results presented
in this paper fully demonstrate the outstanding performance of PIO, particularly in terms of its effectiveness
and accuracy in achieving the best results. Compared to recently published articles, this paper conducts a
rigorous examination and analysis of the results obtained by PIO, further confirming this point.

Each heuristic algorithm has its own limitations, and PIO is no exception. Complex optimization
problems may lead to premature convergence. PIO has several parameters that users need to adjust according
to specific issues. This section evaluates the enhancements of PIO through various methods, including
adjustments to its own parameters, combination with other heuristic algorithms, and improvements on the
search space, as shown in the table.

From Figs. 13 and 14, it can be seen that most improvements in PIO focus on parameter adjustment, as
reported in references [72,73,75,77,82–84,87,88]. Expanding the algorithm to practical applications, there are
fewer improvements in the search space, such as [88], which target binary problems for PIO improvement.
References [80,85] improve PIO by integrating other swarm intelligence algorithms, and [86] also improves
its own parameters, making it one of the few algorithms to have improved in two aspects.

Clearly, by optimizing and improving parameters and combining novel metaheuristic algorithms with
adaptive strategies, the shortcomings of the basic PIO can be specifically addressed. When configuring the
PIO parameters, adjustments must be made based on the specific situation, so the parameter improvement
method should be used to avoid affecting the optimization process’s stability. Secondly, for optimization
problems sensitive to parameter changes, an adaptive parameter adjustment strategy should be employed.
Thirdly, to address the PIO’s tendency to get stuck in local optima, a hybrid algorithm that combines specific
metaheuristics can effectively avoid this problem. In summary, the key to the optimization process is to
select appropriate optimization strategies for specific optimization problems, and a variety of optimization
strategies can be flexibly combined during the optimization process.

As for the application of PIO in UAVs, most aspects are focused on the path planning, formation,
and obstacle avoidance of drones, while others are aimed at optimizing the takeoff and landing, as well as
combat gaming of UAVs. These issues have validated the effectiveness of PIO in problems with high real-time
requirements, as well as its strong robustness characteristics.
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Figure 13: PIO improvement methods classification statistics

Figure 14: Improved PIO application classification on UAVs

5.4 Discussion on MPIO and Its Applications in UAVs
The solutions obtained from multi-objective algorithms are commonly evaluated using indicators such

as HV, GD, and IGD to assess the obtained Pareto Front (PF). The HV index, as a widely used metric for
classification, actually calculates the size of the space volume covered by the actual PF. A larger HV value
indicates better diversity of the PF, and its equation is shown as follows:

HV = volume(⋃N
i=1 vi) (21)

where vi represents the volume formed by the individual i and the reference point. The larger the indicator
is, the more widely the solution space covered by the Pareto solution set obtained.
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To measure the distance between the obtained Pareto Front (PF) and the actual PF, the GD indicator,
defined as Eq. (22), is used [114]:

GD =

√
∑N

i=1 Euc2
i

N
(22)

In the Eq. (22), Euc2
i represents the Euclidean distance between the ith non-dominated solution in the

reference PF and its nearest non-dominated solution.
IGD (Inverted Generational Distance) is a commonly used evaluation metric in MOP, which is used

to assess both the convergence and diversity of algorithms simultaneously. IGD is based on the following
concept: for a MOP, there exists a set of true Pareto optimal solutions, known as the True Pareto Front (TPF).
The algorithm generates a set of approximate Pareto optimal solutions when solving the problem, called the
Approximate Pareto Front (APF). IGD is defined as the average distance from each point in the TPF to the
nearest point in the APF. Specifically, the calculation Eq. (23) for IGD is as follows:

IGD(TPF , APF) = 1
∣TPF∣ ∑x∈TPF min

y∈APF
d(x , y) (23)

where, ∣TPF∣ is the number of points in the TPF, d is the distance metric between points, commonly using
Euclidean distance or Hamming distance.

These indicators can be used to compare the advantages and disadvantages of multi-objective algorithms
intuitively. Only references [92,97] in the aforementioned papers used the HV indicator, and GD was
compared only in [97]. Unlike the single-objective PIO, multi-objective optimization must address multiple
conflicting objective functions, so simply adjusting parameters is often ineffective for the issues at hand.
Among various variants, more focus is on changing the search space, as in reference [91], or on transforming
multi-objective problems into single-objective problems for solving, as in references [94,98].

The traditional PIO simplifies the two-phase algorithm into a single-phase algorithm by introducing
a transition factor. It uses Pareto sorting to achieve multi-objective optimization. However, Pareto sorting
requires re-ranking and filtering of solutions in the external set A at each iteration, increasing computational
complexity. Reference [91] applied the improved MPIO to clustering problems, expanding the research on
high-dimensional problems with MPIO, while reference [93] applied it to community detection. Multi-
objective optimization is more suited to practical applications than single-objective optimization. Only one
article [90] did not optimize for applications, whereas the other papers did.

References [91,93,99] improved the search space, with [91] adding a discrete space, [93] extending MPIO
to community detection, [92] improving the objective function, and [99] introducing fuzzy preferences
into the model. Additionally, reference [91] also enhanced diversity through topological structure, and
references [90,96] balanced improvements in diversity and convergence.

For multi-objective algorithms, it is more necessary to make improvements based on practical problems.
MPIO optimized the design of brushless DC motor parameters, and subsequent algorithms improved by
leveraging PIO’s advantages on UAVs, continuously proposing new algorithms to expand UAV applications,
such as multi-UAV formation, multi-UAV obstacle avoidance, and distributed control of UAV swarms.

