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ABSTRACT: Optimizing convolutional neural networks (CNNs) for IoT attack detection remains a critical yet
challenging task due to the need to balance multiple performance metrics beyond mere accuracy. This study
proposes a unified and flexible optimization framework that leverages metaheuristic algorithms to automatically
optimize CNN configurations for IoT attack detection. Unlike conventional single-objective approaches, the proposed
method formulates a global multi-objective fitness function that integrates accuracy, precision, recall, and model size
(speed/model complexity penalty) with adjustable weights. This design enables both single-objective and weighted-
sum multi-objective optimization, allowing adaptive selection of optimal CNN configurations for diverse deployment
requirements. Two representative metaheuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), are employed to optimize CNN hyperparameters and structure. At each generation/iteration, the best configura-
tion is selected as the most balanced solution across optimization objectives, i.e., the one achieving the maximum value
of the global objective function. Experimental validation on two benchmark datasets, Edge-IIoT and CIC-IoT2023,
demonstrates that the proposed GA- and PSO-based models significantly enhance detection accuracy (94.8%–98.3%)
and generalization compared with manually tuned CNN configurations, while maintaining compact architectures.
The results confirm that the multi-objective framework effectively balances predictive performance and computational
efficiency. This work establishes a generalizable and adaptive optimization strategy for deep learning-based IoT attack
detection and provides a foundation for future hybrid metaheuristic extensions in broader IoT security applications.

KEYWORDS: Genetic algorithm (GA); particle swarm optimization (PSO); multi-objective optimization; convolu-
tional neural network—CNN; IoT attack detection; metaheuristic optimization; CNN configuration

1 Introduction
The Internet of Things (IoT) has emerged as a prominent technological trend with the capability to

interconnect billions of physical devices, ranging from sensors and wearables to automated control systems,
thereby delivering intelligence and convenience across diverse domains such as healthcare, industry, smart
cities, and digital homes [1–4]. However, the explosive growth in the number of devices and the heterogeneity
of the IoT ecosystem have significantly increased security vulnerabilities, making IoT systems attractive
targets for cyberattacks, particularly distributed denial-of-service (DDoS) attacks, flooding attacks, and IoT
malware [1,5,6].
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Ensuring the security of IoT systems has thus become more critical than ever [2,7,8]. In this context,
intrusion detection systems (IDS) play a vital role in monitoring, detecting, and mitigating cyberat-
tacks [7–9].

Artificial intelligence (AI)-based methods, including machine learning (ML) and deep learning (DL),
have been widely employed to address IoT security challenges [2,7,10,11]. Convolutional neural networks
(CNNs) have demonstrated superior capability in feature extraction and classification, making them a popu-
lar choice for applications involving time-series signals, including intrusion detection [12–14]. Nevertheless,
determining the optimal architecture and hyperparameters for CNNs remains a considerable challenge,
often requiring computationally expensive manual experimentation and heavily relying on the expertise of
researchers [15–17].

To address the problem of CNN configuration optimization, metaheuristic algorithms have emerged
as powerful tools owing to their flexibility and effectiveness in solving complex optimization problems
[10,15,18–21]. These algorithms are problem-independent and do not rely on gradient information, enabling
a comprehensive exploration of the solution space and the ability to address both single-objective and
multi-objective optimization. This paper proposes a comprehensive optimization approach that leverages
metaheuristic algorithms to configure CNNs for IoT intrusion detection. The proposed method is appli-
cable to both single-objective and multi-objective optimization, thereby allowing the selection of suitable
optimization goals for different problem classes. To achieve this, a global objective function is constructed
by integrating performance components such as accuracy, precision, recall, and model computational
complexity, with corresponding weights. By adjusting these weights, the optimization process can be tailored
to specific objectives. Several metaheuristic algorithms, including Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO), are proposed and evaluated for CNN configuration optimization. The global
objective function is employed as the fitness function in evolutionary algorithms. At each generation, the
best configuration is selected as the most balanced one across optimization objectives, i.e., the configuration
with the highest value of the global objective function.

This work differs from existing GA-CNN, PSO-CNN, NSGA-II CNN, and hybrid metaheuristic-based
intrusion detection models in several aspects:

(1) We introduce a unified multi-objective CNN optimization framework that simultaneously considers
accuracy, precision, recall, and model complexity through a normalized weighted formulation.

(2) Unlike prior works that optimize only a subset of hyperparameters, our approach jointly tunes
both architectural (number of convolutional layers, kernel size, filters, dense size) and training-level
hyperparameters (learning rate, batch size, dropout, patience).

(3) We integrate both GA and PSO as independent optimizers under a common evaluation and search
policy, enabling a comparative analysis of their exploration–exploitation balance on IoT attack
detection datasets.

(4) We optimize a significantly larger 11-dimensional hybrid hyperparameter space, which is rarely
addressed in previous metaheuristic CNN optimization research.

These differences will be described and clarified in the following sections.

2 Related Works

2.1 Optimizing Convolutional Neural Networks (CNNs) Using Metaheuristic Algorithms for IoT Attack
Detection
The combination of metaheuristic algorithms and CNNs has been extensively studied to enhance attack

detection performance in IoT environments [15,22–24]. Metaheuristic algorithms have proven to be effective,
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robust, and high performing in addressing real-world optimization problems, including classification and
optimization tasks [10]. They can optimize deep neural network (DNN) models by tuning hyperparameters
and architecture. For instance, one study explored seven metaheuristic algorithms, both genetic and non-
genetic, to derive optimal solutions for balancing CNN hardware parameters and accuracy [12].

More specifically, in the context of IoT attack detection, a model called MHADMA-BCIDL was
developed, leveraging blockchain technology for enhanced security and integrating a convolutional neural
network with bidirectional long short-term memory and attention mechanism (CNN-BiLSTM-Attention)
to detect and classify DDoS attacks [25]. This model further employed the Arctic Tern Optimization
(ATO) technique for dimensionality reduction during feature selection and the Walrus Optimization (WO)
algorithm to fine-tune the hyperparameters of the CNN-BiLSTM-Attention approach [25]. A novel IoT
network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional
Neural Network (APSO-CNN) [26] and an adaptive hybrid method combining Adaptive Particle Swarm
Optimization and Whale Optimization Algorithm (APSO-WOA) [27] were also proposed to optimize CNN
hyperparameters, where the fitness value was defined as the cross-entropy loss of the validation set during
CNN training.

Another study adopted the Salp Swarm Algorithm (SSA), inspired by the cooperative foraging and
navigation behaviors of salps, to select optimal features, followed by employing deep learning classifiers such
as CNN, RNN, and DNN for attack classification [28]. For DDoS detection, the Hunger Games Search (HGS)
algorithm was applied to optimize data and select the most effective parameters for deep learning models,
achieving 100% accuracy on one dataset and 99.99% on another [29]. In the NB-IoT environment, where
low-rate DoS attacks are prevalent, the Simulated Annealing (SA) method was employed to adjust CNN
weights, providing better global search capabilities and mitigating overfitting issues [30]. Other studies have
also utilized GA to search for optimal CNN architectures [31,32].

2.2 Single-Objective and Multi-Objective Optimization
Metaheuristic algorithms exhibit high flexibility and can be applied to various optimization problems,

including both single-objective and multi-objective formulations. In single-objective optimization, algo-
rithms such as GA, PSO, and Differential Evolution (DE) have been widely adopted to obtain optimal
solutions [12,33,34]. GA operates on a population of candidate solutions and employs genetic operators such
as crossover and mutation, along with sophisticated selection mechanisms. PSO, inspired by the collective
behaviors observed in nature (e.g., bird flocking), updates particle positions based on both personal best
solutions and global best solutions. These algorithms are characterized by their fast convergence rates and
ease of implementation in complex parameter spaces [15,35].