6 Conclusion and Potential Research Domains
This section addresses Question 5. The review paper conducts an in-depth study of PIO, explores its

applications across various research fields, and provides a detailed review of the latest advancements in
the literature. The authors have invested considerable effort in writing this paper by extensively analyzing
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PIO-related research articles published between 2019 and 2025. The article aims to provide readers with
a comprehensive understanding by discussing and summarizing the research findings on PIO in recent
scientific literature. The paper reviews the applications and variants of the PIO, confirming its effectiveness as
a swarm intelligence-based optimization method. PIO has demonstrated the ability to find practical solutions
to multiple engineering problems, and its convergence in continuous search spaces has been proven [49].
Since its introduction in 2014, the algorithm has been extended to solve a variety of problems and scenarios.
Research on variants of PIO highlights its flexibility and its ability to be customized to different needs,
including hybrid and multi-objective versions. These variants aim to improve the efficiency of PIO operations
while maintaining its core characteristics. Notably, most hybrid strategies have made significant progress
in developing PIO. In many instances, combining different variants has enhanced the algorithm’s ability to
solve complex problems. Looking to the future, the PIO is expected to continue developing and reducing
sensitivity to parameter changes. Reinforcement learning technology may become an advanced means of
developing parameter-free PIO, achieving dynamic parameter adjustment based on search environment
feedback. Additionally, combining PIO with other metaheuristic algorithms to form hybrid models can
maximize benefits, reduce limitations, and expand its application scope by leveraging the strengths of both.

As for MPIO, it inherits the advantages of basic PIO, with only a few key parameters and strong
robustness, making it applicable to the optimization of other problems. At the time of its proposal, it was
proven to be convergent [46]. However, some shortcomings have emerged from recent developments. Under
the dual Pareto ranking, the continuously growing external set A can lead to slow convergence of the
algorithm; secondly, the current velocity’s proportion decreases at an exponential rate, causing the group
exploration to stagnate; finally, the selection of the optimal individual is too random, which may affect the
convergence efficiency of the algorithm.

In summary, the following future development suggestions are proposed for PIO:
1. To address the sharp convergence issue of PIO, adjustments should be made to reduce performance

loss due to premature convergence; during the second phase of landmark search, the number of pigeons
seeking the landmark center decreases exponentially, and adjustments should be made to the reduced
number of pigeons. The two-phase optimization search is fragmented, and integrating the two phases to
balance exploitation and exploration is also a key research direction.

2. Expand the application of the PIO to practical problems, making suitable improvements for different
issues; moreover, since the PIO has been widely verified on UAVs, whether the PIO has significant potential
in constrained path planning problems is an issue that future researchers need to verify.

3. Only a few of the proposed variants of the PIO have been analyzed for convergence and complexity,
so conducting theoretical analysis when proposing new variant algorithms is a key research direction.

4. Considering the advantages of PIO in search speed and robustness, it is worth considering its applica-
tion prospects in Neural Architecture Search; additionally, the optimization of parameters by reinforcement
learning is also a critical improvement direction, and given the number of parameters in PIO, it can become
a parameter adjustment strategy in addition to adaptive adjustment.

For MPIO, the following future development suggestions are proposed:
1. Like the basic PIO, adjust the key parameters to reduce performance loss due to premature conver-

gence; choosing a suitable scheme to limit the external set A is also a direction for algorithm improvement.
2. As mentioned above for PIO, the robustness advantage of MPIO also makes it suitable for application

in NAS. For some practical problems with multiple objectives, such as accuracy and computation time, MPIO
is more ideal for optimization than for solving a single-objective problem with weights.
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3. The convergence speed of MPIO has been verified in real-time problems, such as drone formations;
therefore, more consideration can be given to such issues in future improvements.

Acknowledgement: Not applicable.

Funding Statement: This research is supported by the National Natural Science Foundation of China under grant
number 62066016, the Natural Science Foundation of Hunan Province of China under grant number 2024JJ7395,
International and Regional Science and Technology Cooperation and Exchange Program of the Hunan Association
for Science and Technology under grant number 025SKX-KJ-04, Hunan Provincial Postgraduate Research Innovation
Project under grant number CX20251611, Liye Qin Bamboo Slips Research Special Project of Jishou University 25LYY03.

Author Contributions: Yu-Xuan Zhou: Conceptualization, Methodology, Formal Analysis, Investigation, Writing—
Original Draft. Kai-Qing Zhou: Conceptualization, Project Administration, Funding Acquisition, Writing—Review
& Editing. Wei-Lin Chen: Formal Analysis, Investigation, Writing—Review & Editing. Zhou-Hua Liao: Validation,
Resources, Supervision. Khairunnisa Hasikin: Data Curation, Writing—Review & Editing. Di-Wen Kang: Fund-
ing Acquisition, Writing—Review & Editing. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Lange K. Optimization. Vol. 95. Berlin/Heidelberg, Germany: Springer Science & Business Media; 2013.
2. Huang Y, Brocco A, Kuonen P, Courant M, Hirsbrunner B. SmartGRID: a fully decentralized grid scheduling

framework supported by swarm intelligence. In: 2008 Seventh International Conference on Grid and Cooperative
Computing; 2008 Oct 24–26; Shenzhen, China. p. 160–8. doi:10.1109/GCC.2008.24.