In multi-objective optimization, algorithms such as NSGA-II (Non-dominated Sorting Genetic
Algorithm-II), RNSGA-II (Reference point-based NSGA-II), AGE-MOEA (Adaptive Geometry Estimation-
based Multi-Objective Evolutionary Algorithm), AGE-MOEA-II, and MOPSO (Multi-objective PSO) have
been employed to search for Pareto-optimal solution sets that balance performance and cost [12,23,36].
Multi-objective optimization is particularly important in scenarios where multiple conflicting goals must
be addressed, such as maximizing accuracy while minimizing the computational complexity of CNN
models [12]. A novel multi-objective swarm optimization approach based on Fuzzy-Pareto-Dominance has
also been introduced, extending traditional single-objective algorithms into the multi-objective domain [37].

Common performance factors used in objective functions for CNN-based attack detection models
include Accuracy, Precision, Recall, and F1-score [10,38,39]. For instance, a CNN–metaheuristic hybrid
model achieved 98% accuracy, 96% precision, and 94% recall [10]. Incorporating these performance indica-
tors with computational complexity (often tied to hardware constraints) represents a typical multi-objective
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approach to optimizing CNN configurations [12,32,36]. In evolutionary optimization of CNNs, the fitness
function can be defined as a weighted aggregation of individual objectives [40]. This enables the algorithm
to make informed decisions at each iteration, continuously refining solutions to achieve global optimality.
Nevertheless, determining optimal parameter settings for metaheuristic algorithms remains challenging and
time-consuming, requiring a careful balance between exploration (searching broadly across the parameter
space) and exploitation (intensively refining promising regions). Properly defining the objective function is
therefore critical, as it directly influences the quality of the resulting solutions.

2.3 IoT Attack Detection Datasets
To evaluate intrusion detection models in IoT environments, the use of reliable datasets is crucial [25,41].

These datasets must reflect realistic IoT network traffic and contain various attack types to train and test
detection models [6,38,42–44]. Some commonly used IoT attack detection datasets include:

• BoT-IoT Dataset: Created in 2018 and published in 2019 by the University of New South Wales (UNSW),
this dataset is a modern and realistic resource for training botnet attack detection models in IoT
networks [9,25,38,45,46]. It contains millions of botnet traffic samples classified into scenarios such as
DDoS, DoS, reconnaissance, and information theft [38].

• ToN-IoT Dataset: This dataset was generated from a large-scale, heterogeneous IoT network, reflecting
data from all layers of the IoT system, including cloud, fog, and edge [7,9,43]. It plays a critical role in
enabling effective intrusion detection in IoT [43].

• CIC-IoT-2022 Dataset: This dataset includes IoT network traffic data representing both normal behavior
and multiple attack types, and it is widely used for IoT attack detection and classification tasks employing
ML techniques [9].

Compared with older datasets such as KDD99 or NSL-KDD [7,47], newer datasets provide higher
fidelity, incorporating modern attack types such as DDoS, information theft, and IoT malware [5,6,9,43].

Studies [9,43] emphasize the importance of representative datasets that are class-balanced and feature-
standardized for effectively training AI models. The correct dataset selection is a prerequisite for ensuring
fair evaluation of the performance of metaheuristic methods and CNNs.

Table 1 compares related works applying metaheuristic algorithms for single-multi-objective CNN
configuration optimization, and highlights the focus and distinct improvements in our method. It can
be observed that GA and PSO are the most employed algorithms for CNN architecture optimization,
particularly when the objective is to enhance accuracy, as in the studies by Kilichev & Kim and APSO-WOA.
When the objectives target minimizing latency, computational cost, or training speed, hybrid approaches
such as eCGA (Alexander & Kumar) and PSO + clustering (PSO-CCNN) demonstrate effectiveness in
balancing model performance with practical deployability. Cases employing PSO + ABC (SwarmCNN) or
PSO +WOA (APSO-WOA) further illustrate the flexibility of hybrid metaheuristic approaches, extending
the applicability of CNNs across diverse IoT data domains.

The studies reviewed in Table 1 reveal a growing trend in applying metaheuristic algorithms to optimize
deep learning models, particularly CNNs, for IoT network intrusion detection. Most work primarily focuses
on improving accuracy or specific evaluation metrics such as precision and recall. However, most of these
studies still lack a comprehensive approach to balancing detection performance with computational cost—an
aspect of critical importance for real-time monitoring systems and resource-constrained IoT environments.
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Motivated by this gap, the approach proposed in this paper is to construct a global objective function
that integrates performance evaluation components such as accuracy, precision, recall, and the compu-
tational complexity of the CNN model, each weighted adaptively. This global objective function enables
flexible adjustments according to specific requirements: prioritizing absolute accuracy, maximizing detection
coverage, or minimizing computational cost, thereby supporting various real-world deployment scenarios.

To address this multi-objective optimization problem, the paper proposes employing well-established
metaheuristic algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to search
for the optimal CNN configuration. In this framework, the global objective function acts as the fitness
function during the evolutionary process. Across generations, candidate CNN configurations are evaluated
based on their global objective values, and the highest-scoring configuration is selected as the most balanced
solution among the objectives. This approach is not only feasible but also provides a flexible and extensible
framework for deep learning–based intrusion detection systems in complex IoT environments.

3 Method Development

3.1 Configuration Vector Construction
3.1.1 CNN Architecture for IoT Attack Detection Problem

The CNN architecture in the IoT attack detection problem is described in Fig. 1. The CNN model has
two types of parameters: training parameters (or parameters) and structural parameters (hyperparameters).
Training parameters include the weight array (both the layer weights in the fully connected layer and the
shared weight array—the sub-matrices for calculating convolution, also known as the sliding window) and
the bias obtained after training the model. Hyperparameters describe the structure of the CNN set up before
training. A CNN model has a specific structure determined by the parameters: window size, number of
convolution layers, activation function, number of neurons/layers, parameters (filter size, stride, padding,
dropout), etc.

Figure 1: Example of a specific CNN structure

3.1.2 Configuration Vector
Definition 1: CNN Configuration Vector

The CNN configuration vector is a set of values corresponding to the hyperparameters used by CNN
during the training process. It is denoted as x and defined by Eq. (1), where each component corresponds to
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one hyperparameter described in Table 2.

x = {xi , i = 1 . . . N} (1)

Table 2: Some hyperparameters describing the CNN configuration

Hyperparameter Symbol Value range Example Description
Number of

convolutional layers x1 D1 [1, 3] Determines the depth of feature
extraction.

Number of filters x2 D2
{16, 32, 64,
128, 256}

Number of filters in a convolution
layer. More filters allow the model to

learn more complex patterns but
increase computational requirements.

Kernel size x3 D3 {3, 5, 7, 9, 11} Determines how many input data
points each filter processes at a time

Pooling size x4 D4 [2, 5]
Defines the downsampling factor after
convolutional layers, affecting feature

reduction.

Number of dense
layers x5 D5 [1, 3]

Number of fully connected (dense)
layers. More layers capture complex
patterns but may cause overfitting.

Number of neurons
in dense layers x6 D6

{128, 256,
512}

Number of units in dense layers. More
neurons increase representation power

but also risk of overfitting.

Dropout rate x7 D7 [0.1, 0.5] Dropout rate—a regularization
technique to prevent overfitting.

Learning rate x8 D8
[1 × 10−5, 1 ×

10−2]
Learning rate—controls the step size

in weight updates during training.

Batch size x9 D9
{32, 64, 128,

256, 512}
Batch size—influences gradient
estimation and training speed.

Number of epochs x10 D10 [20, 50]
Number of training iterations

(epochs)—determines the learning
duration of the model.

Early-stopping
patience x11 D11 [5, 10] Early stopping patience—controls

tolerance before terminating training.

3.2 Constructing an Overall Optimization Model to Find the Optimal CNN Configuration Vector for IoT
System Attack Detection IoT
The IoT attack detection task that employs the CNN architecture described in Section 3.1 consists

of two stages: training and detection. The training stage is performed to obtain a suitable CNN model.
Training is executed for each candidate CNN configuration. Current studies on IoT attack detection typically
train a CNN with a specific, fixed configuration and do not apply optimization methods to select the best
configuration. The objective of the optimization task is to find the optimal configuration vector x* for which
the objective function f attains its maximum value. This paper proposes and formulates a comprehensive
optimization model applicable to both single-objective and multi-objective optimization. Single-objective
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optimization is performed with respect to each of the following objectives: accuracy, precision, recall,
and performance (e.g., speed). These component objective functions are denoted as follows: f 1—accuracy,
f 2—precision, f 3—recall, and f 4—speed.

Multi-objective optimization is carried out according to the weighted-sum method—aiming to achieve
a balanced trade-off among the conflicting objectives. The optimization model of the comprehensive problem
can be expressed as Eq. (2):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (x) →max∀x ∈ X

f (x) =
4
∑
i=1

wi × fi

4
∑
i=1

wi = 1

(2)

where:

– x = { x1, x2, . . ., x11} denotes a configuration vector
– X represents the configuration space
– f is the optimization function, which also serves as the global objective function in the problem
– f i denotes the individual objective functions,
– wi represents the weight associated with each individual objective function.

3.2.1 Single-Objective Optimization
From Eq. (2) of the general optimization problem, different single-objective formulations can be derived

by adjusting the weights accordingly. Specifically:

– Accuracy optimization: f (x) = f 1(x); w1 = 1 và w2 = w3 = w4 = 0
– Precision optimization: f (x) = f 2(x); w2 = 1 và w1 = w3 = w4 = 0
– Recall optimization: f (x) = f 3(x); w3 = 1 và w2 = w1 = w4 = 0
– Speed optimization: f (x) = f 4(x); w4 = 1 và w2 = w3 = w1 = 0.

3.2.2 Multi-Objective Optimization
The scalarized multi-objective optimization problem aims to achieve a balance among the competing

objectives, where the optimal solution is identified when the global objective function reaches its maximum.
In the context of IoT intrusion detection, the complete multi-objective optimization problem is described
in Eq. (2), where the global objective function is computed as a weighted aggregation of the individual
objective functions. The weights wi represent the relative importance of each objective f i compared to the
others. However, the weighted sum only approximates the Pareto front when the weights change.

Accordingly, from the full multi-objective optimization problem, the weights can be adjusted to derive
alternative formulations that fit different contextual requirements. Specifically, several representative cases
include:

– Balancing Accuracy and speed: when w2 = w3 = 0
– Balancing Accuracy, Precision and Recall: when w4 = 0
– Balancing Accuracy, Precision, Recall and Speed: when all of wi ≠ 0.

3.3 Construction of the Objective Functions
Definition 2: Accuracy Objective Function f 1
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Definition and formulation of the evaluation function:

f1 =
TP + TN

TP + TN + FN + FP
(3)

Accuracy (Acc) represents the overall correctness of the model. While this metric provides a general
evaluation, it may not always reflect the true effectiveness of a model.

For instance, consider two models:

– Model A achieves 99% accuracy but misclassifies a critical case—predicting that a patient does not have
cancer when in fact they do (false negative). This results in the patient not receiving treatment, potentially
leading to severe consequences. Similarly, in IoT intrusion detection, a dangerous cyberattack could be
misclassified as normal traffic, which poses a significant threat.

– Model B, in contrast, achieves only 96% accuracy. However, it does not miss any true positive cancer
cases. The lower accuracy is due to some false positives, where healthy patients are incorrectly flagged
as having cancer. These cases are later confirmed through further testing and dismissed without
critical harm.

This example illustrates that a model with higher accuracy may not necessarily be the safer or more
effective choice.
Definition 3: Precision Objective Function f 2

To address the limitations of accuracy, precision is introduced as an objective function. Precision
measures the proportion of true positives among all predicted positives, and higher precision indicates fewer
false positives.

f2 =
TP

TP + FP
(4)

Precision becomes particularly important in scenarios where false positives have severe implications.
For example, in spam email detection, a false positive occurs when a legitimate email is mistakenly
classified as spam. Misclassifying an important business email—such as one containing a multi-million-
dollar contract—can result in significant negative consequences. Therefore, in such contexts, precision
should be prioritized when selecting the optimal model.
Definition 4: Recall Objective Function f 3

f3 =
TP

TP + FN
(5)

The higher the Recall value, the lower the rate of False Negatives (FN). Recall should be assigned a higher
weight when selecting the most appropriate model in scenarios where misclassifying actual Positive instances
as Negative leads to severe consequences. For example, in the case of cancer diagnosis, misclassifying a cancer
patient as healthy and sending them home without early treatment may result in catastrophic outcomes.

In this study, we do not use the F1-score in the optimization. Instead, we optimize directly for Precision
and Recall, as F1-score equally weights both metrics (0.5 each), which may not align with the specific priorities
of IoT intrusion detection. Our multi-objective optimization relies solely on accuracy, precision, recall,
and model size. F1-score is still reported after training as an external metric, given its widespread use in
IDS evaluation.
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Definition 5: Speed Objective Function f 4

The evaluation of speed is simplified by relating it to the total number of model parameters. Speed is
inversely proportional to model complexity, and model complexity is directly proportional to the number of
parameters. Therefore, speed is inversely proportional to the parameter count of the CNN model. For each
configuration xi, let p (xi) denote the number of parameters; the speed evaluation function is then defined
as following Eq. (6):

f4 =
1

1 + α ⋅ log10(p (xi))
(6)

The use of log10 (p (xi)) serves to normalize the scale, as CNN models often involve a large number of
parameters, ranging from tens of thousands to hundreds of millions. The function f4 always lies within the
interval (0, 1) since log10 (p (x)) > 0.

For lightweight CNN architectures suitable for IoT environments (e.g., Tiny CNN) to standard deep
models such as ResNet-50, AlexNet (2012), and VGG16, the parameter size p (x) typically falls within the
range [104, 108]. We exclude extremely large-scale models (e.g., ViT, ResNet-152, etc.), which often exceed
p (x) > 108 parameters and are unsuitable for IoT edge devices. To normalize f 4 into a value range comparable
to the other objective functions f i, we select scaling factors α = 0.005, 0.01, or 0.02.

The scaling factor α in the speed objective function f 4 is introduced to normalize the variation in model
parameter size and to control the sensitivity of the function to model complexity. Since CNN architectures
differ significantly in terms of parameter count—from lightweight IoT-oriented networks (e.g., TinyCNN,
MobileNet) to large-scale models (e.g., ResNet-152, ViT)—the same value of α may not ensure a consistent
evaluation range across datasets. Therefore, α is selected adaptively according to the dataset characteristics
and the expected computational constraints of the deployment environment. Specifically, IoT and edge
datasets typically correspond to limited-resource environments, where model speed is more critical; hence, a
larger scaling factor (α ∈ [0.01, 0.02]) is employed to amplify the impact of parameter growth on the objective
function. Conversely, for cloud-based or high-performance datasets where computational resources are
sufficient, a smaller scaling factor (α ∈ [0.001, 0.005]) is preferable to maintain smoother sensitivity and avoid
over-penalizing complex models.

The selection of the scaling factor α for the complexity penalty f4 was guided by both the model
parameter range [pmin, pmax] and the computational context of each dataset. Through mathematical scaling
analysis and empirical sensitivity tests (α ∈ {0.005, 0.01, 0.02}), we found that α = 0.01 or 0.005 ensures f4
remains comparable in magnitude to the accuracy-related objectives ( f1– f3), preventing over- or under-
penalization of model size. This adaptive choice was applied consistently in all GA and PSO experiments,
supporting fair comparison and reproducibility while accurately reflecting the trade-off between model
complexity and inference speed.
Definition 6: Global Objective Function f

Among the above-defined evaluation measures, each metric corresponds to specific goals and datasets.
To enable flexible application across various IoT intrusion detection scenarios, we construct a global objective
function, computed as described in Eq. (2).