3. Wang Y, Jiang J, Li S, Li R, Xu S, Wang J, et al. Decision-making driven by driver intelligence and environment
reasoning for high-level autonomous vehicles: a survey. IEEE Trans Intell Transp Syst. 2023;24(10):10362–81. doi:10.
1109/TITS.2023.3275792.

4. Liufu Y, Jin L, Li S. Adaptive noise-learning differential neural solution for time-dependent equality-constrained
quadratic optimization. IEEE Trans Neural Netw Learn Syst. 2025;36(9):17253–64. doi:10.1109/tnnls.2025.3561415.

5. Zhang Z, Zheng L, Li L, Deng X, Xiao L, Huang G. A new finite-time varying-parameter convergent-differential
neural-network for solving nonlinear and nonconvex optimization problems. Neurocomputing. 2018;319(1):74–83.
doi:10.1016/j.neucom.2018.07.005.

6. Jin L, Wei L, Li S. Gradient-based differential neural-solution to time-dependent nonlinear optimization. IEEE
Trans Autom Control. 2023;68(1):620–7. doi:10.1109/TAC.2022.3144135.

7. Liu M, Li Y, Chen Y, Qi Y, Jin L. A distributed competitive and collaborative coordination for multirobot systems.
IEEE Trans Mob Comput. 2024;23(12):11436–48. doi:10.1109/TMC.2024.3397242.

8. Polyak BT. Newton’s method and its use in optimization. Eur J Oper Res. 2007;181(3):1086–96. doi:10.1016/j.ejor.
2005.06.076.

9. Hestenes MR. Multiplier and gradient methods. J Optim Theory Appl. 1969;4(5):303–20. doi:10.1007/BF00927673.
10. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on

Neural Networks; 1995 Nov 27–Dec 1; Perth, WA, Australia; 1995. p. 1942–8. doi:10.1109/ICNN.1995.488968.
11. Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1(4):28–39. doi:10.1109/

mci.2006.329691.
12. Kivi ME, Majidnezhad V. A novel swarm intelligence algorithm inspired by the grazing of sheep. J Ambient Intell

Humaniz Comput. 2022;13(2):1201–13. doi:10.1007/s12652-020-02809-y.

https://doi.org/10.1109/GCC.2008.24
https://doi.org/10.1109/TITS.2023.3275792
https://doi.org/10.1109/TITS.2023.3275792
https://doi.org/10.1109/tnnls.2025.3561415
https://doi.org/10.1016/j.neucom.2018.07.005
https://doi.org/10.1109/TAC.2022.3144135
https://doi.org/10.1109/TMC.2024.3397242
https://doi.org/10.1016/j.ejor.2005.06.076
https://doi.org/10.1016/j.ejor.2005.06.076
https://doi.org/10.1007/BF00927673
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/mci.2006.329691
https://doi.org/10.1109/mci.2006.329691
https://doi.org/10.1007/s12652-020-02809-y


36 Comput Mater Contin. 2026;87(1):5

13. Cao L, Chen H, Chen Y, Yue Y, Zhang X. Bio-inspired swarm intelligence optimization algorithm-aided hybrid
TDOA/AOA-based localization. Biomimetics. 2023;8(2):186. doi:10.3390/biomimetics8020186.

14. Fathy A, Bouaouda A, Hashim FA. A novel modified cheetah optimizer for designing fractional-order PID-
LFC placed in multi-interconnected system with renewable generation units. Sustain Comput Inform Syst.
2024;43(2):101011. doi:10.1016/j.suscom.2024.101011.

15. Yue Y, Cao L, Zhang Y. Novel WSN coverage optimization strategy via monarch butterfly algorithm and particle
swarm optimization. Wirel Pers Commun. 2024;135(4):2255–80. doi:10.1007/s11277-024-11143-x.

16. Yue Y, Cao L, Chen H, Chen Y, Su Z. Towards an optimal KELM using the PSO-BOA optimization strategy with
applications in data classification. Biomimetics. 2023;8(3):306. doi:10.3390/biomimetics8030306.

17. Li PC, Zhang XY, Zain AM, Zhou KQ. An improved cuckoo search algorithm using elite opposition-based learning
and golden sine operator. In: Artificial intelligence and security. Cham, Switzerland: Springer International
Publishing; 2022. p. 276–88. doi:10.1007/978-3-031-06794-5_23.

18. Zhang CX, Zhou KQ, Ye SQ, Zain AM. An improved cuckoo search algorithm utilizing nonlinear inertia weight
and differential evolution for function optimization problem. IEEE Access. 2021;9:161352–73. doi:10.1109/access.
2021.3130640.

19. Yang XS. Nature-inspired metaheuristic algorithms. Bristol, UK: Luniver press; 2010.
20. Jorge N, Stephen JW, editors. Numerical optimization. New York, NY, USA: Springer; 1999. doi:10.1007/b98874.
21. Boyd S, Vandenberghe L. Convex optimization. Cambridge, UK: Cambridge University Press; 2004.
22. Hua C, Xu J, Huang Z, Liao B, Li S. Optimization-based finite-time multi-robot formation: a zeroing neurodynam-

ics method. Tsinghua Sci Technol. 2026;31(1):162–79. doi:10.26599/tst.2024.9010180.
23. Liu M, Chen L, Du X, Jin L, Shang M. Activated gradients for deep neural networks. IEEE Trans Neural Netw

Learn Syst. 2021;34(4):2156–68. doi:10.1109/tnnls.2021.3106044.
24. Su H, Sun Y, Zeng Z, Duan H. Image segmentation model for vicinagearth security technology of unmanned

aerial vehicle using improved pigeon-inspired optimization. Guid Navigat Control. 2024;4(3):2441002. doi:10.1142/
s2737480724410024.