We adopt a weighted-sum scalarization as our default multi-objective strategy: the global fitness is
computed as f (x). This formulation allows us to incorporate accuracy, precision, recall, and model complexity
into a single tunable objective while maintaining compatibility with GA/PSO operators. The weights {w1,
w2, w3, w4} were selected based on (1) practical IDS priorities, (2) empirical tuning, and (3) normalization
to ensure scale fairness between performance metrics and model complexity. We follow a domain-driven
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approach: IoT intrusion detection requires high recall to avoid missing malicious events, therefore w3 is
slightly higher. The complexity penalty w4 is tuned to reflect the constraints of IoT/Edge hardware.

3.4 Applying Metaheuristic Algorithms to Optimize CNN Configuration in IoT Intrusion Detection
Essentially, solving the optimization problem described in Eq. (2) involves searching within the solution

space for an extreme value of the objective function. As shown in Eq. (2) and Table 1, the search space is
defined as the Cartesian product of the value domains D1, D2, . . . D11:

X = D1 × D2 × . . . × D11 (7)

As illustrated in Table 1, the domains D7 and D8 are continuous and contain infinitely many elements,
while the remaining domains are discrete. Consequently, from Eq. (7), the search space X is infinite; each
vector in the space has 11 dimensions, comprising both discrete and continuous components, without a
unified closed-form representation. Therefore, the optimization problem Eq. (2) cannot be solved using
conventional mathematical methods that rely on differentiation and extremum-finding. Similarly, brute-
force enumeration is infeasible due to the infinite size of the search space. As a result, solving this problem
requires the adoption of metaheuristic algorithms to approximate near-optimal solutions.

Depending on the specific task, an appropriate algorithm can be selected. As analyzed and summarized
in Section 2, for CNN optimization in IoT intrusion detection, we employ both GA and PSO for exper-
imentation and subsequently analyze the outcomes to evaluate their suitability for different datasets and
task scenarios.

In optimization algorithms, the objective function acts as a compass, guiding the search process toward
better solutions. By quantifying the fitness of a candidate solution with respect to the desired objectives,
it provides a systematic way to rank and compare alternatives. When a well-designed fitness function is
adopted, the optimization process is transformed into a tractable optimization problem [10].

3.4.1 Applying the PSO Algorithm
In the PSO framework, each particle represents a set of hyperparameters x, and the swarm X constitutes

the collection of all feasible hyperparameter configurations generated during the optimization process. The
goal of the proposed method is to identify the optimal hyperparameter set x* ∈ X such that the CNN model
achieves maximum performance.

To apply the PSO framework in this study, it is necessary to define the position, velocity, fitness function,
local best position (pbest) of each particle, and the global best position (gbest) of the swarm. Building upon the
original work in [49], this study extends the approach by focusing on the optimization of 11 hyperparameters
in CNN configuration for IoT intrusion detection, with the following key contributions:

• Improvement of the baseline PSO algorithm in [49] by incorporating an automatic stopping criterion
for the optimization loop, introducing an early-stopping mechanism, and thereby extending the search
space to include hyperparameters such as early-stopping patience and the number of convolutional
layers. This expands the set of optimized hyperparameters from 9 to 11, covering both architectural and
training parameters.

• Proposal of a multi-objective optimization function that integrates four component objectives, ensuring
that the model not only achieves high detection accuracy but also operates at a speed compatible with the
limited resources of IoT edge devices. This multi-objective function is employed as the fitness function
to evaluate each particle.
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• Data preprocessing for efficiency: Duplicate removal and feature reduction are performed on the dataset
to reduce dimensionality, accelerate training, and conserve system resources, thereby enhancing model
efficiency in resource-constrained IoT environments.

The process begins with the initialization of a particle swarm, where each particle encodes a candidate
hyperparameter configuration X. These configurations are used to train and evaluate the 1D-CNN model on
the training and validation datasets.

After training, the model performance is assessed through the fitness value of each hyperparameter
configuration (1D-CNN particle). The fitness function corresponds to the global objective function f. PSO
then updates each particle’s personal best position (pbest) and the global best position (gbest) based on
the evaluation results. If the current fitness of a particle exceeds its previous personal best, the algorithm
updates its pbest. Similarly, if the fitness of a particle surpasses the current gbest, the global best is updated.
Consequently, particle velocities and positions are adjusted to guide the swarm toward more optimal
solutions, as defined by the following equations:

• Velocity update: The new velocity for each particle is computed according to Eq. (8):

v(t+1)
i j = ω × v(t)

i j + c1 × r1 × (pbesti j − x(t)
i j ) + c2 × r2 × (gbest j − x(t)

i j ) (8)

where: v(t+1)
i j represents the updated velocity of particle i in dimension j, v(t)

i j denotes the current velocity,
x(t)

i j is the current position, pbesti j refers to the best position achieved by the individual particle, and
gbest j indicates the global best position of the entire swarm. The parameter ω is the inertia weight,
which controls the influence of the previous velocity. The coefficient c1 is the cognitive learning factor,
adjusting the movement toward the particle’s personal best position, whereas c2 is the social learning
factor, guiding the movement toward the global best position, r1 and r2 are random values uniformly
distributed within the range [0, 1].

Eq. (8) represents three main components that influence the particle’s movement: the inertia compo-
nent, the personal cognitive component, and the social cognitive component.

• Position update: The new position of each particle in the swarm is updated based on the new velocity
according to Eq. (9)

x(t+1)
i j = x(t)

i j + v(t+1)
i j (9)

The above processes are repeated until the termination condition is satisfied. If the stopping criterion
has not been met, the procedure continues with the training and updating of new parameters. Otherwise, an
optimal 1D-CNN model along with the corresponding set of hyperparameters x* is obtained.

Finally, this model is evaluated on the test dataset to validate its effectiveness and generalization
capability.

To constrain the search space, a function clip() ensures that the new position of each particle remains
within the valid search bounds. The proposed method employs a mapping mechanism from particle
positions to model hyperparameters, to handle two main categories of hyperparameters:

1. Continuous hyperparameters: Directly mapped from the particle position values in the search space
without additional processing.

2. Discrete hyperparameters: Mapped through two steps—quantization of the continuous value, followed
by mapping into a predefined set of values (if applicable).
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Each dimension in the PSO particle position vector corresponds to a specific hyperparameter of the
1D-CNN model. The mapping mechanism is constructed based on three principles: (1) Direct mapping
of particle dimensions to parameters (for continuous real-valued hyperparameters); (2) Quantization of
continuous values—for hyperparameters requiring integer values, the continuous values are quantized by
rounding to the nearest integer. (3) Constraint mapping into predefined sets—for hyperparameters with
finite domains, the quantized values are mapped into a predefined set using a clipping index technique.

3.4.2 Applying the GA Algorithm
Building upon our previous work in [52], in this study we extend the 1D-CNN-GA algorithm to better

fit the new context by introducing two additional hyperparameters (x1—Number of convolutional layers and
x11—Early-stopping patience). Moreover, different fitness functions are applied corresponding to different
definitions of the global objective function f.

We adopt Tournament Selection to choose parent individuals. In this mechanism, a pair of individuals
is selected randomly, forming a dynamic selection process that is not entirely dependent on fitness.
This approach helps preserve population diversity and provides opportunities for “weaker” individuals to
participate in reproduction.

After selecting two parent individuals, offspring are generated through the crossover process. The
architecture of the offspring is constructed by combining convolutional neural network blocks (block_list)
from both parents. Specifically, a random cut point is determined in the block list of the first parent; blocks
before the cut point are inherited from the first parent, while blocks after the cut point are taken from the
second parent. This process allows the offspring to inherit favorable characteristics from both parents, while
simultaneously introducing diversity into the population through the recombination of different blocks.

To ensure that the search space is thoroughly explored, the offspring undergoes a mutation process,
where some of its components are randomly altered. For each hyperparameter (gene) in the offspring, if
mutation occurs (based on the mutation rate), its value is updated by generating a new parameter value using
the random parameter generation function.

This study proposes an adaptive early-stopping mechanism, designed to reflect the actual dynamics
of the optimization process. Unlike previous studies that rely on a fixed number of iterations, this mech-
anism is based on the continuous evaluation of improvements in the global best solution (gbest) across
consecutive iterations.

3.4.3 Parameter Settings and Justification
To ensure reproducibility and methodological transparency, the parameter configurations used for both

GA and PSO are summarized in Table 3. These settings were selected based on a combination of literature
guidelines, empirical pilot testing, and grid search over representative subsets of the search space.

The GA optimizer is using a crossover rate of 0.5 and a mutation rate of 0.1. Tournament selection is
applied to maintain population diversity, while elitism is intentionally omitted to allow broader exploration of
the search space. The GA employs a crossover probability of 0.5, meaning that only half of the selected parent
pairs undergo recombination, which helps maintain stable inheritance of promising CNN configurations
while still enabling exploration. A mutation rate of 0.1 perturbs 10% of the hyperparameter genes in each
chromosome, preventing premature convergence and ensuring diversity.

For PSO, with an inertia weight fixed at 0.5 to balance the influence of previous velocities. The cognitive
and social coefficients are set to c1 = c2 = 2.0, consistent with standard PSO recommendations. An early-
stopping mechanism is included to terminate the search when no further improvement is observed.
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Table 3: The parameter configurations used for both GA and PSO

GA PSO

Parameter Value Parameter Value
Generations * Iterations *

Crossover rate 0.5 Inertia weight 0.5
Mutation rate 0.1 Cognitive coefficient (c1) 2.0

Selection Tournament Social coefficient (c2) 2.0
Elitism Not used Early stopping Yes

To maximize the search space, the number of PSO iterations and the number of GA generations are
not pre-set (denoted by *). This is different from previous studies. Both optimizers were executed under the
same evaluation protocol to ensure consistency in the multi-objective fitness assessment, enabling a rigorous
comparative analysis of their optimization behavior.

Our goal was to ensure that the comparison between GA-based and PSO-based CNN optimization
remains fair and focuses strictly on the effect of configuration optimization rather than optimizer tuning.
Therefore, both GA and PSO models were trained under the same fixed optimizer configuration: Optimizer
Adam with default parameters (β1 = 0.9, β2 = 0.999, ε = 1 × 10−7) and no learning rate scheduler was applied.

4 Experiment Results and Evaluation

4.1 Experimental Model
To evaluate the proposed method, we conducted experiments on two different datasets: the full Edge-

IIoT dataset [53] and a balanced subset extracted from the CIC-IoT2023 dataset [16]. CIC-IoT2023 contains
over 60 million network flows, making it computationally infeasible to perform metaheuristic optimization
on the full dataset. To ensure that the subset remains representative, we performed stratified sampling
by selecting 10% of the data for each class (label), thereby preserving the original class distribution. The
evaluation employed the K-Fold cross-validation method. The experimental model and the proposed multi-
objective optimization pipeline are illustrated in Fig. 2. From the two input datasets, the optimization type is
selected. For each optimization algorithm, an optimal configuration and its corresponding trained model are
obtained. The corresponding test sets of each dataset are then executed on the optimized models to compare
and evaluate the optimization results.

To evaluate the effectiveness of metaheuristic algorithms on CNN models for the IoT malware clas-
sification problem, we conducted experiments on two datasets, Edge-IIoT and CIC-IoT2023, under the
following scenarios:

Scenario 1: Using the PSO algorithm combined with the 1D-CNN model (referred to as the 1D-CNN-
PSO model). We employed the Edge-IIoT and CIC-IoT2023 datasets with the 1D-CNN-PSO model to
optimize the global objective function f (x) with different weight parameters wi

Scenario 2: Using the GA algorithm combined with the 1D-CNN model (referred to as the 1D-CNN-GA
model). We employed the Edge-IIoT and CIC-IoT2023 datasets with the 1D-CNN-GA model to optimize
the global objective function f (x) with different weight parameters wi.
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Figure 2: Experimental model and the proposed multi-objective optimization pipeline

Each scenario was conducted with four experiments corresponding to different sets of weight parame-
ters wi, as follows:

• Experiment 1: Single-objective optimization with Accuracy (Acc) as the target (w1 = 1; w2 =w3 =w4 = 0)
• Experiment 2: Multi-objective optimization, balancing Accuracy and Inference Speed (w1 = w4 = 0.5;

w2 = w3 = 0)
• Experiment 3: Multi-objective optimization, balancing Accuracy, Precision, and Recall (w1 = w2 =

w3 = 1/3; w4 = 0;)
• Experiment 4: Multi-objective optimization with all four objectives equally weighted (w1 =

w2 = w3 = w4 = 0.25).

All experiments were conducted on Kaggle’s computational environment equipped with a 4-core CPU,
29 GB of RAM, 57.6 GB of disk storage, and an NVIDIA Tesla T4 GPU (15 GB).

4.2 Results and Evaluation
4.2.1 Scenario 1: Experimental Results with 1D-CNN-PSO
• With Edge-IIoT dataset: The experimental results of the 1D-CNN-PSO algorithm across four different

configurations are summarized in Table 4. The detailed configurations of the optimized models for each
case are presented in Table 5.
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Table 4: Experimental results of the four cases using the 1D-CNN-PSO algorithm on the Edge-IIoT dataset

Model

Weight (wi) The most optimal 1D-CNN model The overall 1D-CNN-PSO model

w1 w2 w3 w4 f 1 (Acc) f 2 (Pre-
cision)

f 3
(Recall)

f 4
(Model
param)

f Execution
time (s)

Number of
parameters

Convergence
iteration

Optimal time
(s)

ID-CNN-
PSO-1 1 – – – 0.9488 0.9843 0.9222 – 0.9488 271.11 857,103 4/7 11,313.53

ID-CNN-
PSO-2 0.5 – – 0.5 0.9486 0.9839 0.9221 0.9462 0.9474 255.03 486,799 7/8 10,920.48

ID-CNN-
PSO-3 1/3 1/3 1/3 – 0.9483 0.9836 0.9227 – 0.9515 196.97 1,545,231 5/8 10,900.91

ID-CNN-
PSO-4 0.25 0.25 0.25 0.25 0.9482 0.9830 0.9234 0.9477 0.9506 300.09 328,335 6/9 15,200.64

Table 5: Detailed configurations of the four optimized models using the 1D-CNN-PSO algorithm on the Edge-IIoT
dataset

Hyperparameters Range Best optimal 1D-CNN model

1D-CNN-PSO-1 1D-CNN-PSO-2 1D-CNN-PSO-3 1D-CNN-PSO-4
Number of convolutional layers (1, 3) 1 2 1 2

Number of filters [16, 32, 64] 64 64 64 64
Kernel size [3, 5, 7] 7 7 7 7
Pooling size (2, 5) 4 5 2 5

Number of dense layers (1, 3) 2 3 2 1
Number of neurons in dense layers [128, 256, 512] 512 512 512 512

Dropout rate (0.1, 0.5) 0.3161 0.1653 0.2028 0.5000
Learning rate (10−5, 10−2) 0.00011 0.00134 0.00023 0.00123

Batch size [32, 64, 128, 256, 512] 512 512 512 512
Number of epochs (20, 50) 24 26 20 28

Early-stopping patience (5, 10) 10 5 6 5

The results indicate a consistent trend across the four models. 1D-CNN-PSO-1 achieved the highest
validation accuracy of 94.93% with f = 0.9488. 1D-CNN-PSO-2 slightly decreased to 94.86% with f = 0.9474,
showing a trade-off between performance and model complexity. 1D-CNN-PSO-3, consisting of three
components, obtained an accuracy of 94.83% but the highest f (0.9515), demonstrating a better balance
across metrics. 1D-CNN-PSO-4 achieved 94.82% accuracy, 98.30% precision, 92.34% recall, and an f of
0.9506. Although the accuracy was slightly lower than 1D-CNN-PSO-1, this model provided a better trade-
off between performance and model complexity, requiring only 328,335 parameters compared to 857,103 in
1D-CNN-PSO-1.