25. Clerc M, Kennedy J. The particle swarm—explosion, stability, and convergence in a multidimensional complex
space. IEEE Trans Evol Comput. 2002;6(1):58–73. doi:10.1109/4235.985692.

26. Dorigo M, Colorni A, Maniezzo V. Distributed optimization by ant colonies. In: Proceedings of the First European
Conference on Artificial Life; 1991 Dec 11–13; Paris, France. Vol. 142, p. 134–42.

27. Guntsch M, Middendorf M. A population based approach for ACO. In: Applications of evolutionary computing.
Berlin/Heidelberg, Germany: Springer; 2002. p. 72–81. doi:10.1007/3-540-46004-7_8.

28. Das S, Biswas A, Dasgupta S, Abraham A. Bacterial foraging optimization algorithm: theoretical foundations,
analysis, and applications. In: Foundations of computational intelligence. vol. 3. Berlin/Heidelberg, Germany:
Springer; 2009. p. 23–55. doi:10.1007/978-3-642-01085-9_2.

29. Luan X, Jin B, Liu T, Zhang Y. An improved artificial fish swarm algorithm and application. In: Proceedings of
the International Conference on Intelligent Computing for Sustainable Energy and Environment; 2014 Sep 20–23;
Shanghai, China. p. 99–110.

30. Yang XS. Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms.
Berlin/Heidelberg, Germany: Springer; 2009. p. 169–78 p.

31. Ye S, Zhou K, Zain AM, Wang F, Yusoff Y. A modified harmony search algorithm and its applications in weighted
fuzzy production rule extraction. Front Inform Technol Electron Eng. 2023;24:1574–90.

32. Ye S-Q, Wang F-L, Ou Y, Zhang C-X, Zhou K-Q. An improved cuckoo search combing artificial bee colony operator
with opposition-based learning. In: Proceedings of the 2021 China Automation Congress (CAC); 2021 Oct 22–24;
Beijing, China. p. 1199–204.

33. Ye SQ, Zhou KQ, Zhang CX, Mohd Zain A, Ou Y. An improved multi-objective cuckoo search approach
by exploring the balance between development and exploration. Electronics. 2022;11(5):704. doi:10.3390/
electronics11050704.

34. Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey: artificial bee colony (ABC) algorithm
and applications. Artif Intell Rev. 2014;42(1):21–57. doi:10.1007/s10462-012-9328-0.

https://doi.org/10.3390/biomimetics8020186
https://doi.org/10.1016/j.suscom.2024.101011
https://doi.org/10.1007/s11277-024-11143-x
https://doi.org/10.3390/biomimetics8030306
https://doi.org/10.1007/978-3-031-06794-5_23
https://doi.org/10.1109/access.2021.3130640
https://doi.org/10.1109/access.2021.3130640
https://doi.org/10.1007/b98874
https://doi.org/10.26599/tst.2024.9010180
https://doi.org/10.1109/tnnls.2021.3106044
https://doi.org/10.1142/s2737480724410024
https://doi.org/10.1142/s2737480724410024
https://doi.org/10.1109/4235.985692
https://doi.org/10.1007/3-540-46004-7_8
https://doi.org/10.1007/978-3-642-01085-9_2
https://doi.org/10.3390/electronics11050704
https://doi.org/10.3390/electronics11050704
https://doi.org/10.1007/s10462-012-9328-0


Comput Mater Contin. 2026;87(1):5 37

35. Ou Y, Qin F, Zhou KQ, Yin PF, Mo LP, Mohd Zain A. An improved grey wolf optimizer with multi-strategies
coverage in wireless sensor networks. Symmetry. 2024;16(3):286. doi:10.3390/sym16030286.

36. Duan H, Qiao P. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning.
Int J Intell Comput Cybern. 2014;7(1):24–37. doi:10.1108/ijicc-02-2014-0005.

37. Wang J, Chen H. BSAS: beetle swarm antennae search algorithm for optimization problems. arXiv:1807.10470. 2018.
38. Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimed Tools Appl.

2021;80(5):8091–126. doi:10.1007/s11042-020-10139-6.
39. Deb K, Sindhya K, Hakanen J. Multi-objective optimization. In: Decision sciences. Boca Raton, FL, USA: CRC

Press; 2016. p. 145–84. doi:10.1201/9781315183176-4.
40. Zhang Y, Wang S, Ji G. A comprehensive survey on particle swarm optimization algorithm and its applications.

Math Probl Eng. 2015;2015(1):931256. doi:10.1155/2015/931256.
41. Zhang J, Lu Y, Wu Y, Wang C, Zang D, Abusorrah A, et al. PSO-based sparse source location in large-scale

environments with a UAV swarm. IEEE Trans Intell Transp Syst. 2023;24(5):5249–58. doi:10.1109/TITS.2023.
3237570.

42. de Sá AO, Nedjah N, de Macedo Mourelle L. Distributed efficient localization in swarm robotic systems using
swarm intelligence algorithms. Neurocomputing. 2016;172(1):322–36. doi:10.1016/j.neucom.2015.03.099.

43. Guilford T, Roberts S, Biro D, Rezek I. Positional entropy during pigeon homing II: navigational interpretation of
Bayesian latent state models. J Theor Biol. 2004;227(1):25–38. doi:10.1016/j.jtbi.2003.07.003.