• With CIC-IoT2023 dataset (10% sampled): The corresponding experimental results with 1D-CNN-
PSO are presented in Tables 6 and 7, which show the outcomes of the four cases and the detailed
model configurations:

On the CIC-IoT2023 dataset, PSO also demonstrates high performance, with 1D-CNN-PSO-1 achieving
a validation accuracy of 98.35% (f = 0.9835). PSO-2 slightly decreases to 98.22% (f = 0.9772), while 1D-CNN-
PSO-3 reaches 98.28% (f = 0.9834). The 1D-CNN-PSO-4 model achieves a validation accuracy of 98.36%,
precision of 98.95%, recall of 97.92%, and F = 0.9810. Although it records the highest accuracy among the
PSO models, its f -value is lower than PSO-1 and PSO-3 due to the impact of the model complexity penalty.
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Table 6: Experimental results of the four cases using the 1D-CNN-PSO algorithm on 10% of the CIC-IoT2023 dataset

Model

Weight (wi) The most optimal 1D-CNN model The overall 1D-CNN-PSO model

w1 w2 w3 w4 f 1 (Acc.) f 2 (Pre-
cision)

f 3
(Recall)

f 4
(Model
param)

f Execution
time (s)

Number of
parameters

Convergence
iteration

Optimal time
(s)

ID-CNN-
PSO-1 1 – – – 0.9835 0.9887 0.9800 – 0.9835 566.54 660,488 5/8 21,389.64

ID-CNN-
PSO-2 0.5 – – 0.5 0.9822 0.9883 0.9779 0.9722 0.9772 841.17 519,560 3/6 18,064.34

ID-CNN-
PSO-3 1/3 1/3 1/3 – 0.9828 0.9883 0.9791 – 0.9834 655.59 947,592 7/10 27,162.32

ID-CNN-
PSO-4 0.25 0.25 0.25 0.25 0.9836 0.9895 0.9792 0.9717 0.9810 294.14 660,488 9/12 23,956.40

Table 7: Detailed configurations of the four optimized models using the 1D-CNN-PSO algorithm on 10% of the CIC-
IoT2023 dataset

Hyperparameters Range Best optimal 1D-CNN model

1D-CNN-PSO-1 1D-CNN-PSO-2 1D-CNN-PSO-3 1D-CNN-PSO-4
Number of convolutional layers (1, 3) 1 2 3 1

Number of filters [16, 32, 64] 64 64 64 64
Kemel size [3, 5, 7] 7 7 7 7

Pooling size (2, 5) 2 3 2 2
Number of dense layers (1, 3) 1 2 1 1

Number of neurons in dense layers [128, 256, 512] 512 512 512 512
Dropout rate (0.1, 0.5) 0.1269 0.1983 0.2046 0.1231
Learning rate (10−5, 10−2) 0.00105 0.00062 0.00078 0.00019

Batch size [32, 64, 128, 256, 512] 512 512 512 512
Number of epochs (20, 50) 39 50 29 26

Early-stopping patience (5, 10) 9 7 10 5

4.2.2 Scenario 2: Experimental Results with 1D-CNN-GA
• On the Edge-IIoT dataset: With α = 0.01, the experimental results using the 1D-CNN-GA algorithm

across the four cases are presented in Table 8. The detailed configurations of the optimized models for
each experimental case with the 1D-CNN-GA algorithm on the Edge-IIoT dataset are shown in Table 9.

On the Edge-IIoT dataset, the 1D-CNN-GA models demonstrate gradual improvements as the opti-
mization function becomes more complex. The 1D-CNN-GA-1 model, which employs a single-objective
function, achieves a validation accuracy of 94.87% and a fitness score of f = 0.9487. When the model
complexity component is incorporated (1D-CNN-GA-2), the performance slightly improves to 94.91% with
f = 0.9504, indicating a positive effect of considering model complexity. The 1D-CNN-GA-3 model, which
integrates accuracy, precision, and recall, reaches a validation accuracy of 94.76% with f = 0.9507—higher
than 1D-CNN-GA-1 but slightly lower than 1D-CNN-GA-2. Most notably, the proposed improved 1D-CNN-
GA-4 model, which optimizes all four components, achieves a validation accuracy of 94.78%, precision of
98.38%, recall of 92.22%, and f = 0.9521—the highest among all GA models. Importantly, 1D-CNN-GA-4
produces an extremely efficient model with only 58,383 parameters, significantly fewer than 1D-CNN-GA-1
(342,223 parameters) and 1D-CNN-GA-3 (856,847 parameters), while maintaining comparable perfor-
mance. This demonstrates its capability to optimize both accuracy and model complexity simultaneously.
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Table 8: Experimental results of the four cases using the 1D-CNN-GA algorithm on the Edge-IIoT dataset

Model

Weight (wi) The most optimal 1D-CNN model The overall 1D-CNN-GA model

w1 w2 w3 w4 f 1 (Acc) f 2 (Pre-
cision)

f 3
(Recall)

f 4
(Model
param)

f Execution
time (s)

Number of
parameters

Convergence
generation

Optimal time
(s)

ID-CNN-
GA-1 1 –s – – 0.9487 0.9850 0.9201 – 0.9487 564.03 342,223 3/6 11,785.49

ID-CNN-
GA-2 0.5 – – 0.5 0.9491 0.9836 0.9233 0.9516 0.9504 542.37 121,231 3/6 22,478.56

ID-CNN-
GA-3 1/3 1/3 1/3 – 0.9476 0.9832 0.9215 – 0.9507 284.61 856,847 5/5 13,456.35

ID-CNN-
GA-4 0.25 0.25 0.25 0.25 0.9478 0.9838 0.9222 0.9545 0.9521 429.43 58,383 5/8 23,331.83

Table 9: Detailed configurations of the four optimized models using the 1D-CNN-GA algorithm on the Edge-IIoT
dataset

Hyperparameters Range Best optimal 1D-CNN Model

ID-CNN-GA-1 ID-CNN-GA-2 ID-CNN-GA-3 ID-CNN-GA-4
Number of convolutional layers (1, 3) 2 3 1 3

Number of filters [16, 32,64] 32 32 64 32
Kemel size [3, 5, 7] 3 5 3 3

Pooling size (2, 5) 3 4 4 5
Number of dense layers (1, 3) 1 1 2 3

Number of neurons in dense layers [128, 256, 512] 512 256 512 128
Dropout rate (0.1, 0.5) 0.2589 0.3754 0.4473 0.1147
Learning rate (10−5, 10−2) 0.00423 0.00056 0.00055 0.00265

Batch size [32, 64, 128, 256, 512] 256 256 512 512
Number of epochs (20, 50) 42 23 38 40

Early-stopping patience (5, 10) 8 10 5 10

• On the CIC-IoT2023 dataset: The experimental results using the 1D-CNN-GA algorithm across the
four cases are presented in Tables 10 and 11. On the CIC-IoT2023 dataset, the GA-based models exhibit
substantially higher overall performance. 1D-CNN-GA-1 achieves a validation accuracy of 98.10% with
f = 0.9810, while 1D-CNN-GA-2 slightly decreases to 98.03% (f = 0.9786) due to the impact of the model
complexity penalty. 1D-CNN-GA-3 records 97.98% accuracy with f = 0.9804, showing a good balance
across metrics. The improved 1D-CNN-GA-4 model outperforms the others, achieving a validation
accuracy of 98.26%, precision of 98.93%, recall of 97.81%, and f = 0.9811—the highest among all GA
models. 1D-CNN-GA-4 produces a model with 168,520 parameters, which is considered reasonable
given the complexity of this dataset.