44. Zhang X, Duan H, Yang C. Pigeon-inspired optimization approach to multiple UAVs formation reconfiguration
controller design. In: Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference; 2014 Aug
8–10; Yantai, China. Piscataway, NJ, USA: IEEE; 2014. p. 2707–12. doi:10.1109/CGNCC.2014.7007594.

45. Qiu H, Duan H. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design.
Sci China Technol Sci. 2015;58(11):1915–23. doi:10.1007/s11431-015-5860-x.

46. Wu H, Duan H. Hierarchical pigeon inspired optimization based Multi-UAV obstacle avoidance control. Aerosp
Sci Technol. 2025;159(6):109963. doi:10.1016/j.ast.2025.109963.

47. Zhang D, Duan H. Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV
cooperative path planning. Neurocomputing. 2018;313(9):229–46. doi:10.1016/j.neucom.2018.06.032.

48. Duan H, Huo M, Yang Z, Shi Y, Luo Q. Predator-prey pigeon-inspired optimization for UAV ALS longitudinal
parameters tuning. IEEE Trans Aerosp Electron Syst. 2019;55(5):2347–58. doi:10.1109/TAES.2018.2886612.

49. Zhang Y, Huang H, Wu H, Hao Z. Theoretical analysis of the convergence property of a basic pigeon-inspired
optimizer in a continuous search space. Sci China Inf Sci. 2019;62(7):70207. doi:10.1007/s11432-018-9753-5.

50. Rao Y, He D, Qu L. A probabilistic simplified sine cosine crow search algorithm for global optimization problems.
Eng Comput. 2023;39(3):1823–41. doi:10.1007/s00366-021-01578-2.

51. Jiang W, Zhou KQ, Sarkheyli-Hägele A, Zain AM. Modeling, reasoning, and application of fuzzy Petri net model:
a survey. Artif Intell Rev. 2022;55(8):6567–605. doi:10.1007/s10462-022-10161-0.

52. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses:
the PRISMA statement. Int J Surg. 2010;8(5):336–41. doi:10.1016/j.ijsu.2010.02.007.

53. Chen CF, Zain AM, Zhou KQ. Definition, approaches, and analysis of code duplication detection (2006–2020): a
critical review. Neural Comput Appl. 2022;34(23):20507–37. doi:10.1007/s00521-022-07707-2.

54. Qin F, Zain AM, Zhou KQ. Harmony search algorithm and related variants: a systematic review. Swarm Evol
Comput. 2022;74(7):101126. doi:10.1016/j.swevo.2022.101126.

55. Duan H, Qiu H. Advancements in pigeon-inspired optimization and its variants. Sci China Inf Sci.
2019;62(7):70201. doi:10.1007/s11432-018-9752-9.

56. Zhang Q, Li H. MOEA/D:a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol
Comput. 2007;11(6):712–31. doi:10.1109/TEVC.2007.892759.

57. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans
Evol Comput. 2002;6(2):182–97. doi:10.1109/4235.996017.

https://doi.org/10.3390/sym16030286
https://doi.org/10.1108/ijicc-02-2014-0005
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1201/9781315183176-4
https://doi.org/10.1155/2015/931256
https://doi.org/10.1109/TITS.2023.3237570
https://doi.org/10.1109/TITS.2023.3237570
https://doi.org/10.1016/j.neucom.2015.03.099
https://doi.org/10.1016/j.jtbi.2003.07.003
https://doi.org/10.1109/CGNCC.2014.7007594
https://doi.org/10.1007/s11431-015-5860-x
https://doi.org/10.1016/j.ast.2025.109963
https://doi.org/10.1016/j.neucom.2018.06.032
https://doi.org/10.1109/TAES.2018.2886612
https://doi.org/10.1007/s11432-018-9753-5
https://doi.org/10.1007/s00366-021-01578-2
https://doi.org/10.1007/s10462-022-10161-0
https://doi.org/10.1016/j.ijsu.2010.02.007
https://doi.org/10.1007/s00521-022-07707-2
https://doi.org/10.1016/j.swevo.2022.101126
https://doi.org/10.1007/s11432-018-9752-9
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/4235.996017


38 Comput Mater Contin. 2026;87(1):5

58. Wu X, Ming F, Gong W, Liao B, Guo Y. Multimodal multi-objective optimization via multi-operator adaptation
and clustering-based environmental selection. Swarm Evol Comput. 2025;96(4):101962. doi:10.1016/j.swevo.2025.
101962.

59. Zhang Z, Yu H, Ren X, Luo Y. A swarm exploring neural dynamics method for solving convex multi-objective
optimization problem. Neurocomputing. 2024;601(4):128203. doi:10.1016/j.neucom.2024.128203.

60. Zhu W, Duan H. Chaotic predator-prey biogeography-based optimization approach for UCAV path planning.
Aerosp Sci Technol. 2014;32(1):153–61. doi:10.1016/j.ast.2013.11.003.

61. Duan H, Shao S, Su B, Zhang L. New development thoughts on the bio-inspired intelligence based control for
unmanned combat aerial vehicle. Sci China Technol Sci. 2010;53(8):2025–31. doi:10.1007/s11431-010-3160-z.