The synthesized experimental results are shown in Table 12. With the GA algorithm: the single-objective
optimization achieved the average accuracy improvement rate of 7.43%; the 2-objective optimization
achieved the average global function improvement rate of 4.37%; the 3-objective optimization achieved the
average global function improvement rate of 1.63%; the 4-objective optimization achieved the average global
function improvement rate of 13.58%. With the PSO algorithm: the single-objective optimization achieved
the average accuracy improvement rate of 7.24%; the 2-objective optimization achieved the average global
function improvement rate of 0.94%; the 3-objective optimization achieved the average global function
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improvement rate of 1.58%; the 4-objective optimization achieved the average global function improvement
rate of 1.39%.

Table 10: Experimental results of four cases using the 1D-CNN-GA algorithm on 10% of the CIC-IoT-2023 dataset

Model

Weight (wi) The most optimal 1D-CNN model The overall 1D-CNN-GA model

w1 w2 w3 w4 f 1 (Acc.) f 2 (Pre-
cision)

f 3
(Recall)

f 4
(Model
param)

f Execution
time (s)

Number of
parameters

Convergence
generation

Optimal time
(s)

ID-CNN-
GA-1 1 – – – 0.9810 0.9889 0.9746 – 0.9810 556.92 197,704 14/14 36,996.75

ID-CNN-
GA-2 0.5 – – 0.5 0.9803 0.9873 0.9758 0.9770 0.9786 381.68 51,496 10/13 29,740.48

ID-CNN-
GA-3 1/3 1/3 1/3 – 0.9798 0.9865 0.9750 – 0.9804 256.78 217,736 6/9 29,285.44

ID-CNN-
GA-4 0.25 0.25 0.25 0.25 0.9826 0.9893 0.9781 0.9745 0.9811 599.21 168,520 4/7 31,159.68

Table 11: Detailed configuration of four optimized models using the 1D-CNN-GA algorithm on 10% of the CIC-IoT-
2023 dataset

Hyperparameters Range Best optimal 1D-CNN model

1D-CNN-GA-1 1D-CNN-GA-2 1D-CNN-GA-3 1D-CNN-GA-4
Number of convolutional layers (1, 3) 2 2 1 1

Number of filters [16, 32,64] 64 16 32 16
Kemel size [3, 5, 7] 3 3 3 3

Pooling size (2, 5) 2 2 3 2
Number of dense layers (1, 3) 2 2 1 1

Number of neurons in dense layers [128, 256, 512] 128 128 512 512
Dropout rate (0.1, 0.5) 0.2760 0.1113 0.1092 0.2242
Learning rate (10−5, 10−2) 0.00468 0.00526 0.00196 0.00156

Batch size [32, 64, 128, 256, 512] 256 512 512 512
Number of epochs (20, 50) 40 24 31 45

Early-stopping patience (5, 10) 6 8 5 10

Table 12: The synthesized experimental results

Average improvement rate (%)

Algorithms GA PSO

Experiments Exp1 Exp2 Exp3 Exp4 Exp1 Exp2 Exp3 Exp4
Global Objective Function (f ) 7.43 4.37 1.63 13.58 7.24 0.94 1.58 1.39

Overall Evaluation
When comparing the two algorithms, 1D-CNN-GA-4 outperforms 1D-CNN-PSO-4 during the opti-

mization process on the Edge-IIoT dataset. Specifically, 1D-CNN-GA-4 achieves a higher global f value
(0.9521 vs. 0.9506), better precision (98.38% vs. 98.30%), and, notably, generates a much more compact model
(58,383 vs. 328,335 parameters). However, when evaluated on the test set, 1D-CNN-GA-4 exhibits slightly
lower performance, achieving an accuracy of 94.88%, precision of 98.43%, recall of 92.27%, and F1-score
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of 79.76%, whereas 1D-CNN-PSO-4 achieves 94.91% accuracy, 98.35% precision, 92.41% recall, and 80.24%
F1-score.

On the CIC-IoT2023-derived dataset, both 1D-CNN-GA-4 and 1D-CNN-PSO-4 demonstrate strong
and nearly equivalent performance. 1D-CNN-PSO-4 slightly surpasses GA-4 in validation accuracy (98.36%
vs. 98.26%), while 1D-CNN-GA-4 achieves a marginally higher f value (0.9811 vs. 0.9810) due to better
balance among components. On the test set, 1D-CNN-PSO-4 maintains a slight advantage with accuracy of
98.32%, precision of 98.90%, recall of 97.91%, and F1-score of 72.11%, compared to 1D-CNN-GA-4 (98.26%
accuracy, 98.79% precision, 97.90% recall, and 71.47% F1-score).

The study performed optimization under four different weighting strategies, ranging from single-
objective optimization (accuracy only) to multi-objective optimization balancing four components:
validation accuracy (f 1), validation precision (f 2), validation recall (f 3), and model complexity/speed
penalty (f 4). The experimental results provide important insights into the optimization capabilities of both
algorithms. Under the single-objective setting (w1 = 1), both GA and PSO achieved high accuracy but
produced models with a large number of parameters. This indicates that optimizing solely for accuracy
can lead to overfitting and unnecessary model complexity. The multi-objective optimization strategy with
balanced weighting (w1 = w2 = w3 = w4 = 0.25) combined with hyperparameter optimization, demonstrated
effective performance—particularly for GA—achieving the highest f values on both datasets.

The global fitness values (f ) of 1D-CNN-GA-4 (0.9521 on Edge-IIoTset and 0.9811 on CIC-IoT-2023) and
1D-CNN-PSO-4 (0.9506 on Edge-IIoTset and 0.9810 on CIC-IoT-2023) highlight the effectiveness of multi-
objective optimization in balancing predictive performance and model complexity. Results also indicate that
GA is more suitable for complex multi-objective optimization, whereas PSO effectively balances the primary
performance metrics.

Charts illustrating the global objective function values and the four component objectives for each
individual in each iteration/generation on both datasets using PSO/GA are presented in Charts 1–4. These
four charts depict the optimization behavior of 1D-CNN models with GA and PSO under balanced multi-
objective weighting. They empirically illustrate Pareto-like trade-offs: higher accuracy solutions tend to
have more parameters, while complexity-penalized solutions produce lightweight CNNs with slightly lower
accuracy. Both algorithms show smooth trade-off frontiers, with the global objective f steadily increasing,
though individual components f1– f4 fluctuate. The selected configurations lie near the “knee,” balancing
accuracy, precision, recall, and model complexity. The component function f 4 (related to model parameter
count) plays a crucial role in controlling model size. Without applying f 4, both algorithms generated models
with very large parameter counts. Including f 4 with a weight of 0.5 significantly reduced model complexity
without greatly affecting performance.

For instance, 1D-CNN-GA-4 contains only 58,383 parameters compared to 342,223 parameters in 1D-
CNN-GA-1 while maintaining nearly equivalent performance, demonstrating an effective trade-off between
predictive performance and computational complexity. Notably, GA exhibits superior balance between
performance and complexity when this penalty term is applied.
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Chart 1: Results of the 1D-CNN-PSO algorithm on the Edge-IIoT dataset under the balanced weighting scenario of
the four component objectives

Execution Time and Convergence Analysis
Another important aspect is the difference in execution time and overall optimization time between the

two algorithms. PSO demonstrates a clear advantage with significantly shorter execution times compared
to GA on both datasets. On the Edge-IIoTset, 1D-CNN-GA-4 requires 429.43 s, which is considerably
longer than the 300.09 s for 1D-CNN-PSO-4. On the CIC-IoT-2023 dataset, 1D-CNN-GA-4 executes in
599.21 s, whereas 1D-CNN-PSO-4 requires only 294.14 s. This indicates that PSO tends to produce models
with structures optimized for computational efficiency.