62. Duan H, Li P. Bio-inspired computation in unmanned aerial vehicles. Berlin/Heidelberg, Germany: Springer; 2014.
63. Gharehchopogh FS. Quantum-inspired metaheuristic algorithms: comprehensive survey and classification. Artif

Intell Rev. 2023;56(6):5479–543. doi:10.1007/s10462-022-10280-8.
64. Yu Y, Lin J, Liu T, Lin D, Zhai Y. Improved cuckoo search algorithm with escape mechanism. In: Applications of

decision science in management. Singapore: Springer Nature; 2022. p. 301–9. doi:10.1007/978-981-19-2768-3_28.
65. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee

colony (ABC) algorithm. J Glob Optim. 2007;39(3):459–71. doi:10.1007/s10898-007-9149-x.
66. Yang XS, Deb S. Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC); 2009 Dec 9–11; Coimbatore, India. p. 210–4. doi:10.1109/NABIC.2009.5393690.
67. Abed-alguni BH, Alkhateeb F. Intelligent hybrid cuckoo search and β-hill climbing algorithm. J King Saud Univ

Comput Inf Sci. 2020;32(2):159–73. doi:10.1016/j.jksuci.2018.05.003.
68. Bouyer A, Hatamlou A. An efficient hybrid clustering method based on improved cuckoo optimization and

modified particle swarm optimization algorithms. Appl Soft Comput. 2018;67(8):172–82. doi:10.1016/j.asoc.2018.
03.011.

69. Garg H. A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci. 2019;478(4):499–523. doi:10.
1016/j.ins.2018.11.041.

70. Juang CF. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans
Syst Man Cybern Part B Cybern. 2004;34(2):997–1006. doi:10.1109/TSMCB.2003.818557.

71. Liang D, Liu Z, Bhamra R. Collaborative multi-robot formation control and global path optimization. Appl Sci.
2022;12(14):7046. doi:10.3390/app12147046.

72. Chen B, Lei H, Shen H, Liu Y, Lu Y. A hybrid quantum-based PIO algorithm for global numerical optimization.
Sci China Inf Sci. 2019;62(7):70203. doi:10.1007/s11432-018-9546-4.

73. Duan H, Tong B, Wang Y, Wei C. Mixed game pigeon-inspired optimization for unmanned aircraft system swarm
formation. In: Advances in swarm intelligence. Cham, Switzerland: Springer International Publishing; 2019. p.
429–38. doi:10.1007/978-3-030-26369-0_40.

74. He J, Liu Y, Chen B, Yi C. An improved Gaussian pigeon-inspired optimization algorithm. In: 2009 World Congress
on Nature & Biologically Inspired Computing (NaBIC); 2019 Jun 10–13; Wellington, New Zealand. p. 3270–6. doi:10.
1109/cec.2019.8790348.

75. Hai X, Wang Z, Feng Q, Ren Y, Xu B, Cui J, et al. Mobile robot ADRC with an automatic parameter tuning
mechanism via modified pigeon-inspired optimization. IEEE/ASME Trans Mechatron. 2019;24(6):2616–26. doi:10.
1109/TMECH.2019.2953239.

76. Huo M, Duan H, Luo D, Wang Y. Parameter estimation for a VTOL UAV using mutant pigeon inspired
optimization algorithm with dynamic OBL strategy. In: 2019 IEEE 15th International Conference on Control and
Automation (ICCA); 2019 Jul 16–19; Edinburgh, UK. p. 669–74. doi:10.1109/ICCA.2019.8899524.

77. Chen M, Zhong Y, Wang L. An improved pigeon-inspired optimization combining adaptive inertia weight with
a one-dimension modification mechanism. In: Bio-inspired computing: theories and applications. Singapore:
Springer; 2020. p. 177–92. doi:10.1007/978-981-15-3425-6_15.

78. Shi Y, Eberhart R. A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary
Computation Proceedings. IEEE World Congress on Computational Intelligence; 1998 May 4–9; Anchorage, AK,
USA. p. 69–73. doi:10.1109/ICEC.1998.699146.

https://doi.org/10.1016/j.swevo.2025.101962
https://doi.org/10.1016/j.swevo.2025.101962
https://doi.org/10.1016/j.neucom.2024.128203
https://doi.org/10.1016/j.ast.2013.11.003
https://doi.org/10.1007/s11431-010-3160-z
https://doi.org/10.1007/s10462-022-10280-8
https://doi.org/10.1007/978-981-19-2768-3_28
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1016/j.jksuci.2018.05.003
https://doi.org/10.1016/j.asoc.2018.03.011
https://doi.org/10.1016/j.asoc.2018.03.011
https://doi.org/10.1016/j.ins.2018.11.041
https://doi.org/10.1016/j.ins.2018.11.041
https://doi.org/10.1109/TSMCB.2003.818557
https://doi.org/10.3390/app12147046
https://doi.org/10.1007/s11432-018-9546-4
https://doi.org/10.1007/978-3-030-26369-0_40
https://doi.org/10.1109/cec.2019.8790348
https://doi.org/10.1109/cec.2019.8790348
https://doi.org/10.1109/TMECH.2019.2953239
https://doi.org/10.1109/TMECH.2019.2953239
https://doi.org/10.1109/ICCA.2019.8899524
https://doi.org/10.1007/978-981-15-3425-6_15
https://doi.org/10.1109/ICEC.1998.699146


Comput Mater Contin. 2026;87(1):5 39

79. Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99 (cat. No. 99TH8406); 1999 Jul 6–9. Washington, DC, USA. p. 101–6. doi:10.
1109/cec.1999.781900.

80. Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 Congress on
Evolutionary Computation; 2001 May 27–30; Seoul, Republic of Korea. p. 101–6. doi:10.1109/CEC.2001.934377.

81. Xu SH, Li XX. An adaptive changed inertia weight particle swarm algorithm. Sci Technol Eng. 2012;9:1671–815.
82. Li P, Chen G, Gao R. Research on wireless sensor network location based on Improve Pigeon-inspired optimization.

In: IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops); 2019 Aug
11–13; Changchun, China. p. 228–32. doi:10.1109/iccchinaw.2019.8849942.

83. Duan H, Zhao J, Deng Y, Shi Y, Ding X. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative
search-attack mission planning. IEEE Trans Aerosp Electron Syst. 2021;57(1):706–20. doi:10.1109/TAES.2020.
3029624.

84. Herdianti W, Gunawan AAS, Komsiyah S. Distribution cost optimization using pigeon inspired optimization
method with reverse learning mechanism. Procedia Comput Sci. 2021;179(7):920–9. doi:10.1016/j.procs.2021.01.081.

85. Al-Thanoon NA, Qasim OS, Algamal ZY. A new hybrid pigeon-inspired optimization algorithm for solving
multidimensional knapsack problems. In: 2021 7th International Conference on Contemporary Information
Technology and Mathematics (ICCITM); 2021 Aug 25–26; Mosul, Iraq. p. 226–9. doi:10.1109/ICCITM53167.2021.
9677716.

86. Bai T, Wang D, Jiang Y. Research on improved PIO based on adaptive inertia weight strategy and fruit fly
optimization strategy. In: Advances in guidance, navigation and control. Singapore: Springer Nature; 2023. p.
3911–21. doi:10.1007/978-981-19-6613-2_381.

87. Zheng Z, Duan H, Wei C. Binary pigeon-inspired optimization for quadrotor swarm formation control. In:
Proceedings of the 11th International Conference on Swarm Intelligence; 2020 Jul 14–20; Online. p. 71–82.

88. Pan JS, Tian AQ, Chu SC, Li JB. Improved binary pigeon-inspired optimization and its application for feature
selection. Appl Intell. 2021;51(12):8661–79. doi:10.1007/s10489-021-02302-9.

89. Lyu Y, Zhang Y, Chen H. An improved pigeon-inspired optimization for multi-focus noisy image fusion. J Bionic
Eng. 2021;18(6):1452–62. doi:10.1007/s42235-021-00100-0.

90. Cui Z, Zhang J, Wang Y, Cao Y, Cai X, Zhang W, et al. A pigeon-inspired optimization algorithm for many-objective
optimization problems. Sci China Inf Sci. 2019;62(7):70212. doi:10.1007/s11432-018-9729-5.

91. Chen L, Duan H, Fan Y, Wei C. Multi-objective clustering analysis via combinatorial pigeon inspired optimization.
Sci China Technol Sci. 2020;63(7):1302–13. doi:10.1007/s11431-020-1587-y.

92. Chen G, Qian J, Zhang Z, Li S. Application of modified pigeon-inspired optimization algorithm and constraint-
objective sorting rule on multi-objective optimal power flow problem. Appl Soft Comput. 2020;92(11):106321.
doi:10.1016/j.asoc.2020.106321.

93. Shang J, Li Y, Sun Y, Li F, Zhang Y, Liu JX. MOPIO: a multi-objective pigeon-inspired optimization algorithm for
community detection. Symmetry. 2021;13(1):49. doi:10.3390/sym13010049.

94. Qiu H, Duan H. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among
obstacles. Inf Sci. 2020;509(6):515–29. doi:10.1016/j.ins.2018.06.061.

95. Ruan WY, Duan HB. Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired
optimization. Front Inform Technol Electron Eng. 2020;21(5):740–8. doi:10.1631/fitee.2000066.

96. Huo MZ, Duan HB. An adaptive mutant multi-objective pigeon-inspired optimization for unmanned aerial vehicle
target search problem. Control Theory Appl. 2020;37(3):584–91.

97. Xu Z, Xu L, Ling X. An improved pigeon-inspired optimization algorithm for solving dynamic facility layout
problem with uncertain demand. Procedia CIRP. 2021;104(4):1203–8. doi:10.1016/j.procir.2021.11.202.

98. Liu C, Ma Y, Yin H, Yu L. Human resource allocation for multiple scientific research projects via improved pigeon-
inspired optimization algorithm. Sci China Technol Sci. 2021;64(1):139–47. doi:10.1007/s11431-020-1577-0.

99. Hu C, Qu G, Zhang Y. Pigeon-inspired fuzzy multi-objective task allocation of unmanned aerial vehicles for multi-
target tracking. Appl Soft Comput. 2022;126(8):109310. doi:10.1016/j.asoc.2022.109310.

https://doi.org/10.1109/cec.1999.781900
https://doi.org/10.1109/cec.1999.781900
https://doi.org/10.1109/CEC.2001.934377
https://doi.org/10.1109/iccchinaw.2019.8849942
https://doi.org/10.1109/TAES.2020.3029624
https://doi.org/10.1109/TAES.2020.3029624
https://doi.org/10.1016/j.procs.2021.01.081
https://doi.org/10.1109/ICCITM53167.2021.9677716
https://doi.org/10.1109/ICCITM53167.2021.9677716
https://doi.org/10.1007/978-981-19-6613-2_381
https://doi.org/10.1007/s10489-021-02302-9
https://doi.org/10.1007/s42235-021-00100-0
https://doi.org/10.1007/s11432-018-9729-5
https://doi.org/10.1007/s11431-020-1587-y
https://doi.org/10.1016/j.asoc.2020.106321
https://doi.org/10.3390/sym13010049
https://doi.org/10.1016/j.ins.2018.06.061
https://doi.org/10.1631/fitee.2000066
https://doi.org/10.1016/j.procir.2021.11.202
https://doi.org/10.1007/s11431-020-1577-0
https://doi.org/10.1016/j.asoc.2022.109310


40 Comput Mater Contin. 2026;87(1):5

100. Stöcker C, Bennett R, Nex F, Gerke M, Zevenbergen J. Review of the current state of UAV regulations. Remote
Sens. 2017;9(5):459. doi:10.3390/rs9050459.