Regarding the number of generations/iterations to reach convergence and total optimization time: on
the Edge-IIoTset, PSO converges faster, with 1D-CNN-PSO-4 reaching convergence at iteration 6/9 within
15,200.64 s, whereas 1D-CNN-GA-4 converges at generation 5/8 but requires 23,331.83 s. This demonstrates
that PSO exhibits a more efficient search mechanism on this dataset. On the CIC-IoT-2023 dataset, 1D-
CNN-GA-4 converges at generation 4/7 in 31,159.68 s, compared to 1D-CNN-PSO-4, which converges at
iteration 9/12 in 23,956.40 s. Overall, although PSO achieves shorter optimization times, GA requires fewer
generations to converge. This can be attributed to the different convergence behaviors of the two algorithms:
PSO tends to converge more rapidly toward promising local solutions, while GA maintains population
diversity longer to explore the global search space.
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Chart 2: Results of the 1D-CNN-GA algorithm on the Edge-IIoT dataset under the balanced weighting scenario of the
four component objectives

Analysis of the optimal hyperparameter configurations reveals clear differences in the search strategies
of the two algorithms. GA tends to favor models with more diverse structures, with the number of
convolutional layers varying from 1 to 3 and kernel sizes ranging from 3 to 5. In contrast, PSO shows higher
consistency in selecting kernel size (favoring size 7) and batch size (favoring 512), indicating convergence
toward empirically effective solutions. This reflects the differing exploration strategies: PSO excels at
exploiting promising search regions, whereas GA achieves broader exploration through the stochastic nature
of genetic operations.

Regarding model complexity, GA-optimized models often exhibit a wider range of parameter counts
(from 58,383 to 856,847 on Edge-IIoTset), reflecting its capacity to explore a more diverse search space.
Conversely, PSO tends to produce models with relatively stable sizes, highlighting the algorithm’s fast
convergence characteristics. Notably, PSO tends to generate models with more complex structures, as
evidenced by higher average number of parameters compared to GA.
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Chart 3: Results of the 1D-CNN-PSO algorithm on 10% of the CIC-IoT2023 dataset under the balanced weighting
scenario of the four component objectives

Direct comparison under identical computational budgets was not feasible due to resource constraints
and our study’s scope. Following standard practice in NAS and evolutionary deep learning studies, we
therefore benchmark our optimized 1D-CNN-PSO and 1D-CNN-GA models against state-of-the-art CNN-
based IDS on the same datasets (Edge-IIoTset and CIC-IoT2023). The proposed models were chosen for
their demonstrated optimization capabilities, achieving maximum fitness while balancing computational
efficiency. Detailed comparative results are presented in the following table (Table 13).
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Chart 4: Results of the 1D-CNN-GA algorithm on 10% of the CIC-IoT2023 dataset under the balanced weighting
scenario of the four component objectives

Table 13: Performance comparison of CNN-based IDS models on edge-IIoTset and CIC-IoT2023

Research Year Dataset Model (Type) Task Key reported
metrics Notes

Ferrag
et al. [54] 2022 Edge-IIoTset Dataset paper

Binary &
Multiclass

(2–6–15
classes)

Dataset description
(2.2 M + records; 61
features in original
release). Multiclass

accuracy: max
93.89%

Public dataset
used by

follow-ups

(Continued)
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Table 13 (continued)

Research Year Dataset Model (Type) Task Key reported
metrics Notes

Yang
et al. [55] 2024

Edge-IIoTset,
CIC-IoT-

2023,
CIC-IDS2017

BiGRU +
Attention +
Inception-

CNN (named
NIDS-BAI)

Multiclass

Edge-IIoTset:
Validation acc ≈

94.76%; precision
0.948, recall 0.947,

F1 0.946).
CIC-IoT-2023:
micro/macro-

AUC= 0.99997/0.99876.

Strong per-class
metrics; authors

applied RF-based
feature selection

and
ARL/ADASYN

balancing.

Sasi
et al. [56] 2024 CIC-IoT-

2023

1D-CNN +
LSTM +

Self-attention

Binary &
Multiclass

Authors report high
accuracy (examples
in paper comparing

models); best
variants reach high

98–99% ranges

Lightweight
architecture;

emphasizes IoT
constraints.

Beauty
Angelin

and
Priyad-

harsini [57]

2024 Edge-IIoTset

Proposed a
DL-base

Network-IDS:
CNN, AE

Multiclass

Accuracy = 92.34,
Precision = 90.28,

Recall = 91.69,
F1 = 89.08

Our
proposed
method

2025
Edge-IIoTset

và CIC-
IoT2023

1D-CNN-
PSO,

1D-CNN-GA
Multiclass

Accuracy > 94.8%
with Edge-IIoTset,
>97.9% with

CIC-IoT-2023

Multi-Objective
Optimize

The analysis results indicate that the proposed 1D-CNN models achieve accuracies ranging from 94.88%
to 98.32%, placing them among the highest-performing models on the Edge-IIoTset and CIC-IoT2023
datasets. More importantly, the 1D-CNN-PSO and 1D-CNN-GA models demonstrate clear advantages
in terms of model size and inference speed—critical factors for real-world applications with limited
computational resources.

Compared to other models, the proposed approach not only achieves higher accuracy but also excels
in configuration optimization, owing to the integration of PSO in adjusting network architectures and
hyperparameters. This enables the 1D-CNN to effectively exploit the data features without requiring complex
architectures such as deep convolutional networks (e.g., VGG-16) or specialized time-series models (e.g.,
InceptionTime).

5 Conclusion
Optimizing CNN architectures for IoT intrusion detection is a problem of significant scientific and

practical relevance. Current studies typically focus on optimizing a single objective—accuracy—which limits
generalizability, as other optimization objectives are often neglected. Moreover, existing approaches seldom
provide a method for selecting the best CNN configuration for the task. This paper proposes a comprehensive
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computational framework for optimizing CNN architectures for IoT intrusion detection, applicable to
both single-objective and scalarized multi-objective optimization. Additionally, the study develops and
implements optimization methods using representative metaheuristic algorithms, namely GA and PSO. The
proposed approach is evaluated on two different datasets and compared in detail with relevant prior studies.

The results demonstrate the effectiveness of the proposed optimization approach: both algorithms
significantly improve the performance of 1D-CNN models compared to manual tuning, achieving accuracies
above 94.8% on Edge-IIoTset and over 97.9% on CIC-IoT-2023. A key contribution of this research is
the multi-objective fitness function, which incorporates four components: validation accuracy, precision,
recall, and inference speed (based on a model complexity penalty). The 1D-CNN-GA-4 and 1D-CNN-
PSO-4 models effectively balance predictive performance and model complexity, achieving high accuracy
(94.88%–98.32%) while maintaining optimized network structures.

The study further analyzes specific CNN configuration layers optimized for IoT intrusion detection,
highlighting configurations suited to each optimization algorithm and dataset based on the comprehensive
optimization framework.

Despite achieving promising detection performance, this study has several limitations. The configu-
ration search space was relatively small, not all hyperparameters were explored, and offline optimization
may not capture streaming traffic dynamics. GA performance depends on parameter tuning (crossover,
mutation, selection), which may lead to premature convergence, while PSO is sensitive to inertia weight
and acceleration coefficients. Practical deployment requires trade-offs: lightweight models suit memory-
and latency-constrained edge devices, whereas larger models achieve marginally higher accuracy for cloud-
based analysis.

Future work will address these limitations by: (i) extending experiments to larger configuration spaces
with additional hyperparameters, (ii) investigating incremental or online optimization for streaming traffic,
(iii) exploring hybrid GA–PSO strategies where PSO rapidly searches continuous hyperparameters (e.g.,
learning rate, dropout) and GA explores discrete/structural choices (e.g., number of convolutional blocks), or
GA maintains structural diversity while PSO refines promising individuals, (iv) leveraging elitist archives and
Pareto filtering to produce compact, high-performing models, (v) applying other metaheuristic algorithms
such as Differential Evolution or Artificial Bee Colony, and (vi) incorporating statistical significance testing
(Wilcoxon, Friedman, ANOVA) and computational profiling (memory usage, inference latency) across
diverse datasets. Moreover, future work may integrate metaheuristic-based feature selection methods (e.g.,
GMSMFO [58], TVPS–Salp [59], Salp–GWO [60]) with CNN architectural optimization to jointly improve
both feature representation and model design. These extensions aim to provide a comprehensive and
practical framework for IoT intrusion detection.
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