101. MahmoudZadeh S, Yazdani A, Kalantari Y, Ciftler B, Aidarus F, Al Kadri MO. Holistic review of UAV-centric
situational awareness: applications, limitations, and algorithmic challenges. Robotics. 2024;13(8):117. doi:10.3390/
robotics13080117.

102. Nex F, Remondino F. UAV for 3D mapping applications: a review. Appl Geomat. 2014;6(1):1–15. doi:10.1007/s12518-
013-0120-x.

103. Huo M, Duan H, Yang Q, Zhang D, Qiu H. Live-fly experimentation for pigeon-inspired obstacle avoidance of
quadrotor unmanned aerial vehicles. Sci China Inf Sci. 2019;62(5):52201. doi:10.1007/s11432-018-9576-x.

104. Li S, Deng Y. Quantum-entanglement pigeon-inspired optimization for unmanned aerial vehicle path planning.
Aircr Eng Aerosp Technol. 2018;91(1):171–81. doi:10.1108/aeat-03-2018-0107.

105. Wang BH, Wang DB, Ali ZA. A Cauchy mutant pigeon-inspired optimization-based multi-unmanned aerial
vehicle path planning method. Meas Control. 2020;53(1–2):83–92. doi:10.1177/0020294019885155.

106. Xu B, Zhang DL. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by
quantum behavior. Acta Aeronaut Astronaut Sin. 2020;41(8):323722. (In Chinese).

107. Huo M, Duan H, Fan Y. Pigeon-inspired circular formation control for multi-UAV system with limited target
information. Guid Navigat Control. 2021;1(1):2150004. doi:10.1142/s2737480721500047.

108. Bai T, Wang D, Masood RJ. Formation control of quad-rotor UAV via PIO. Sci China Technol Sci. 2022;65(2):432–9.
doi:10.1007/s11431-020-1794-2.

109. Yu Y, Liu J, Wei C. Hawk and pigeon’s intelligence for UAV swarm dynamic combat game via competitive learning
pigeon-inspired optimization. Sci China Technol Sci. 2022;65(5):1072–86. doi:10.1007/s11431-021-1951-9.

110. Ruan W, Duan H, Deng Y. Autonomous maneuver decisions via transfer learning pigeon-inspired optimization
for UCAVs in dogfight engagements. IEEE/CAA J Autom Sin. 2022;9(9):1639–57. doi:10.1109/jas.2022.105803.

111. Bin L, Wei C, Duan H. Gaussian adaptive mutation pigeon-inspired optimized backstepping controller for aerial
manipulation trajectory tracking. In: Advances in guidance, navigation and control. Singapore: Springer Nature;
2023. p. 2800–9. doi:10.1007/978-981-19-6613-2_272.

112. Zhou X, Wang F, Zhou C, Shan R. The HSGWO-MPIO algorithm based on improved search capability. J
Supercomput. 2023;79(14):15997–6016. doi:10.1007/s11227-023-05246-8.

113. Tong B, Chen L, Duan H. A path planning method for UAVs based on multi-objective pigeon-inspired optimisation
and differential evolution. Int J Bio Inspired Comput. 2021;17(2):105. doi:10.1504/ijbic.2021.114079.

114. Chen G, Qian J, Zhang Z, Sun Z. Applications of novel hybrid bat algorithm with constrained Pareto fuzzy
dominant rule on multi-objective optimal power flow problems. IEEE Access. 2019;7:52060–84. doi:10.1109/access.
2019.2912643.

https://doi.org/10.3390/rs9050459
https://doi.org/10.3390/robotics13080117
https://doi.org/10.3390/robotics13080117
https://doi.org/10.1007/s12518-013-0120-x
https://doi.org/10.1007/s12518-013-0120-x
https://doi.org/10.1007/s11432-018-9576-x
https://doi.org/10.1108/aeat-03-2018-0107
https://doi.org/10.1177/0020294019885155
https://doi.org/10.1142/s2737480721500047
https://doi.org/10.1007/s11431-020-1794-2
https://doi.org/10.1007/s11431-021-1951-9
https://doi.org/10.1109/jas.2022.105803
https://doi.org/10.1007/978-981-19-6613-2_272
https://doi.org/10.1007/s11227-023-05246-8
https://doi.org/10.1504/ijbic.2021.114079
https://doi.org/10.1109/access.2019.2912643
https://doi.org/10.1109/access.2019.2912643

	Pigeon-Inspired Optimization Algorithm: Definition, Variants, and Its Applications in Unmanned Aerial Vehicles
	1 Introduction
	2 Methodology and Data Collection
	3 Basic Concepts of PIO, MPIO and UAVs
	4 Variants of PIO and MPIO
	5 PIO and MPIO Applications in UAVs
	6 Conclusion and Potential Research Domains
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


